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Abstract

An introduction is given to features of gauge invariance in classical and quantum mechanics
that are of importance for magnetism in condensed matter systems. A version of quantum
mechanics is described in which full electromagnetic gauge arbitrariness is displayed explicitly
at every stage. The division of orbital magnetism into paramagnetism and diamagnetism is
examined and it is shown that only by treating both of these on an equal footing can a gauge
invariant treatment of magnetism be constructed.

1. Introduction

The intention of this paper is to provide a simple introduction to gauge
invariance in quantum mechanics and statistical mechanics in areas that are
important to magnetism in condensed matter and to summarise some recent
work in this field (Stewart 1996a, 1996b, 1997). We take a semi-classical point
of view usually suitable for condensed matter systems in which charged particles
move according to the laws of quantum mechanics in a prescribed external
electromagnetic field. We consider here only non-relativistic systems but most of
the arguments may be generalised to relativistic ones.

A version of the quantum mechanics of such systems is described in which
full electromagnetic gauge arbitrariness is maintained explicitly throughout. The
division of orbital magnetism into paramagnetism and diamagnetism is examined
and it is shown that only by treating both of these on an equal footing can a gauge
invariant treatment of magnetism be constructed. It is shown how static linear
response theory may be extended to deal simultaneously with interactions that are
both linear and quadratic in the perturbing fields, such as those responsible for
paramagnetism and diamagnetism. A discussion of the Aharonov–Bohm effect,
which involves gauge effects essentially, is also given. Excellent introductions
to the subject of this paper are given by Cohen-Tannoudij et al . (1977) and
particularly by Sakurai (1985). A comprehensive and accessible mathematical
development of many of the issues raised in this paper is given by Felsager
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(1981) who extends the arguments further to review the quantum mechanics of
magnetic monopoles in which gauge ideas play an important part.

2. What is Gauge?

The electric E and magnetic B fields described by Maxwell’s equations,

∇ .B = 0, ∇ .E = ρ/ε0 ,

∇ ×× E + ∂B/∂t = 0, ∇ ×× B − c−2∂E/∂t = µ0 J ,

which are functions of position r and time t and where ρ and J are the charge
and current densities, may be said to have some degree of physical reality. This
is because of the observable acceleration that results from the Lorentz force F
that they exert on a particle of charge e and mass m moving with velocity v :

F = e(E + v ×× B) = m dv/dt . (1)

However, Maxwell’s theory may be formulated more conveniently in terms of the
scalar and vector potentials φ and A, also functions of r and t , which give rise
to the electromagnetic fields E and B through their space and time derivatives,

B = ∇ ×× A and E = −∇φ− ∂A/∂t , (2)

with ∇ being the vector differential operator ∇ = x̂∂/∂x + ŷ∂/∂y + ẑ∂/∂z and
A is a polar vector.

The equations that relate these potentials to their sources ρ and J are obtained
by substituting equations (2) into the Maxwell equations (see for example
Cohen-Tannoudij et al . 1977; Craig and Thirunamachandran 1984; Sakurai 1985;
Doughty 1990) and are

∂2A/∂(ct)2 −∇2A+∇(∇ .A+ c−2∂φ/∂t) = µ0 J , (3a)

∂2φ/∂(ct)2 −∇2φ− ∂/∂t(∇ .A+ c−2∂φ/∂t) = ρ/ε0 . (3b)

The potentials cannot be measured directly and have a degree of arbitrariness
associated with them. For example, from equation (2), it is clear that if either
potential is changed by an amount that is constant in space and time the fields
are unchanged. Because of the mathematical identity that curl of the gradient of
any scalar function is identically zero, it follows from B = ∇ ×× A that if B is
zero in some region of space then A may be expressed as the gradient of some
scalar function which may be non-zero and spatially varying as may A itself.
In other words A may be finite and may vary in space and time even when
B is zero. As an example, consider an infinite cylindrical solenoid of radius R
concentric with the z axis (see Fig. 2 later). Inside the solenoid the magnetic
field has the constant value B along the z axis, outside it is zero. The magnetic
flux Φ within the solenoid is πR2B. By applying Stokes’ theorem to the first of
equations (2) the relation
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∮
A . dI =

∫
B . s (4)

is obtained, where the line integral of A is around the boundary of an open
surface s over which the surface integral is taken. By taking this line integral
around a circle of radius r concentric with the z axis it is readily found that
Aθ = Φr/2πR2 for r ≤ R and Aθ = Φ/2πr for R ≥ R, where (r , θ, z ) are the
cylindrical coordinates. The other components of A are zero. It is easy to verify
from (2) that this potential does indeed give B = ẑB for r ≤ R and B = 0 for
r ≥ R. For r ≥ R, where B is zero, it is apparent that A may be expressed as
the gradient of the multi-valued scalar function g(r , θ, z , t) by means of A = ∇g
with g = Φθ/2π, which increases by Φ each time the angular coordinate θ winds
rounds the origin.

