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Abstract

One of the challenging problems in modern magnetism is the description of the paramagnetic
state because at finite temperatures the effect of spin fluctuation plays a fundamental role in
altering the electronic structure. In magnetic metals, the magnetic properties are linked to the
underlying spin-polarised electronic structure in a highly complex manner. In recent years,
first-principles electronic structure theories based on the spin density functional (SDF) theory
have been able to provide a quantitative account of many ground-state magnetic properties.
In this article, the effect of spin fluctuation on the spin-polarised electronic structure and
thus the magnetic properties will be discussed and its incorporation into ab initio calculations
explained. If the magnetic and compositional ordering energies of magnetic metallic alloys
are close, the compositional and magnetic correlations can profoundly influence each other. A
theoretical formalism for treating these correlations within the framework of a first-principles
electronic structure theory will be elaborated and the application to a number of magnetic
alloys discussed and compared with experiments.

1. Introduction

One of the fundamental problems in modern magnetism concerns the nature
of finite-temperature magnetic correlations in transition metals and their alloys
in which the magnetic correlations are set up by itinerant electrons. The
theoretical challenge is to take into account the full many-electron interactions,
incorporating the magnetic and translational degrees of freedom of the electrons
responsible for the magnetism, via the underlying electronic structure. In the
case of alloys, the problem is further complicated by the fact that magnetic
and compositional correlations are intricately interrelated via their ‘electronic
glue’. The problem of dealing with the many-electron interactions in the ground
state has been largely solved with the advent of the density functional theory
(DFT) of Hohenberg, Kohn and Sham (Hohenberg and Kohn 1964; Kohn and
Sham 1965) and, in particular, its spin-dependent extension (von Barth and
Hedin 1972; Rajagopal and Callaway 1973). Together with fast supercomputers
and efficient electronic structure methods, it has become possible to provide a
reliable theoretical description of the ground state and equilibrium properties
of many itinerant magnetic metals and alloys. Indeed, the local spin density
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approximation (LSDA) (von Barth and Hedin 1972; Gunnarsson and Lundqvist
1976; Ceperley and Alder 1980; Vosko et al . 1980) remains the only effective
means for incorporating the many-electron effects into ab initio calculations of the
electronic and magnetic structures of these materials. In the sections below, we
will first give the theoretical background to the problem of itinerant magnetism
and some of the approaches to solving it. Next, we present in detail one of
the first-principles theory of itinerant magnets based on the LSDA, capable
of predicting the magnetic correlations in elemental magnets as well as the
compositional correlations in metallic magnetic alloys. Finally, the application of
this theory to calculating the magnetic and compositional correlations of a range
of magnetic alloys will be discussed and the results compared with experiment.

2. Theory

The basic idea behind the density functional theory is that the ground-state
energy of a many-body system is a unique functional of the particle density
n(r) and is a minimum when evaluated for the true ground-state density. The
theory further shows that the relevant one-particle effective potential can, in
principle, contain all the effects of electron correlations, although in practice some
approximations must be made. Formally, the local spin density approximation
to the exchange-correlation functional Exc can be expressed as

Exc[n, m] ≈
∫

dr n(r)εxc{n(r), m(r)} (1)

in terms of the charge and magnetisation densities, given by

n(r) =
occ∑

Tr(ψ∗i (r)ψi(r)), m(r) =
occ∑
i

Tr(ψ∗i (r) ψ̃i(r)) ,

where σ̃ are the usual Pauli matrices, and ψi are the wave functions obeying the
Schrödinger–Pauli equation (−∇2 + Ṽ eff [n, m])ψi(r) = εi ψi(r), and the effective
potential operator is given by

Ṽ eff [n, m] =
(
V ext(r) + e2

∫
dr′

n(r)
|r − r′|

+
δExc[n, m]
δn(r)

)
1̃

−
(
Bext(r)− δExc[n, m]

δm(r)

)
σ̃ . (2)

These one-electron Kohn–Sham equations can then be solved using electronic
structure techniques to explain a variety of properties of many magnetic materials.

