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Abstract

A version of quantum and statistical mechanics, including perturbation theory, is described
in which explicit electromagnetic gauge arbitrariness is maintained at every stage. Any gauge
may be used for a calculation provided that the wave equation operator is gauge invariant.

1. Introduction

In classical electrodynamics it is well known (see for example Cohen-Tannoudij
et al . 1977; Healy 1982; Craig and Thirunamachandran 1984; Doughty 1990)
that if the vector and scalar electromagnetic potentials A and φ are transformed
to Aχ and φχ where

Aχ = A +∇χ and φχ = φ− ∂χ/∂t , (1)

then the electromagnetic fields B and E given by

B = ∇×A and E = −∇φ− ∂A/∂t (2)

remain unchanged. The arbitrary non-operator scalar field χ(r, t), which is a
continuously differentiable single valued function of position r and time t as are
the fields and potentials, is known as the gauge function and the transformation
as a gauge transformation.

In quantum mechanics it is also known that if the wavefunction Ψ of the
system that is transformed becomes

Ψχ = Ψ0 exp(ieχ/h̄) , (3)

where e is the electric charge of the particle, then the transformed Hamiltonian
H χ (which involves Aχ and φχ) and wavefunction Ψχ will obey a time-dependent
Schrödinger wave equation of the same form as the untransformed one involving
A and φ. Consider the Schrödinger equation S 0 Ψ0 = 0 for a particle of rest mass
m moving in potentials A and φ, where the Schrödinger wave equation operator
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is S 0 = H 0 − ih̄∂/∂t and H 0 is the non-relativistic Hamiltonian written in the
gauge with χ = 0 which is denoted by the subscript 0:

H0 = (p− eA)2/2m+ eφ , (4)

and p is the canonical momentum operator p = −ih̄∇. This transforms into
Sχ Ψχ = 0, where the operator and wavefunction are obtained from transformations
(1) and (3) because the gradient operator acting on the phase of the transformed
wavefunction produces a term that cancels that coming from the e∇χ term and
the time derivative operator cancels the e∂χ/∂t term. The gauge function must
be real so that physical quantities such as charge and current densities remain
unchanged. The property of the wave equation of being invariant in form under
a gauge transformation is known as gauge covariance. In the remainder of the
paper a subscript is attached to operators and wavefunctions to denote the value
of the gauge function associated with them.

The freedom to specify χ may be used to simplify a calculation. For example,
in the Lorentz gauge the condition ∇ . A + c−2∂φ/∂t = 0 is imposed by requiring
χ to obey the inhomogeneous wave equation. This has the effect of separating
the electrodynamic equations of motion for A and φ. The interaction of radiation
with atoms and molecules is most effectively dealt with in the Coulomb gauge
with ∇ . A = 0 (Craig and Thirunamachandran 1984) or in the dipole gauge
(Goppert-Mayer 1931). For a discussion of many other gauges see Leibbrandt
(1987). However, even after such a gauge transformation a degree of gauge
arbitrariness will remain. The object of the present paper is to describe the
formal structure of quantum mechanics and perturbation theory when full gauge
arbitrariness is preserved manifestly at every stage. For the purpose of this
paper quantum mechanics is taken to be the wave mechanics of Schrödinger.
Because, as has been known almost since its inception, quantum mechanics is
gauge invariant, it is necessary that at the end of any calculation all observable
quantities must be independent of gauge and so must agree with the results of
a conventional calculation which might assume, for example, simply that χ = 0.

The question of how probability amplitudes may be defined in the presence
of a time-dependent gauge function was addressed by Yang (1976), following
a comment on the matter by Lamb (1952), and contributions to this and
allied issues were made subsequently by many authors: see for example Kobe
(1978, 1984), Power and Thirunamachandran (1978), Aharonov and Au (1981,
1983), Yang (1981), Feuchtwang et al . (1982), Haller (1984), Schlicher et al .
(1984), Power (1989) and Healy (1988). Some of these authors, following Yang
(1976), suggested that it is possible to define eigenvalues and eigenfunctions
for time-dependent gauge functions through the equation H (t) Ψ(t) = E (t) Ψ(t).
Although this approach is valuable for dealing with adiabatic processes, see for
example Griffiths (1994), its use here is precluded by the arbitrarily fast time
variations of the gauge function. We argue that the time-dependent Schrödinger
equation must be used throughout and that it is only possible to define basis
states formally in terms of fields that are time independent and that these basis
states will be time dependent.

