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Abstract

We study the magnetic transition and spin correlation in Mn oxides at low temperatures. The
results indicate that there are antiferromagnetic (AF), spiral (SP), ferromagnetic (FM) and
canted (CN) states when T → 0. With temperature increasing, a paramagnetic (PM) state
appears. The spin–spin correlation function is also obtained.

1. Introduction

The perovskite Mn oxides Re1−xAxMnO3 (here Re is a rare earth such as
La and A is a divalent element such as Sr or Ca) have prompted considerable
theoretical and experimental interest because of a large negative magnetoresistance
near room temperature (Ju et al . 1994; von Helmolt et al . 1993, 1994). In the
interesting doping range 0 ·2 < x < 0 ·5, Re1−xAxMnO3 is a ferromagnetic metal
at low temperatures. In order to explain this phenomenon, a double exchange
model was proposed (Zener 1951; Anderson and Hasegawa 1955). The model
involves spin coupling between Mn+3 and Mn+4 next-nearest-neighbour ions with
the conduction electrons mediating the interaction. Recently, it has been pointed
out that in order to understand the extraordinary magnetoresistance phenomena
in these materials the electron–phonon interaction should be included (Hwang
et al . 1995; Ibarra et al . 1995; Mills et al . 1995, 1996). In spite of this, the rough
correspondence between the optical and magnetic measurements of the electron
stress-energy tensor suggests that the double exchange model provides a good
representation of the physics at low temperatures (Mills et al . 1995).

In the case of low temperature, the double exchange model alone is reasonable
(Mills et al . 1995). In this case, a phase diagram has been given by Inoue
and Maekawa (1995). However, they only considered AF, SP, FM and CN
states. A PM state, which may naturally appear with T increasing, is not
considered. Moreover, they treated the model Hamiltonian in a conventional
mean field level which cannot give the spin–spin correlation function. Thus, a
further study is needed. In treating the strongly correlated system, the Schwinger
boson method is useful as it gives a good approximation to the ground state
(Yoshioka 1989; Auerbach and Aovas 1988). At finite temperatures its results
are consistent with those by computer simulation (Yoshioka 1989). In this paper,
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we use the Schwinger boson method to treat the model Hamiltonian to obtain a
detailed phase diagram in the x−kBT plane at low temperatures and a spin–spin
correlation function.

2. Model Hamiltonian and Treatment Method

We treat t2g and eg electrons of Mn ions in Re1−xAxMnO3 as local spins of
S = 3

2 and itinerant electrons of S = 1
2 , respectively. The Hamiltonian describing

these materials can be expressed as (Inoue and Maekawa 1995)

H = − t
∑
〈ij〉σ

a†iσajσ +
∑
iσ

ε0a
†
iσaiσ +

U

2

∑
iσ

niσniσ

+ J
∑
〈ij〉

Si .Sj −
K

2

∑
i

Si .σi . (1)

Here t ( > 0) denotes the transfer integral of itinerant electrons between nearest-
neighbour sites, ε0 is the on-site potential of itinerant electrons, U is the
on-site Coulomb repulsion between ↑ and ↓ spin itinerant electrons, a†iσ (aiσ)
is the creation (annihilation) operator of an itinerant electron at site i with σ,
niσ = a†iσaiσ, J (> 0) is the nearest-neighbour exchange interaction of local spins,
K ( > 0) represents the Hund couping, and σi stands for the Pauli matrix.

In the Schwinger boson technique (Read and Sachdev 1989; Arovas and
Auerbach 1988; Auerbach and Arovas 1988; Hirsch and Tang 1989; Kane et al .
1990; Jayaprakash et al . 1989; Yoshioka 1989), the local spin can be expressed
as s = 1

2b
†
iµσibiν with a local constraint

∑
µ 〈b
†
iµbiµ〉 = 2S to ensure that the

total number of bosons on each site is 2S . Here S represents a local spin value.
Then, the Hamiltonian becomes

H = − t
∑
〈ij〉σ

a†iσajσ +
∑
iσ

ε0a
†
iσaiσ +

U

2

∑
iσ

niσniσ

+ J
∑
〈ij〉

b†iαbiβb
†
jγbjδ(σαβσγδ − δαβδγδ)−

K

2

∑
i

Si .σi . (2)

