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Abstract

The behaviour of solutions to the Brans–Dicke equations of Friedmann–Robertson–Walker
models with bulk viscous fluid source described by full (i.e. non-truncated) causal nonequilibrium
thermodynamics is investigated. A new class of cosmological solution is obtained for all spatial
sections (k = 0,±1).

1. Introduction

One of the most important modifications to Einstein’s theory of general
relativity is Brans–Dicke theory (BDT) (Brans and Dicke 1961), which introduced
a scalar field φ into the field equations to make things less reliant on the absolute
properties of space. Great emphasis in recent years has been put on BDT, because
cosmological models constructed from BDT first provided a way to terminate the
inflationary era (so-called ‘old’, ‘new’ and ‘chaotic’ inflation) without fine tuning
(Mathiazhagan and Johri 1984; La and Steinhardt 1989; La et al. 1989; Linde
1990; Barrow and Maeda 1990; Holman et al . 1991). Moreover BDT can be
considered like the usual induced one if there is no scalar field potential V (φ).
More detailed surveys on BDT can be found in Singh and Rai (1983) and Singh
and Singh (1987).

Most treatments of cosmology regard the fluid as being a perfect fluid. However,
bulk viscosity is expected to play an important role in cosmology at certain
stages in the evolution of the Universe (Ellis 1971; Misner 1968; Hu 1983). It
can be of interest to study Brans–Dicke cosmological models with bulk viscosity.
This has been studied in the non-causal theory in papers by Johri and Sudharsan
(1989), Pimentel (1994) and Beesham (1996). Recently, Banerjee and Beesham
(1996) have considered Brans–Dicke cosmology with a causal viscous fluid in the
full theory of nonequilibrium thermodynamics. They have found exact solutions
for a spatially flat (k = 0) model by making the assumption φ ∼ Rα (Johri and
Sudharsan 1989).

In this paper, we investigate a new class of Brans–Dicke cosmological models
with a causal viscous fluid in the full theory of nonequilibrium thermodynamics.
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Exact solutions are obtained for all spatial sections (k = 0,±1). It is found that
the solutions (for k = 0) are consistent with Banerjee and Beesham (1996).

The necessary physical conditions forced on the models by observation for
our universe are R ≥ 0, Ṙ > 0, φ > 0, ρ > 0 and Π < 0. There is possibly a
physical constraint on ω. But present day experiment and observation does not
give sufficient information about this. So in this paper we will consider its value
to be free except for the above constraints (see Xing and You-lin 1993).

The paper is organised as follows. In Section 2 we introduce the basic equations
of BDT and the causal evolution equation (full theory). Section 3 is devoted to
finding the exact solutions of the models. The paper ends with our conclusions
in Section 4.

2. Field Equations

The gravitational field equations with usual notation for BDT may be written
as

Gab +
ω

φ2

[
φ,aφ,b − 1

2 − gabφ
,cφ, c

]
+

1
φ

[φ,a;b − Mφgab] =
1
φ
Tab , (1)

Mφ =
1

(2ω + 3)
T , (2)

where φ is the scalar field, the constant ω is the Brans–Dicke parameter, gab is
the metric tensor, M is the D’Alembertian wave operator and T is the trace of
the energy moment tensor Tab. We are using units in which both 8πG and c
are equal to unity.

Let us consider a homogeneous and isotropic universe represented by the FRW
metric

ds2 = −dt2 +R2(t)
[

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ

]
, (3)

where R(t) is the scale factor. The constant k = 0,±1 defines the curvature of
the spatial section.