This arbitrariness is quite general in classical electrodynamics. To be precise,
if the vector and scalar electromagnetic potentials A and φ are transformed to
Aχ and φχ, where

Aχ = A+∇χ and φχ = φ− ∂χ/∂t , (5)

then it is easy to confirm that the electromagnetic fields given by (2) are
unchanged by the transformation. The quantity χ(r , t) which is an arbitrary
scalar function of position and time is known as the gauge function and the
transformation as a gauge transformation of the potentials. Because the integral
in (4) gives the magnetic flux that threads the loop it is seen to be necessary
for the condition ∮

∇χ . dl = 0

to hold for any closed path of integration. This means that χ must be single-valued;
it must also be continuously differentiable for the fields to be physically realisable.
The values of A and φ for the gauge function taking on a particular value is
known as the gauge and A and φ are known as gauge potentials and B and
E as gauge fields. If B = 0, as for the case of the region outside the infinite
solenoid, A can be expressed as the gradient of a scalar function and in that
case is known as a pure gauge potential.

The gauge function is seen to be a generalisation of the constant of integration
that occurs in calculus, for example the differential equation B(x ) = dA(x )/dx
has the solution

A(x) =
∫
B(x) dx + C ,

where C is the constant of integration.

3. Gauge Invariance of Quantum Mechanics

The main objective of quantum mechanics is to find the solutions of the
Schrödinger equation S0 Ψ0(r, t) = 0 where the Schrödinger wave equation operator
S0 = H0−ih̄∂/∂t and H0 is the Hamiltonian written in the gauge with χ = 0,
which is denoted by the subscript 0,
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H0 = (p− eA)2/2m + eφ , (6)

and where p is the canonical momentum operator p = −ih̄∇ and Ψ0(r , t) is the
wavefunction. The reason why the potentials appear in the Hamiltonian in this
form, called minimal coupling because the charge is coupled to the potentials
and not to their gradients (the fields E and B), comes from the Lagrangian and
Hamiltonian formulations of particle dynamics which reproduce the equation of
motion (1) (see the references given above and Griffith 1961).

The principle of gauge invariance states that all the physical observable
predictions of quantum mechanics are independent of the gauge that is used in a
calculation. This may be demonstrated in the following way. For general gauge
χ the Hamiltonian of equation (6) becomes, using (5),

Hχ = {p− e(A+∇χ)}2/2m + e(φ− ∂χ/∂t) . (7)

We show that if the wavefunction of the system that undergoes the gauge
transformation is itself transformed by a transformation of the phase to

Ψχ(r, t) = Ψ0(r, t) exp{ieχ(r, t)/h̄} , (8)

then (a) the transformed Hamiltonian Hχ and wavefunction Ψχ will obey a time
dependent Schrödinger wave equation {Hχ−ih̄∂/∂t}Ψχ(r , t) = 0 of the same form
as the untransformed one involving A and φ and (b) the physical predictions of
the theory are unchanged. We note that in semi-classical quantum mechanics
the gauge function, like the fields, is taken to not have any operator properties
(it is sometimes called a c-number, following Dirac).

First consider the operator {p−e(A+∇χ)} acting on Ψχ. This gives exp(ieχ/h̄)
(p−eA)Ψ0 because, using the chain rule for differentiation, the gradient operator
associated with p acting on the phase of the transformed wavefunction produces
a term that cancels that coming from the e∇χ term. Applying the operator a
second and further times leads to

{p− e(A+∇χ)}nΨχ = exp(ieχ/h̄)(p− eA)nΨ0 ,

a relation that is true in particular for the kinetic energy term with n = 2. Next let
the term {e(φ−∂χ/∂t)−ih̄∂/∂t} act on Ψχ. This gives exp (ieχ/h̄){eφ−ih̄∂/∂t}Ψ0

because the time derivative operator acting on the phase of the transformed
wavefunction produces a term that cancels the e∂χ/∂t term. We see that S0 Ψ0 = 0
implies Sχ Ψχ = 0 or, in other words, that the Schrödinger equation is invariant
in form under a gauge transformation which comprises the transformations of
the potentials and of the wavefunction given by equations (5) and (8). The
Schrödinger equation is said to be gauge covariant.