Fig. 1. Schematic illustrations of (a) a two-dimensional (1,1) SP state and (b) a CN state.
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We consider the two dimensional (2d) case in this paper because the Re1−xAxMnO3

system may be viewed as a quasi-2d one and its magnetic behaviour is mainly
determined by the Mn–O plane. We introduce the spin order parameters 〈Si〉, 〈σi〉,
the resonating valence bond (RVB) order parameter Dη = 〈bi↓bi+η↑ − bi↑bi+η↓〉,
and the short-range ferromagnetic parameter Q = 〈b†i↑bi+η↑ + b†i↓bi+η↓〉, where
η = x or y, and i+x (i+y) indicates a site next to the site i in the x (y) direction.
Then, the Hamiltonian is decoupled. The Hund coupling here is assumed to
be strong enough to make 〈σi〉 approximately parallel to 〈Si〉. Illustrations
for two-dimensional (1,1) SP and CN states are shown in Figs 1a and 1b,
respectively. The relative angle between two spins on the two nearest-neighbour
sites is θη = θi − θi+η. We define |θη| = π + 2θ with θ varing from 0 to π/2. By
using a set of local spin quantisation axes, the mean field Hamiltonian is given by

H = − t
∑
〈ij〉σ

[
cos

θη

2
c†iσcjσ + isin

θη

2
c†iσcjσ̄

]
+

∑
iσ

υσc
†
iσciσ

+
J

6

[ ∑
〈ij〉

[(
Qηcos

θη

2

)
(g†j↑gi↑ + g†j↓gi↓)−

(
iQηsin

θη

2

)
(g†j↑gi↓ + g†j↓gi↑)

+
(
iDηsin

θη

2

)
(g†i↑gj↑ − g

†
i↓gj↓)−

(
Dηcos

θη

2

)
(g†i↑g

†
j↓ − g

†
i↓g
†
j↑)

]
+ h.c.

]

+
(
− 4JSd

3
cos2θ − Kσs

4

) ∑
iσ

σg†iσgiσ

−N
(
Un↑n↓+

4JS2
d

3
cos2θ +

2J
3

(|D|2 − |Q|2) +
KSdσs

2
− 2Sλ

)
. (3)

Here

vσ = ε0 + Unσ −
σKSd

2
,

Qη = 〈g†i↑gi+η↑ + g†i↓gi+η↓〉cos
θη

2
+ i〈g†i↑gi+η↓ + g†i↓gi+η↑〉sin

θη

2
,

Dη = i〈gi↑gi+η↑ − gi↓gi+η↓〉sin
θη

2
+ 〈gi↑gi+η↓ − gi↓gi+η↑〉cos

θη

2
, (4)

and N are the square lattice sites. In order to obtain the relation between D−η
and Dη (Q−η and Qη) for different states, it is convenient to consider the case
of classical (large S ) spins, in which Qη = 〈g†i↑gi+η↑〉cos θη2 = 2Seiχi+η−χicos θη2 ,
Dη = i〈gi↑gi+η↑〉sin θη2 = i2Seiχi+η+χisin θη2 . We consider the case where Dη and
Qη are uniform. There is gauge freedom in choosing the phase χi, χi+η of Dη

and Qη. In the gauge χi = χi+η = 0, Dη = −D−η = D, Qη = Q−η = Q for the
SP (1,1) state and Dη = −D−η = D, Qη = −Q−η = Q for the CN state.
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For the SP state, the mean field Hamiltonian in momentum space is derived
to be

H = Hs +Hd + E0 , (5)

with

E0 = N

[
− Un↑n↓+

4JS2
d

3
cos2θ +

KSdσs

2
+

2J
3

(|D|2 − |Q|2)− 2Sλ
]
. (6)

Here H s and H d are itinerant electron and local spin parts, respectively, Sd = |〈Si〉|,
σs = |〈σi〉|, and the Lagrange multiplier λ is introduced to enforce the condition∑

µ 〈b
†
iµbiµ〉 = 2S.

In equation (5), H s and H d are given as follows:

Hs =
∑
k

εBZ, σ[(vσ − εksinθ)c†kσckσ − ε
′

kcosθc†kσckσ] , (7)

Hd =
∑

kεRBZ

ψ†kH̃kψ
′
k . (8)

with

ψ† = (g†k↑ − g−k↓ g†k↓ − g−k↑) ,

ψ′
† = (g†k↑ g−k↓ g†k↓ g−k↑) ,

H̃ =


j + γ −d2 −q2 d1

d∗2 j − γ d∗1 −q2
−q2 −d1 −j + γ d2

−d∗1 −q2 −d∗2 −j − γ

 .