In Section 2 of this paper we show how wavefunctions and basis functions
may be defined for a wave equation in which the gauge is arbitrary. In Section 3
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we discuss the properties of operators in different gauges and, in Sections 4 and
5, time-independent perturbation theory and statistical mechanics. In Section 6
time-dependent perturbation theory and probability amplitudes are examined.

2. Basis Functions

We consider the Schrödinger wave equation Sχ Ψχ = 0 for a single particle in
an arbitrary gauge χ which, written explicitly, is

[{p− e(A +∇χ)}2/2m+ e(φ− ∂χ/∂t)− ih̄∂/∂t]Ψχ(r, t) = 0 . (5)

We note that due to the presence of χ the Hamiltonian, which is the sum of
the first two operators, is time dependent even when the potentials are static.
In this circumstance the wavefunction cannot be separated into the product of
a time-dependent part and a space dependent part and so the time-dependent
wave equation must be used throughout. However, if E and B have no time
dependence it follows from equations (2) that it is always possible to find a gauge
in which the potentials have no time dependence either and are functions of r
alone, any time dependence residing solely in the gauge function. We call these
potentials A0(r) and φ0(r), they are functions of the charges and currents that
are the sources of the fields. To give a concrete example consider the potentials
due to a long cylindrical solenoid of radius R parallel to the z axis containing
a steady magnetic flux Φ. The potentials in the time-independent gauge that
we require are found from Stoke’s theorem to be A0

θ = Φr/2πR2 for r ≤ R
and A0

θ = Φ/2πr for r ≥ R with A0
r = A0

z = φ0 = 0 everywhere, where (r, θ, z)
are the cylindrical coordinates (see e.g. Griffiths 1994). Other gauges may be
constructed by adding various derivatives of a gauge function but if this is time
dependent a time dependence of the potentials may be introduced and they will
not be appropriate for our present purpose.

To solve (5) with static potentials we temporarily set χ to zero. This gives

[(p− eA0)2/2m+ eφ0]Ψ0(r, t) = ih̄(∂/∂t) Ψ0(r, t) . (6)

Since the operator on the left-hand side is now independent of time the wavefunction
may be factored into a space-dependent part ψ(r) and a time-dependent part.
These separate in the usual way to give

Ψ0,n(r, t) = ψn(r) exp(−iEn t/h̄) , (7)

with En and ψn(r) given by the eigenvalue equation

[(p− eA0)2/2m+ eφ0]ψn(r) = En ψn(r) , (8)

whose solutions are assumed to be known. They are complete and orthonormal
because the operator is Hermitian. We are now able to restore gauge dependence
by appealing to (3) which gives

Ψχ,n(r, t) = ψn(r) exp[i(eχ− En t)/h̄] . (9)
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We emphasise that we have not fixed the gauge (at a value of zero) in the
preceding process. It may be verified by substitution that (9) is a solution of (5)
with the time-independent potentials A0 and φ0. The Ψχ,n are time-dependent
solutions of the wave equation for time-independent fields. Their space and
time dependences are arbitrarily and inextricably linked by the gauge function.
Any linear combination of them Ψχ(r, t) =

∑
n an Ψχ,n(r, t), where the an are

independent of time is also a solution of (5) with static fields. In this situation
the gauge explicit probability amplitude for the system to be in state m at time
t is defined to be the projection of state m onto the wavefunction Ψχ(r, t)∫

Ψ∗χ,m(r, t) Ψχ(r, t) dr ,

which is equal to am due to the orthonormality of the ψn(r) and so is independent
of gauge and, in the present case, of time. The probability of the system being
in a particular state m is therefore equal to |am|2. If the operator on the left
side of (8) is the exact Hamiltonian operator the solutions are exact. If it is only
part of the total Hamiltonian then the solutions form a basis set with which
perturbation theory may be carried out.