The first successful attempt at understanding itinerant magnetism is Stoner’s
theory of ferromagnetism. Briefly, in the Stoner picture the magnetic excitations are
the spin-flip excitations of the electrons across the Fermi surface. Mathematically
and in the random phase approximation (RPA), the Stoner theory of magnetic
susceptibility is given by

χ(q, ω) =
χ0(q, ω)

1− Iχ0(q, ω)
, (3)
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where q is the wave-vector, ω the frequency, and the Stoner parameter I = U /N at

is the ratio of the Coulomb interaction energy U and the total number of atoms
N at. Here χ(q ,ω) is also known as the enhanced Stoner susceptibility whereas
χ0 is the ‘bare’ or unenhanced susceptibility given by

χ0(q, ω) =
∑
k

nk↑ − n(k+q)↓

h̄ω − [Ek↑ − E(k+q)↓]
. (4)

The Stoner condition for ferromagnetism is satisfied if In(EF) ≥ 1. Strictly
speaking, the Stoner picture of ferromagnetism is valid only for a system in
the ground state at T = 0 because it assumes a translational invariance for the
orientations of the local moments, i.e. a ‘global’ exchange-splitting of the electronic
structure is assumed. A direct application of Stoner’s theory to calculate the
thermodynamic properties of transition metals such as the Curie temperatures
of Ni and Fe has resulted in values an order of magnitude higher than the
experimental ones. The root of the problem is that, at finite temperatures, the
translational invariance is destroyed by thermal excitations and consequently the
effects of spin fluctuations must be taken into account, both in orientation and
magnitude (see Fig. 1). In other words, we now have to think in terms of ‘local’
instead of ‘global’ exchange-splitting. This brings us to the central issue of this
paper, namely how to deal with the spin fluctuations in the paramagnetic phase.

Fig. 1. The Stoner and Hubbard representations of ferromagnetic excitations.

Over the past decade or so, the problem of the nature of the paramagnetic state
of itinerant magnetic metals has been solved to some extent, at least in principle
(Moriya 1973). A picture of itinerant electrons moving in the fields set up by
spin fluctuations whose orientational degrees of freedom slowly vary has proved
useful. The basic assumption is that, on a time scale t long compared to an
electronic ‘hopping’ time (h̄/W ≈ 10−15 s, where W is a relevant bandwidth), but
short when compared with an appropriate spin fluctuation time (h̄/ωSF ≈ 10−12 s,
where ωSF represents a typical spin fluctuation frequency), the spins of the
electrons are sufficiently correlated to leave the magnetisation on a site non-zero.
The magnitude of average magnetisation on a site k is called the local moment,
µk = µk({êi}), where the set of unit vectors, {êi}, picks out the orientational
configurations. While this basic scenario is generally accepted to be able to
provide an adequate description of many metal magnets at high temperatures,
the severity of the neglect of the dynamic effects of the spin fluctuations is
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not known and there is also the longstanding controversial question of which
configurational orientations of the moments are most important (Murata and
Doniach 1972; Moriya and Kawabata 1973; Lonzarich and Tailefer 1985).

The various approaches can be roughly divided into two. Firstly, there is the
picture of the ‘fluctuating local band’ (FLB) theory (Korenman et al . 1977) of
a large amount of short range magnetic order even in the paramagnetic state.
This consists of a large amount of spatial region in which the local moments are
nearly aligned, i.e. where the orientations vary slowly. In this region the Stoner
theory can be applied and perturbations to it made. In the FLB model, it is
difficult to carry out first-principles calculations in which both the magnetic and
electronic structures are mutually consistent and consequently to examine the
full implications of the model and to improve it systematically.

The second type of approach is the ‘disordered local moments’ (DLM) theory
(Hubbard 1979; Hasegawa 1979; Edwards 1984) in which the local moments are
supposed to fluctuate fairly independently in the high temperature paramagnetic
state, but as the temperature is lowered correlations among the local moments begin
to develop and the homogeneously disordered local moments (i.e. paramagnetic)
system become unstable towards a magnetically ordered phase. The greatest
advantage of this approach is that it allows first-principles calculations to be
implemented based on a generalisation of the LSD theory such that the magnetic
and electronic structures can be treated in a mutually consistent manner (Staunton
et al . 1986; Ling et al . 1994).