Here the asterisk means congugate, k runs over the Brillouin zone (BZ) in H s

and half reduced Brillouin zone (RBZ) in H d, and εk = −2t(coskx+cosky), ε′k =
−2t(sinkx + sinky), q1 = − 2J

3 Qsinθ(coskx + cosky), q2 = 2J
3 Qcosθ(sinkx + sinky),

d1 = i 2J3 Dcosθ(coskx + cosky), d2 = −i 2J3 sinθ(sinkx + sinky), j = 4JSd
3 cosθ− Kσs

4 ,
γ = q1 + λ− 2J

3 . By a Bogoliubov transformation H s diagonalises as

Hs =
∑

kεBZ,σ

[ESP− (k)d†k↑dk↑ + ESP+ (k)d†k↓dk↓] , (9)
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where

ESP± (k) = v0 − εksinθ ± (∆2
E + ε

′2
k cos2θ) 1

2 , (10)

with v0 = (v↓ + v↑)/2 and ∆E = (v↓ − v↑)/2. Here v0 is the normalised on-site
potential, and ∆E is the effective field, which represents the strength of the
Hund coupling. Since we assume that the Hund coupling is large, H̃ can be
separated into two parts, namely H̃ = H0 +H ′, with H ′ being the perturbation.
Here H0 and H ′ are given as follows:

H0 =


−Kσs4 + λ0

−Kσs4 − λ0

Kσs
4 + λ0

Kσs
4 − λ0

 ,

H ′ =


λ̃+ q1 −d2 −q2 d1

d∗2 −λ̃− 8JSd
3 cos2θ + q1 d∗1 −q2

−q2 −d1 λ̃+ 8JSd
3 cos2θ + q1 d2

−d∗1 −q2 −d∗2 −λ̃− q1

 , (11)

with λ̃ = 4JSd
3 cos2θ + λ′. In equation (11), the Lagrange multiplier λ has also

been separated into two parts, namely λ = λ0 +λ′. As an approximation, we take
λ0 = Kσs/4 because (λ0−Kσs/4) is very small at low temperatures. Evaluating
the eigenvalue of H d to first order and the eigenfunction to zero order, we get

gk↑ = ζ1ok↑ + ζ2o
†
−k↑, g†−k↓ = o†−k↓,

gk↓ = ok↓, g†−k↑ = ζ2ok↑ + ζ1o
†
−k↑ , (12)

with

ζ1 =

√
λ̃+ q1

2ωSP−
+ 1

2 , ζ2 =

√
λ̃+ q1

2ωSP−
− 1

2 ,

ωSP− =
√

(λ̃+ q1)2 − |d1|2 . (13)
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The approximate spinon energy spectra are

ωSP− =
√

(λ̃+ q1)2 − |d1|2,

ωSP+ =
8JSd

3
cos2θ +

Kσs

2
+ λ̃+ q1 . (14)

The chemical potential of itinerant electron µ, the Lagrange multiplier λ̃, and
the parameters σs, Sd, Q , D should be determined self-consistently as follows:

1 =
1
N

∑
kεBZ

[
1

eβ(ESP− −µ) + 1
− 1

eβ(ESP+ −µ) + 1

]
(15)

2S + 1
2 =

1
N

∑
kεBZ

(
λ̃+ |q1|
2ωSP−

coth
βωSP−

2
+

1

eβω
SP
+ − 1

)
, (16)

σs =
1
N

∑
kεBZ

sin(2ξ)
[

1

eβ(ESP− −µ) + 1
− 1

eβ(ESP+ −µ) + 1

]
, (17)

Sd + 1
2 =

1
N

∑
kεBZ

(
λ̃+ |q1|
2ωSP−

coth
βωSP−

2
− 1

eβω
SP
+ − 1

)
, (18)

Q =
sinθ
N

∑
kεBZ

(
λ̃+ |q1|
2ωSP−

coth
βωSP−

2
− 1

eβω
SP
+ − 1

)
, (19)

D =
JD

2N
cos2θ

∑
kεBZ

(cosx+ cosy)2

2ωSP−
coth

βωSP−
2

, (20)

with β = 1/kBT, ξ = 1
2arctan[∆E/|ε′k|cosθ].