The Brans–Dicke field equations (1)–(2) with the above metric take the form

3

(
Ṙ

R

)2

+ 3
Ṙφ̇

Rφ
+

3k
R2 −

ω

2

(
φ̇

φ

)2

=
ρ

φ
, (4)

2
R̈

R
+

(
Ṙ

R

)2

+
φ̈

φ
+
ω

2

(
φ̇

φ

)2

+ 2
Ṙφ̇

Rφ
+

k

R2 =
−P
φ

, (5)

φ̈

φ
+ 3

Ṙφ̇

Rφ
=

1
(2ω + 3)φ

(ρ− 3P ) . (6)
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An overdot denotes the time derivative, ρ and P being the density and pressure
of the fluid respectively. To include the effect of viscosity we have to replace the
pressure P by an effective pressure Peff . The latter is given by

Peff = P + Π , (7)

where P and Π stands for the equilibrium hydrostatic and scalar viscous pressure
(bulk viscous stress) respectively. The equilibrium pressure is assumed to obey
the usual equation of state

P = γρ , (8)

where the parameter γ is a constant (0 ≤ γ ≤ 1).
The causal evolution equation for the bulk viscosity Π is given by

Π + τ Π̇ = −3ξH − ετH

2

[
3H +

τ̇

τ
− ξ̇

ξ
− Ṫ

T

]
. (9)

Here T ≥ 0 is the absolute temperature, H = Ṙ/R is the Hubble parameter,
ξ is the bulk viscosity coefficient, which cannot become negative otherwise the
principle of entropy increase would be violated, and the coefficient τ denotes the
relaxation time for the transient bulk viscous effects. Causality demands that
τ > 0. In equation (9), ε = 0 gives the truncated theory, i.e. it corresponds
to the case where the term in square brackets in equation (9) is negligible
in comparision with the other terms, while the full theory has ε = 1 and
the non-causal (Eckart) theory has τ = 0. The causal theory and non-causal
theory have been surveyed in Maartens (1995), Zimdahl (1996) and Grøn (1990).
Maartens (1995) discussed the drawbacks of Eckart theory and the truncated
theory of nonequilibrium thermodynamics. Further, he argued that the best
currently available theory for analysing the dissipative process is the full (i.e.
non-truncated) causal thermodynamics of Israel and Stewart (1976).

To proceed further we must specify the dependence of ξ and τ on the energy
density. It is usual to assume (see Pavoń et al . 1991; Maartens 1995; Zimdahl
1996) the following ad hoc laws:

ξ = ξ0ρ
q and τ =

ξ

ρ
, (10)

and the equation (8) of state for P , where ξ0 ≥ 0 and q ≥ 0 are constants. If
q = 1, then equation (10) may correspond to a radiative fluid, whereas q = 3

2
may represent a string dominated universe (see Murphy 1973; Barrow 1988).
However, more realistic models are based on values of q lying in the range
0 ≤ q ≤ 1

2 (Santos et al . 1985).
On rearranging and integrating equation (9), we get

T = T0exp

[
2f(t)
ε

]
exp

[
2g(t)
ε

]
Π(2/ε)R3τ

ξ
. (11)
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Here T0 is an integration constant, while the functions f(t) and g(t) are,
respectively, the antiderivatives of (1/τ) and (3ρH/Π). Equation (11) gives the
temperature as a function of time. We shall evaluate f(t) and g(t) for k = 0,
−1, 1 in the following section.

Equations (4)–(6) in combination with (7) and the equation of state now take
the form

3

(
Ṙ

R

)2

+ 3
Ṙφ̇

Rφ
+

3k
R2 −

ω

2

(
φ̇

φ

)2

=
ρ

φ
, (12)

2
R̈

R
+

(
Ṙ

R

)2

+
φ̈

φ
+
ω

2

(
φ̇

φ

)2

+ 2
Ṙφ̇

Rφ
+

k

R2 = − (γρ+ Π)
φ

, (13)

φ̈

φ
+ 3

Ṙφ̇

Rφ
=

1
(2ω + 3)φ

[ρ− 3γρ− 3Π] . (14)

Equations (12)–(14) lead to the continuity equation,

ρ̇+ 3H(ρ+ ργ + Π) = 0 . (15)

We have in equations (12)–(14) three independent equations in four unknown
variables, viz. R(t), φ(t), ρ(t) and Π(t), and as such the system does not have a
unique solution.