In magnetic metal alloys compositional and magnetic correlations are linked
in a highly complex manner via their underlying electronic structure. Therefore,
the magnetic and compositional correlations must be treated on an equal footing
from the start, in order to understand the roles they play in the magnetic and
compositional structures of these alloys. Here, for the sake of simplicity, we restrict
ourselves to binary alloys of the form AcB1−c and introduce a site-occupancy
label ξk, such that ξk = 1(0) if the site k is occupied by an A(B) atom. Here
the set of unit vectors {êi} is related to the local magnetisation M (r i, {ξi}) by

êi =
∫
Vi

dri M(ri, {ξi})
/∣∣∣∣ ∫

Vi

dri M(ri, {ξi})
∣∣∣∣ , (5)

where V i is the volume of the ith unit cell. The alloy can now be described
in terms of a generalised grand potential Ω({ξk}, {ê}). By generalising the
finite-temperature SDF theory (Mermin 1965; Gyorffy et al . 1985) one can show
formally that Ω({ξk}, {êk}) is obtained as a result of a functional minimisation
of the grand potential functional

Ω[ρ; m] =
∫

dr V ext(r, {ξk}) ρ(r) + 1
2

∫ ∫
dr dr′

ρ(r) ρ(r′)
|r − r′|

+ Ts[ρ, m]− TSs[ρ, m] + Ωxc[ρ, m] , (6)

with T s and S s being respectively the kinetic energy and entropy of a system
of non-interacting electrons with densities n(r) and m(r) at a temperature T .
The functional minimisation is then carried out using Lagrange multipliers as in
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the conventional SDF theory, subject to the constraint that the magnetisation
on the kth site satisfies ∫

Vk

drk(m(rk, {êk})× êk) = 0 .

The solution to the Kohn–Sham equations can be obtained in terms of an effective
one-electron Green function accessible from the self-consistent-field, Korringa–
Kohn–Rostoker, multiple-scattering theory in combination with the coherent
potential approximation (SCF–KKR–CPA) (Winter and Stocks 1983; Gyorffy and
Stocks 1983). From here we can calculate the charge and magnetisation densities
appropriate to each site:

ni,α(ri, êi) = − 1
π

Im
∫

dε f(ε− νe) Tr〈G(ri, ri; ε)〉êi,α , (7)

mi,α(ri, êi) = − 1
π

Im
∫

dε f(ε− νe)êi Tr〈σ . êiG(ri, ri; ε)〉êi,α = µi,α(êi)êi . (8)

At temperatures well in excess of any magnetic ordering temperature TC, each
alloy species is equally likely to occupy a given lattice site k and the local
moment at this site is also equally likely to point in any given direction in space
so that the overall magnetisation is zero. Nonetheless, local moments µA and
µB, and therefore ‘local’ exchange-splitting can exist in this paramagnetic state.
As the temperature is lowered, magnetic correlations will set in. By considering
the response of the paramagnetic system to a small perturbing magnetic field
{h̄i}, the magnetic correlation and the static paramagnetic susceptibility χ(q) of
transition metals and their alloys can be obtained via the response and fluctuation
dissipation theorem. After much algebra, it can be shown that in wave-vector
space

χ(q) = cχµA(q) + (1− c)χµB(q) + cχmA (q) + (1− c)χmB (q) . (9)

The first two terms describe the magnitude of the local moments’ response to
the application of an external field, whereas the third and fourth terms describe
how they tend to align with the field. The quantity χ(q) can be directly
compared with polarised neutron scattering measurements. A maximum of χ(q)
at q = 0 indicates ferromagnetic ordering, whereas χ(q) peaking at finite q means
antiferromagnetic ordering. As an example, we consider the case of an elemental
metal, i.e. c = 1. The components of χ(q) in equation (9) can be written explicitly
as

χm(q, T ) =
1
3βµ[µ+ (Jmµ(q)− Λm)χµ(q) + Σ(q)]

1− 1
3β(Jmm(q)− µΛm)