For the CN state, we express sin(θη/2) as a unified form, which is suitable to
both sublattices A and B:

sin(θη/2) = cosθeik0.Ri , (21)

with k0 = (π,π). Then, the mean field Hamiltonian in momentum space becomes

H = Hs +Hd + E0 , (22)

with

E0 = N

[
− Un↑n↓ +

4JS2
d

3
cos2θ +

KSd

2
+

2J
3

(|D|2 − |Q|2)− 2Sλ
]
. (23)
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Here H s and H d are given as

Hs =
∑

kεBZ,σ

[(vσ − εksinθ)c†kσckσ + iεkcosθc†kσckσ] , (24)

Hd =
∑

kεRBZ

ψ†kH̃kψ
′
k , (25)

with

ψ† = (g†k↑ − g−k↓ g†
k̃↓ − g−k̃↑), ψ′

† = (g†k↑ − g−k↓ g†
k̃↓ − g−k̃↑),

H̃ =


j + γ d3 −q4 d4

−d∗3 j2 − γ −d∗4 q4

−q∗4 d4 −j + γ d3

−d∗4 q∗2 −d∗3 −j − γ

 , (26)

where εk = −2t(coskx + cosky), k̃ is the reduced wave-vector of k+k0, q3 =
i 2J3 Qsinθ(sinkx+sinky), q4 = 2J

3 Qcosθ(sinkx+sinky), d3 = i 2J3 Dsinθ(sinkx+sinky),
d4 = i 2J3 cosθ(sinkx + sinky), j = −4JScos2θ/3 −Kσs/4 + q3, γ = λ − 2J/3. By
using a Bogoliubov transformation, we obtain the energy spectra for an itinerant
electron,

ECN± (k) = vo ± (∆2
E + ε2k ± 2∆Eεksinθ) 1

2 . (27)

Using a similar procedure to simplify the spinon part in the SP state, we get

gk↑ = ζ1σk↑ + ζ2o
†
−k̃↑, g†−k↓ = o†−k↓,

gk̃↓ = ok̃↓, g†−k̃↑ = ζ2ok↑ + ζ1o
†
−k̃↑ , (28)

with

ζ1 =

√
λ̃+ q3

2ωCN−
+ 1

2 , ζ2 =

√
λ̃+ q3

2ωCN−
− 1

2 ,

ωCN− =
√

(λ̃+ q3)2 − |d4|2 . (29)

The approximate spinon energy spectra are

ωCN− =
√

(λ̃+ q3)2 − |d4|2 ,

ωCN+ =
8JSd

3
cos2θ +

Kσs

2
+ λ̃+ q3 . (30)
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The self-consistent equations to determine the itinerant electron potential µ, the
Lagrange multiplier λ̃, and the parameters for the CN state are

1 =
1
N

∑
kεBZ

(
1

eβ(ECN− −µ) + 1
− 1

eβ(ECN+ −µ) + 1

)
, (31)

2S + 1
2 =

1
N

∑
kεBZ

(
λ̃+ |q1|
2ωCN−

coth
βωCN−

2
+

1

eβω
CN
+ − 1

)
, (32)

σs =
1
N

∑
kεBZ

sin(2χ)
[

1

eβ(ECN− −µ) + 1
− 1

eβ(ECN+ −µ) + 1

]
, (33)

Sd + 1
2 =

1
N

∑
kεBZ

(
λ̃+ |q1|
2ωCN−

coth
βωCN−

2
− 1

eβω
CN
+ − 1

)
, (34)

Q =
sinθ
N

∑
kεBZ

(
λ̃+ |q1|
2ωCN−

coth
βωCN−

2
− 1

eβω
CN
+ − 1

)
, (35)

D =
JD

2N
cos2θ

∑
kεBZ

(cosx+ cosy)2

2ωCN−
coth

βωCN−
2

, (36)

with β = 1/kBT and χ = 1
2arctan[(∆E − εksinθ)/|εk|cosθ].

In order to determine θ, the free energy should be calculated. The calculated
free energy per site is given as

f = − kBT

N

∑
kεBZ

[ln(1 + e−β(E−−µ)) + ln(1 + e−β(E+−µ))]

+
kBT

N

∑
kεBZ

[ln(1− e−βω−) + ln(1− e−βω+)]

− 2J
3

(|D|2 − |Q|2)− 4JS2
d

3
cos2θ + µ(1− x) . (37)

For the SP state, we have E± = ESP± , ω± = ωSP± , while for the CN state,
E± = ECN± , ω± = ωCN± . By minimising the free energy, we calculate the phase
diagram. We take t = 1 for convenience. We select ∆′E = KS/2 = 5, which
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corresponds to a large Hund coupling (Inoue et al . 1995) and JS2 = 0 ·01 such
that an FM phase appears in an intermediate x region at T = 0 (Jiang et al .
1997). The detailed calculation process is as follows. First, given values of x
and kBT , we calculate µ, λ̃, σs, Sd, Q , D self-consistently through equations
(15)–(20) [or equations (31)–(36)] with θ varying from 0 to π/2. Then, we
substitute the values obtained into equation (37) and get a series of free energies
for the SP (or CN) state. Comparing the free energies with respect to θ, we
get a minimal free energy Fmin(θ). If the θ corresponding to Fmin(θ) is 0, the
system is in AF; if it is π/2, the system is in FM; if it is not 0 and π/2, the
system is in the SP or CN state. Finally, let x vary from 0 to 1 and kBT vary
from 0 to a finite value, then we get the phase diagram in the x− kBT plane.