3. Models

By a combination of equations (12)–(14), we have

R̈

R
+

(
Ṙ

R

)2

+
k

R2 =
ω

3

 φ̈
φ
− 1

2

(
φ̇

φ

)2

+ 3
Ṙφ̇

Rφ

 . (16)

In most of the investigations (see e.g. Johri and Sudharsan 1989) a relationship
between the scale factor R(t) and scalar field φ(t) of the form φ ∼ Rα is assumed.
In the present work, however, no such assumption is made a priori . We shall
rather assume a scale factor R(t) such that

R̈

R
+

(
Ṙ

R

)2

+
k

R2 = 0 , (17)

which on integration yields

R(t) = (−kt2 +At+B) 1
2 , (18)
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where A and B are integration constants. Using equation (17) in (16), and
integrating, we get

φ
1
2 =

∫
C1

R3 dt . (19)

For the sake of simplicity the second integration constant is taken to be zero.
To proceed for exact solutions, it is convenient to consider the three cases k = 0,
−1 and +1 separately.

(3a) Case k = 0

Equation (18) reduces to

R(t) = (At+B) 1
2 . (20)

Using equation (20) in (19) leads to

φ(t) =
C2

1

A2(At+B)
. (21)

Then from equations (12), (13), (20) and (21) we have

ρ = ρ0(At+B)−3 , (22)

Π = Π0(At+B)−3 , (23)

where ρ0 and Π0 are constants given by

ρ0 = C2
1

(
3
4 +

ω

2

)
, Π0 = C2

1

[
3
4 +

ω

2

]
− γρ0 .

The solution is completely specified in terms of the coupling parameter ω.
Using equations (10), (20), (23) and (24), one can find f(t) and g(t) as

f(t) =
(At+B)3q−2

Aξ0ρ
q−1
0 (3q − 2)

, (24)

g(t) = ln
[
(At+B)(3ρ0/2Π0)

]
. (25)
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One can easily identify that the results (with B = 0) obtained in this case are
consistent with Banerjee and Beesham (1996) (for α = −2 and β = 2).

(3b) Case k = −1

In this case equation (18) reads

R(t) = (t2 +At+B) 1
2 . (26)

Substituting equation (26) into (19) leads to

φ(t) =
C2

1 (A+ 2t)2

L2
1(t

2 +At+B)

and the density ρ(t) and bulk viscosity Π(t) have the form

ρ(t) = C2
1 (t2 +At+B)−3

[
3(A+ 2t)2

4L1

− 2ω

]
, (28)

Π(t) = C2
1 (t2 +At+B)−3

[
−3γ(A+ 2t)2

4L1

+
(t2 +At+B)

L1

+ 2ω(γ − 1)− 3
]
, (29)

where L1 = 4B −A2 is a constant. It may be difficult to find the general value
of f(t). However we have calculated f(t) for some particular values of q. To
conserve space we present f(t) for q = 0, 1, which is given by

f(t) =
(−A3d1 + 4ABd1 − 2A2d1t+ 8Bd1t− 6AC2

1ω − 12C2
1ωt)

ξ0L
2
1(t

2 +At+B)

+
(A3d1 − 4ABd1 + 2A2d1t− 8Bd1t− 2AC2

1ω − 4C2
1ωt)

2ξ0L1(t2 +At+B)2

+

[
4(−(A2d1) + 4Bd1 − 6C2

1ω)
]

ξ0L
5
2
1

arctan

(
A+ 2t√

L1

)
for q = 0 , (30)

f(t) =
t

ξ0
for q = 1 , (31)
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Here d1 = 3C2
1/4L1 is a constant. The function g(t) takes the form

g(t) =
3

(−24γ + 8)

[
2M1 −AM2√

L1

arctan

(
A+ 2t√

L1

)]

− 3
(−24γ + 8)

[
2M3 −AM4√

L2

arctanh

(
A+ 2t√

L2

)]

+
3

(−24γ + 8)
ln

[
(t2 +At+B)M2/2(t2 +At+ k1)M4/2

]
, (32)

where L2 = A2 − 4K1 is a constant, K1 is a constant given by

K1 =

[
(4B − 3γA2) + 4[2ω(γ − 1)− 3]L1

− 12γ + 4

]
(33)

and M1, M2, M3 and M4 are constants given by

M1 =
−12AB + 3A3 − 8ωL1A

K1 −B
, M2 =

−24B + 6A2 − 16ωL1

K1 −B
,

M3 =
12AK1 − 3A3 + 8ωL1A

K1 −B
, M4 =

24K1 − 6A2 − 16ωL1

K1 −B
.