, (10)

χµ(q, T ) =
[γµm(q)− µΛµ]χm(q)/µ+ χ0(q)

1− [γµµ(q)−Λµ])
, (11)
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where the quantities Jmµ(q), Jmm(q), γµm(q), γµµ(q), χ0(q) and Σ(q) are all
accessible from the SCF–KKR–CPA calculations performed for the completely
disordered, paramagnetic state. The quantities Λm and Λµ are the Onsager
cavity field corrections which ensure that while the response theory has been
derived within a mean-field approach, the important sum rules associated with
the diagonal part of the fluctuation-dissipation theorem are satisfied.

For a rigid local moment system, Fe being a fair example, χ(q) ≈ χm(q) and
Jmµ(q), γµm(q), γµµ(q) and χ0(q) are all small. Equation (10) then assumes
the form of a classical Heisenberg model within the spherical approximation. On
the other hand, in a system such as Ni, where no local moment is set up on
the average in the paramagnetic phase, µ = 0 and Jmm(q), Jmµ(q) and γµm(q)
also vanish. Thus equation (11) becomes χ(q) = χµ(q) = χ0(q))/[1−γµµ(q)−Λµ].
Note that χ(q) is now a product of a Stoner exchange-correlation term and a
Pauli susceptibility χ0(q). The susceptibility evidently describes an enhanced
Stoner paramagnet where the exchange-correlation effects have been renormalised
by the spin fluctuations.

As mentioned earlier, in a metallic alloy the magnetic and compositional
correlations must be considered together and treated on an equal basis. While
the main focus of this paper is on magnetism in itinerant magnets, it will not be
complete without discussing the compositional response function which describes
the nature of atomic short range ordering and the role it plays in our understanding
of magnetic alloys. In essence, the tendency of a homogeneously disordered alloy
to order as the temperature is lowered can be found using concentration-wave
theory (Gyorffy and Stocks 1983) and the response and fluctuation-dissipation
theorem. The resultant expression has the familiar Ornstein–Zernicke form:

α(q) =
βc(1− c)

1− βc(1− c)S(2)(q)
, (12)

where the ‘interchange’ energy S (2)(q) is calculated from an exchange-split
electronic structure which is either ‘locally’ exchange-split if the system is
paramagnetic and ‘globally’ exchange-split if ferromagnetic. Here S (2)(q) captures
the electronic effects such as the filling of the electronic states, the Coulomb
interaction and screening, and charge transfer. Also, α(q) indicates a phase
segregation if it peaks at q = 0 and a chemical ordering if its maximum is at
finite q . By considering the behaviours of both χ(q ,T ) and α(q ,T ) as a function
of q and T , we can begin to piece together a consistent picture of the magnetic
and compositional structures of a magnetic metal alloy.

3. Comparison with Experiment

The disordered local moments theory of itinerant magnets has been successfully
applied to several magnetic metallic alloys including Cu85Mn15, Au75Fe25, Fe87V13

and Fe80Al20 (Ling et al . 1994, 1995a, 1995b; Staunton et al . 1990, 1997). For the
first time, the unusual antiferromagnetic ordering at 〈1, 1

2 , 0〉 in Cu85Mn15, whose
origin had long challenged experimentalists and theorists alike, was obtained from
an ab initio calculation and its origin was explained in terms of a competing
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electronic mechanism within the ‘exchange-split’ electronic structure (Ling et al .
1994). Some highly unusual compositional correlations (or atomic short-range
ordering) in the magnetic alloys Au75Fe25, Fe87V13 and Fe80Al20 have also been
found from our first-principles calculations with very good general agreement with
experiment (Ling et al . 1995; Staunton et al . 1996) and their origins explained.
In all three cases, magnetism has been identified to be the driving force for the
unusual atomic short-range ordering.