3. Operators and Matrix Elements

An operator O0 in the gauge with χ = 0 is, in general, a function of the
potentials, i.e. O0 = O0(A,φ). The operator Oχ in gauge χ is defined by the
relation Oχ(A, φ) = O0(A + ∇χ, φ − ∂χ/∂t). We define a gauge independent
operator I to be one that is unchanged by a gauge transformation so that
Iχ(A, φ) = I0(A +∇χ, φ− ∂χ/∂t) = I0(A, φ). An operator such as r or p that
does not depend explicitly on the potentials is gauge independent.

That the Schrödinger equation (5) Sχ eieχ/h̄ Ψ0 = 0 transforms unitarily to
S0 Ψ0 = 0 under a gauge transformation is seen to require that

Sχ = eieχ/h̄ S0 e−ieχ/h̄ . (10)

An operator that satisfies such a relation is said to be gauge invariant. It is clear
that any operator O that has the functional formO0 = O0(r, t, p−eA, ih̄∂/∂t−eφ)
will be gauge invariant if the operator can be expanded in sums of powers of its
arguments. We now see that the matrix elements of a gauge invariant operator
O are independent of gauge. By using equations (3) and (10) it follows that

〈Ψχ,m|Oχ|Ψχ,n〉 = 〈ψm(r) exp(iEm t/h̄)|O0|ψn(r) exp(−iEn t/h̄)〉 . (11)

If O does not contain a time derivative the matrix element is simply

〈Ψχ,m|Oχ|Ψχ,n〉 = exp[(i(Em − En)t/h̄]
∫
ψ∗m(r)O0 ψn(r) dr . (12)

Expectation values, which are given by the diagonal elements, are independent
of time. It is apparent that an operator that represents a physical observable
is required to be gauge invariant but need not be gauge independent. One
important operator that is neither gauge invariant nor gauge independent is the
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semiclassical Hamiltonian. From examination of equations (4) and (5) it is seen
that

Hχ = eieχ/h̄H0 e−ieχ/h̄ − e∂χ/∂t , (13)

and its matrix elements are

〈Ψχ,m|Hχ|Ψχ,n〉 = (En − e∂χ/∂t)δm,n , (14)

due to the orthonormality of the ψn(r), where δ is the Kronecker delta. But
although there is a gauge dependent shift of individual energies, interpreted here
as the eigenvalues of the Hamiltonian, energy differences remain unchanged so
spectroscopy is gauge independent. This gauge variance is the price that must
be paid for requiring the electromagnetic fields to be externally prescribed; a
quantum electrodynamical calculation gives a Hamiltonian that is gauge invariant.

We have seen that the Schrödinger operator S is gauge invariant but its
Hamiltonian H is not. Similarly the Dirac operator given by

D0 = cα . (p− eA) + βmc2 + eφ− ih̄∂/∂t , (15)

where c is the speed of light and β and the α are the four 4×4 Dirac matrices,
is gauge invariant, but the Dirac Hamiltonian itself, D0 + ih̄∂/∂t, is not either.
The derivation of the solutions of the Dirac equation with time-independent
fields goes exactly as in Section 2, except that the eigensolutions are those of (8)
with [cα . (p − eA0) + βmc2 + eφ0] as the operator on the left-hand side. The
arguments given in this paper so far therefore hold for particles described by
the Dirac equation and its various non-relativistic approximations (Foldy and
Wouthuysen 1950; Frohlich and Studer 1993) all of which are gauge invariant.

In the discussion above it is important to distinguish the notions of gauge
invariance, defined by (10), and gauge independence, which means that the
quantity concerned does not change when the gauge function is changed. For
example the position operator r is both gauge independent and gauge invariant,
the canonical momentum operator p is gauge independent but not gauge invariant
and the Hamiltonian is neither gauge independent nor gauge invariant.