Fig. 2. Magnetic phase diagrams in the x− kBT plane with
∆′E = 5 and JS2 = 0 ·01. The area enclosed by the dashed
line and the line x = 1 is the region of the PM state.

3. Results and Discussion

The phase diagram is shown in Fig. 2, from which we can see that when T → 0
the system is in the AF state at x = 0 and x = 1, and in a SP state in the lower
x region. Then it changes into the FM state in an intermediate x region and
finally is in a CN state in the higher x region. A PM phase appears near x ∼ 1
with T increasing to a certain value. Fig 3a and 3b show parameters Q and
D respectively. In the FM state Q reaches its maximum value and D = 0. In
the PM state Q = 0, D = 0. When T → 0, Q = 0 and D reaches its maximum
value at x = 0 and 1. Both Q and D decrease with T increasing. When T
reaches a certain value TQ, Q disappears and when T reaches a certain value
TD, D disappears. The critical temperatures TD and TQ vary with the doping
concentration x .
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Now we calculate the spin–spin correlation function:

〈S0 .Si〉 =
cosθi
4N2

∑
k,k′εBZ

coskri cosk′ri

×
[
d∗(k)

2ω−(k)
cos

βω(k)
2

d(k′)
2ω−(k′)

coth
βω(k)

2

× λ̃+ q(k)
2ωSP− (k)

coth
βω−(k)

2
λ̃+ q(k′)
2ω−(k′)

coth
βω−(k′)

2

+
eβω−(k) + eβω+(k′)

(eβω+(k′) − 1)(eβω−(k′) − 1)
+

eβω+(k)

(eβω+(k′) − 1)2

]

+
1

4N2

∑
k,k′εBZ

coskri cosk′ri
eβω−(k) + eβω+(k′)

(eβω−(k) − 1)(eβω+(k′) − 1)
. (38)

For the SP state, d(k) = i2J/3Dcosθ(coskx+cosky) and q(k) = −2J/3Qsinθ(coskx+
cosky). For the CN state, d(k) = i2J/3cosθ(sinkx + sinky) and q(k) =
i2J/3Qsinθ(sinkx + sinky). In the case that T = 0 and |ri|→∞, the spin–
spin correlation function is given by 〈S0 .Si〉 = cosθi

4
n2

0
N2 which represents long

range spin correlation at T = 0 due to the spinon’s Bose condensation. At finite
temperatures, there is no Bose condensation for the exact 2d situation and so the
correlation decays exponentially. Therefore, there is no long range order (LRO).
The spin–spin correlation between two spins on the two nearest-neighbour sites is
〈S0 .Sη〉 ∼ (Q2−D2), which indicates that Q promotes short range ferromagnetic
correlation and D short range antiferromagnetic correlation. Because Q 6= 0 for
T < TQ and D 6= 0 for T < TD, a short range spin correlation exists as long as
T is lower than the largest temperature between TQ and TD.

In order to obtain the phase diagram we minimise the system’s free energy
with respect to θ, which characterises the relative angle between two spins on
the two nearest-neighbour sites. Because LRO does not exist the AF, SP, FM
and CN states obtained actually represent AF, SP, FM and CN short range
correlation with finite correlation length, respectively. For convenience, we still
call them AF, SP, FM and CN states. With T increasing, the correlation length
decreases. When T is higher than the largest temperature between TQ and TD,
the correlation length decreases to zero, all short range correlation disappears,
and the system is in a PM state. On the other hand, the Re1−xAxMnO3 system
may be viewed as a quasi-2d one, where LRO can be sustained. Therefore,
the present so-called AF, SP, FM and CN states with short range correlation
correspond to the Re1−xAxMnO3 system AF, SP, FM and CN states with LRO
respectively.



Magnetic Transition and Spin Correlation 141

Fig. 3. (a) The short-range ferromagnetic parameter Q . (b) The RVB order parameter D .

4. Conclusion

In summary, using the Schwinger boson method we get a detailed phase
diagram of Mn oxides at low temperatures based on an electron–electron correlation
mechanism. Our results show that a PM state may first appear in the higher
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doping concentrations with T increasing. We also obtain a spin–spin correlation
which has not been obtained before in the ordinary mean field treatment.
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