For the solutions to be real, we put the conditions that L1 > 0 and L2 > 0.
The model contracts from R0 =

√
B at t0 = 0 to a minimum of Rmin =

√
L1 and

thereafter expands forever.

(3c) Case k = +1

In this case the scale factor R(t), scalar field φ(t), density ρ(t), and bulk
viscosity Π(t) are given by

R(t) = (−t2 +At+B) 1
2 , (34)

φ(t) =
C2

1 (A− 2t)2

L2
3(−t2 +At+B)

, (35)

ρ(t) = C2
1 (−t2 +At+B)−3

[
−3(A− 2t)2

4L3

− 2ω

]
, (36)
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Π(t) = C2
1 (−t2 +At+B)−3

[
3γ(A− 2t)2

4L3

+
(−t2 +At+B)

L3

+ 2ω(γ − 1)− 3
]
, (37)

where L3 = 4B +A2 is a constant. The function f(t) takes the form:

f(t) =
(A3d2 + 4ABd2 −−2A2d2t− 8Bd2t+ 6AC2

1ω − 12C2
1ωt)

ξ0L
2
3(−t2 +At+B)

+
(−A3d2 − 4ABd2 + 2A2d2t+ 8Bd2t+ 2AC2

1ω − 4C2
1ωt)

2ξ0L3(−t2 +At+B)2

+
[4(A2d2 + 4Bd2 + 6C2

1ω)]

ξ0L
5
2
3

arctan
(
A+ 2t√

L3

)
for q = 0 , (38)

where d2 = −3C2
1/4L3 is a constant and f(t) has the same form as in the previous

case for q = 1.
The function g(t) is given by

g(t) =
−3

(−24γ + 8)

[
2M5 −AM6√

L3

arctanh

(
A− 2t√

L3

)]

+
3

(−24γ + 8)

[
2M7 −AM8√

L4

arctanh

(
A− 2t√

L4

)]

+
3

(−24γ + 8)
ln

[
(−t2 +At+B)M6/2(−t2 +At+ k2)M8/2

]
, (39)

where L4 = A2 + 4K2 is a constant, K2 is a constant given by

K2 =

[
(4B + 3γA2) + 2[2ω(γ − 1)− 3]L3

− 12γ + 4

]
, (40)

and M5, M6, M7 and M8 are constants given by

M5 =
12AB + 3A3 + 8ωL2A

K2 −B
, M6 =

−24B − 6A2 − 16ωL2

K2 −B
,

M7 =
−12AK2 − 3A3 − 8ωL2A

K2 −B
, M8 =

24K2 + 6A2 + 16ωL2

K2 −B
.
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Again conditions L3 > 0 and L4 > 0 ensure that the solutions are real. The
model expands from R = 0 at time t0 = (A −

√
L3)/2, reaches a maximum

Rmax =
√
L3/4 at tmax = A/2 and finally contracts to R = 0 at tf = (A+

√
L3)/2.

4. Conclusions

In this paper we have discussed Brans–Dicke cosmological models with a bulk
viscous fluid source described by full causal thermodynamics. We have found a
new class of exact solutions for all spatial sections (k = 0,±1). For the case k = 0
our solutions are found to be consistent with the available results of Banerjee
and Beesham (1996). For k = −1, the model first contracts to a minimum and
then expands forever, whereas the model first expands to a maximum and then
contracts for k = +1. The temporal behaviour of the absolute temperature T is
also determined in all three cases.
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