4. Time-independent Perturbations

If the potentials in equations (5) or (15) are separated into two parts so that
A→ A0+A1 and φ→ φ0+φ1 then the wave equations may be written formally
as

[H0
χ + Vχ − ih̄∂/∂t] Ψχ(r, t) = 0 , (16)

where for the Dirac Hamiltonian H0
χ = cα . {p − e(A0 +∇χ)} + βmc2 + e(φ0 −

∂χ/∂t)and Vχ = −ecα.A1 + eφ1, the latter being independent of χ. For the
Schrödinger Hamiltonian the two operators areH0

χ = {p−e(A0+∇χ)}2/2m+e(φ0−
∂χ/∂t) and Vχ = −A1 . {p−e(A0+∇χ)}e/m+e2(A1)2/2m+ieh̄(∇ . A1)/2m+eφ1,
which does depend on χ. However, it is to be noted that in both cases the
perturbation Vχ satisfies the relation Vχ = exp(−ieχ/h̄)V0 exp(−ieχ/h̄); in the
case of the Dirac Hamiltonian trivially, in the case of the Schrödinger Hamiltonian
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because the operator p generates the e∇χ term from the phase factor that
contains the gauge function. In both cases H0

χ has the form of an unperturbed
Hamiltonian in the gauge χ. For a perturbative approach to be viable it is
necessary for the matrix elements associated with V0 to be smaller than those
associated with H0

0.
If A1 and φ1 are independent of time, then V0 is also, so instead of the

eigensolutions ψn(r) and En being determined by (8): H0
0ψn = Enψn, where

H0
0 is the unperturbed Hamiltonian in the χ = 0 gauge, they will be determined

by the new eigenvalue equation (H0
0 + V0)ψ′n = E′n ψ

′
n. This may be solved

for the E′n and ψ′n in terms of the En and ψn by the standard methods of
time-independent perturbation theory. New gauge dependent wavefunctions may
then be constructed with the primed quantities by means of (9) and the expectation
values of operators that represent physical quantities may be evaluated.

But there is one condition that must be satisfied. From (10) the wave equation
operator (H0 − ih̄∂/∂t) is required to be gauge invariant. Therefore for it to
remain so when an extra term V is added this extra term must satisfy the
relation Vχ = exp(ieχ/h̄)V0 exp(−ieχ/h̄). To illustrate the importance of this
requirement, the spin–orbit interaction is sometimes incorrectly taken to be of
the form ξ(r) l.s where l = r ×× p. However, the correct form of this interaction
is gauge invariant as it involves the gauge invariant quantities E, (p− eA) and
s (Frohlich and Studer 1993) and it is in this form that it must be used as a
perturbation.

Generally, the quantities under the control of an experimenter are the fields
E and B which are determined by the placement of electrodes and magnets.
The potentials cannot be controlled in this way. Therefore when the fields
are considered to be applied externally and their operator nature is ignored an
appropriate form of perturbation to use is the derivative of the Hamiltonian with
respect to these fields:

V = δE . ∂H/∂E + δB . ∂H/∂B + higher terms , (17)

where the partial derivative with respect to a vector means the gradient with
respect to that vector and δE and δB are small variations of these fields. This
form of perturbation fits readily into thermodynamic perturbation theory (Stewart
1996a). If, for example, the potentials corresponding to static uniform fields E
and B are taken to be φ = −E . (r−R) and A = B ×× (r−R)/2, the origin of
the potentials being at R, then from (4), −∂H/∂E = e(r−R) the electric dipole
moment. The term E . R in the Hamiltonian gives rise to a shift of all energy
levels and is unobservable.

The derivative of H with respect to the ith component of B is

∂H/∂Bi =
∑
j

(∂H/∂Aj)(∂Aj/∂Bi) . (18)

The quantity ∂H/∂A = ecα for the Dirac equation and is given for the Schrödinger
equation by H(A + δA)−H(A) = −δA . (p− eA)e/m for fields with ∇ . A = 0.
For a uniform magnetic field, ∂Ai/∂Bj =

∑
k εijk r

′
k/2, where the Levi-Civita
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unit tensor εijk is zero if any two of the subscripts are the same, unity if they
are in cyclic order and zero otherwise, and r′ = r−R.