As an example, let us consider the case of Fe80Al20 in some detail. In
situ, unpolarised neutron scattering measurements were carried out by Schweika
et al . (1990) on a single crystal of Fe80Al20 over a range of temperatures
of 823 and 1073 K which includes temperatures both below and above the
alloy’s Curie temperature of 935 K. In the paramagnetic alloy, they found clear
atomic short-range ordering (ASRO) characterised by peaks at q = (1, 0, 0) and
equivalent positions in wave-vector space. As the temperature is lowered into the
ferromagnetic region, the intensity around (1, 0, 0) equivalent q-points remains but
the intensity is now skewed towards the [1, 1, 1] direction with a weak subsidiary
peak at ( 1

2 , 12 , 12 ). A later paper by Schweika (1990) revealed a second phase
transition into an ordered phase characterised by (1

2 , 12 , 12 ) at around 650 K. This is
consistent with a B32 transient ordered phase observed by Gao and Fultz (1993)
in Fe75Al25. The results of Schweika et al . were confirmed by Pierron-Bohnes
et al . (1990, 1991) in the temperature range of 772 and 1573 K in their diffuse
x-ray and neutron scattering measurements.

Fig. 2. The ASRO αDLM(q ,T ) for the (1, 1, 0) plane for paramagnetic
(DLM) Fe80Al20 at 3000 K in Laue units.

The author and coworkers have calculated the ASRO in both ferromagnetic and
DLM (paramagnetic) states of Fe80Al20 (Staunton et al . 1997). A DLM calculation
of χ(q ,T ) indicated strong ferromagnetic correlations in the paramagnetic Fe80Al20
and a TC of 1130 K, in fair agreement with the experimental value of 937 K.
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Fig. 3. The ASRO αFM(q ,T ) for the (1, 1, 0) plane for ferromagnetic
(FM) Fe80Al20 at (a) 1000 K and (b) 500 K in Laue units.

This confirms that this treatment of the correlations captures the correct order
of magnitude for the energies of the spin fluctuations. The general features of
our calculated ASRO of this alloy are best illustrated in Figs 2 and 3. Fig. 2
shows the paramagnetic ASRO, αDLM(q), of Fe80Al20 in the high temperature
region of 3000 K. Fig. 3 shows the ASRO of Fe80Al20 in the ferromagnetic state,
i.e. αDLM(q), at (a) 1000 K and (b) 500 K respectively. These results clearly
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demonstrate that we have reproduced the general behaviour of the atomic short
range order with temperature. Perhaps the most pleasing aspect of this work is
that in our calculation the intensity peak at q = (1, 0, 0) equivalent points remains
at temperatures immediately below the compositional ordering temperature of
1095 K, but with streaking of intensities towards the (1

2 , 12 , 12 ) equivalent positions.
As the temperature is reduced further, the intensity peak gradually shifts away
from the (1, 0, 0) positions and towards the (1

2 , 12 , 12 ) positions. As the temperature
is lowered below 600 K, the intensity peak finally settles at q = (0 ·7, 0 ·7, 0 ·7), in
reasonably good agreement with the results of Schweika. We have explained this
transition in ordering tendency with temperature in terms of the variation in the
filling of bonding and antibonding states of the hybridised electronic structure of
the alloy as the states around the Fermi level are repopulated with the change
of temperature (Staunton et al. 1997). Our prediction of an intensity peak at
q = (0 ·7, 0 ·7, 0 ·7) is believed to be a result of the assumption of a perfect lattice
while displacement effects in these alloys are known to be significant. We are in
the process of incorporating displacement effects into our theoretical formalism.

4. Conclusion

In conclusion, magnetism in metals is fundamentally linked to their electronic
structure and a parameter-free approach to the electronic structure now forms
an integral part of our understanding of some of the fundamental problems in
magnetism. The author has attempted to demonstrate the need for a first-principles
description of the electronic structure of magnetic metals and their alloys for a
fundamental understanding of the magnetic interactions in these materials and
how the magnetic and compositional correlations in alloys are closely interrelated
via the underlying electronic structure. Despite over two decades of concerted
efforts, our ability to carry out first-principles calculations of magnetic interactions
is still rather limited and is usually restricted to relatively simple systems such as
3d transition metals. The correct treatment of spin fluctuations and excitations
at finite temperatures still constitutes two of the most difficult and fundamental
problems in modern magnetism and much work remains to be done.
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