Accordingly

∂H

∂Bx

= 1
2

(
y′
∂H

∂Az

− z′ ∂H
∂Ay

)
, (19)

etc. and so −∂H/∂B = r′ ×× αce/2 for the Dirac Hamiltonian and r′ ×× (p −
eA)e/2m for the Schrödinger Hamiltonian. The latter is the expression for
the orbital magnetic moment operator in non-relativistic quantum mechanics,
the first and second terms representing the paramagnetic and diamagnetic
contributions respectively. Since the paramagnetic and diamagnetic terms are
not individually gauge invariant they are not observable individually, only the
sum of them is (Stewart 1996b). The expression for ∂H/∂B involves a cross
product with (r − R). The term containing R ×× α or R ×× (p − eA) is the
cross product of the constant vector R with an operator that represents a
drift current. By Maxwell’s equations a drift current is inconsistent with
a uniform magnetic field and consequently in this case the expectation
value of ∂H/∂B is required to be independent of R. In this derivation
the derivatives of the Hamiltonian have been calculated in the gauge with
χ = 0. With general gauge ∂H/∂B is unchanged for the Dirac Hamiltonian, for
the Schrödinger Hamiltonian it becomes r′ ×× (p − eA − e∇χ)e/2m; ∂H/∂E is
unchanged. These derivatives of the Hamiltonian are evidently gauge invariant
and so are observable.

5. Statistical Mechanics

We assume that the behaviour of an assembly of particles i , j , etc. is
governed by the Schrödinger equation SΨ(ri, rj , t) = 0, where S = H − ih̄∂/∂t
and H(ri, rj , t) is a non-relativistic Hamiltonian consisting of the sum of single-
particle terms, for example as in (5), plus an interaction term involving the
spatial coordinates of two or more particles. Because the latter is gauge invariant
as it depends only on coordinates, the many particle Schrödinger operator will be
gauge invariant too. The gauge function Ξ of the many body wavefunction is the
sum of the individual gauge functions of the particles: Ξ(ri, rj , t) =

∑
i χ(ri, t)

so that ΨΞ(ri, rj , t) = Ψ0(ri, rj , t) exp(ieΞ/h̄). For the time-independent fields
appropriate for thermodynamics (or more correctly thermostatics) the solutions
of the wave equations are analogous to those of the single particle situation
except that the eigensolutions of (8) are now those for the many particle rather
than the single particle Hamiltonian and χ becomes Ξ.

Consider the quantity Tr(e−βHΞ OΞ) where Tr stands for trace, β = 1/kT
where T is the temperature and O is a gauge invariant operator. This quantity
is given explicitly by

∑
n,m

〈nΞ|exp(−βHΞ)|mΞ〉 〈mΞ|OΞ|nΞ〉.
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If the states |nΞ(t)〉 over which the trace is taken are the exact solutions of the
Hamiltonian [the solutions given in (9)] then using equations (13) and (15) this
trace becomes

Tr e−βHΞOΞ = eβe∂Ξ/∂t Tr e−βH0 O0 , (20)

where the trace on the right is taken over states with Ξ = 0. If O is
the unit operator we obtain a formally gauge (and time) dependent partition
function ZΞ(t) = eβe∂Ξ/∂t Z0 , where Z0 = Tr e−βH0 . The free energy given
by F = −kT ln(Z) is FΞ = −kT ln(Z0) − e∂Ξ/∂t. It is gauge dependent, but
its derivatives with respect to thermodynamic variables, which give observable
thermodynamic quantities, do not contain Ξ and so are gauge independent. The
statistical average of any gauge invariant operator 〈OΞ〉 = Tr(e−βHΞ OΞ)/ZΞ, for
example a spatial correlation function, is gauge independent because the factors
involving the gauge function in the numerator and denominator cancel. If the
internal energy obtained from the statistical average of the Hamiltonian operator
is calculated, it, like the free energy, has a gauge dependent part. However,
differences of internal energy, like differences of free energy, are gauge independent.
We conclude that all observable quantities calculated with statistical mechanics
are independent of gauge.

6. Time-dependent Perturbations

When the perturbing fields and potentials depend on time, the wave equation
will have the form of (16) with V being a small perturbation that is now time
dependent. In this circumstance we express the wavefunction in the form

Ψχ(r, t) =
∑
n

an(t) Ψχ,n(r, t) , (21)

where the Ψχ,n(r, t) are the basis functions of (9) containing the ψn(r) that are
solutions of H0

0 ψn(r) = En ψn(r) given in (8) for the time-independent potentials
A0 and φ0 but now the an are time dependent. If the explicit form, given by
(9), of the wavefunction of (21) is substituted into (16) then, with the help of
the result

[H0
χ − ih̄∂/∂t]Ψχ(r, t) = −ih̄

∑
n

ψn(r) exp[i(eχ− Ent)/h̄] (dan/dt) , (22)

and after using the relation Vχ = exp(ieχ/h̄)V0 exp(−ieχ/h̄) and making the
appropriate cancellations the gauge function disappears altogether and the result

ih̄
dam
dt

=
∑
n

ei(Em−En)t/h̄ an Vmn(t) (23)

is obtained where

Vmn(t) =
∫
ψ∗m(r)V0(t)ψn(r) dr . (24)
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Equations (23) and (24) are exactly the same as those obtained in the conventional
treatment of quantum mechanics where the gauge function is set to zero throughout
(Cohen-Tannoudij et al . 1977).

The probability amplitude in arbitrary gauge for the system to be in state m
at time at t is defined to be

∫
Ψ∗χ,m(r, t) Ψχ(r, t) dr. By using equations (9) and

(21) and the orthonormality of the ψn(r) this amplitude is found to be simply
am(t). This also is identical to that obtained when χ = 0. That this should be
the case is not immediately obvious. The conventional procedure for carrying out
a gauge invariant calculation, summarised in Section 1, is to start with a gauge
invariant equation of motion, such as the Schrödinger equation, and then set the
gauge function to zero. Although the results so obtained are valid for zero gauge
explicitly they are known to be valid (in the sense that observable quantities
produced by the calculation are independent of gauge) also for arbitrary gauge
because the equation of motion is gauge invariant. On this basis a conceivable
expression that might have been obtained for the probability amplitude with
arbitrary gauge might have included some function of the gauge function itself,
for example, exp(ieχ/h̄)am(t). The squared modulus of this would give the
required gauge independent probability. If it were obtained with a conventional
gauge invariant calculation that took χ = 0, the probability amplitude would be
just am(t) and the gauge factor would not be visible. However, as shown in this
section, this hypothetical possibility is not realised in practice. It has been found
that the gauge-explicit probability amplitude is am(t) which does not contain χ
at all. Probability amplitudes are independent of gauge.

7. Comment

It is reasonable to ask what the point is of demonstrating in detail that the
results of measuring physically observable quantities do not depend on gauge when
it is known from the start that the quantum wave equations themselves are gauge
covariant and that therefore all their physical consequences must be independent
of gauge. An answer to this question is that, apart from the purely intellectual
interest in seeing the details of how arbitrary gauge may be incorporated explicitly
into quantum mechanics, a contribution has been made to resolving an issue
which has caused controversy in the literature cited in this paper.

This issue concerns perturbation theory, the nature of the basis states between
which transitions are caused by a perturbing field and the definition of the
probability amplitudes relating to them. It has been found that because the
gauge function is time dependent the time-dependent Schrödinger equation must
be used always and that the basis states are therefore time dependent but
can be defined for time-independent fields only, both for time-dependent and
time-independent perturbations. The principle that physical quantities be gauge
independent requires that probabilities be independent of gauge. However, it
emerges in Section 6 that a stronger condition holds, namely that probability
amplitudes are independent of gauge and are therefore identical to those used in
the conventional version of quantum mechanics in which gauge is ignored.
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