It is clear from (8) that the charge density ρ = eΨ∗Ψ is independent of
gauge provided that χ is real. Although the gauge function may be complex in
classical electrodynamics, quantum mechanics requires it to be real so that the
normalisation of the wavefunction is preserved. The expression for the expectation
value of the electric current density J which appears in the continuity equation
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∇ .J + ∂ρ/∂t = 0 , (9)

that is obtained from the Schrödinger equation is

〈J0〉 = −i{Ψ∗0(∇Ψ0)− (∇Ψ∗0)Ψ0}eh̄/2m− e2AΨ∗0 Ψ0/m (10)

(Cohen-Tannoudij et al . 1977). If 〈Jχ〉 is calculated in gauge χ with the
wavefunction of (8) it is found that the two terms arising from the effect of the
gradients acting on the phase cancel the extra term in the last term arising from
the ∇χ of (5). The result is that 〈Jχ〉 = 〈J0〉 and the expectation values of
both the charge density and current density are independent of gauge. These
observable physical properties of the system do not depend on the gauge. A
gauge transformation in quantum mechanics consists of the combination of the
gauge transformation of the potentials of (5) and the phase transformation of the
wavefunction of (8). Of course, if the gauge function is a constant independent
of r and t , making (8) a global phase transformation, then the above results
are trivial. It is the (arbitrary) local space and time dependence of the gauge
function that creates the complications.

It is also interesting that the requirement that the physical content of
the wavefunction be unchanged under the local phase transformation of the
wavefunction given by (8) can be used to demonstrate the necessity for the
existence of the electromagnetic fields described by Maxwell’s equations (Kobe
1978). Such notions have been extended to develop the theory of what are
known as gauge fields (Doughty 1990; Felsager 1981) and all of the fundamental
interactions in nature are believed to be of this type. The term ‘gauge’ used for
this collection of ideas stems from the attempt of the mathematician H. Weyl
to develop a geometric theory of electromagnetism in which the scale (gauge)
of space measurement was varied (Sakurai 1985). ‘Phase’ would appear to be a
more appropriate word to use in a modern context but the use of the obscurely
sounding ‘gauge’ has been hallowed by tradition.

4. Gauge Transformations

Before any calculation can be carried out explicitly it has been believed to be
necessary to remove the gauge arbitrariness by setting the gauge to a specific
value, or ‘fixing’ it. Because a calculation will give the same numerical results
whatever the gauge that is used, it is clearly best to use the gauge in which
the calculation is simplest. This is often the gauge with χ set equal to zero
and this is the gauge that is adopted most frequently, invariably without further
comment. However, the arbitrary gauge function χ may always be set equal to
the sum of a particular function χP and another arbitrary function χ′. The
particular function can often be chosen to have properties that will simplify the
calculation even further; the arbitrary function, as before, is eventually set to
zero. We discuss several such gauge transformations that are used to simplify
the forms of the dynamical equations.

As the simplest example take the potentials φ = constant, A = B ×× r/2,
where r is the position vector and B a fixed classical field. By equation
(2) these give a uniform magnetic field B and zero electric field. Consider
the gauge transformation with χ = −(B ×× R) . r/2 + χ′, where R is a time
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independent vector in real space. In the new gauge this gives rise to the potentials
Aχ = −B ×× (r −R)/2 +∇χ′ and φχ = φ− ∂χ′/∂t. It is seen that this gauge
transformation has the effect of shifting the origin of the vector potential. Full
freedom to specify an arbitrary gauge remains through the presence of χ′.

In dealing with systems in a uniform magnetic field it is convenient to orient the
field along the z axis. With A = B ×× r/2 the vector potential has components
A = (−y , x , 0)B/2 in Cartesian coordinates or A = (0, 1, 0)Br/2 in cylindrical
ones. This is called the symmetric gauge. Consider now the gauge transformation
with χ = ηxyB/2 +χ′, where η is an arbitrary number. In Cartesian coordinates
the transformed vector potential is Aη = {−y(1−η), x (1+η), 0}B/2, dropping
the χ′. For η = 0 we get the symmetric gauge, for η = +1 the gauge A = {0,
x , 0}B and for η = −1, A = {−y , 0, 0}B . The latter two are called Landau
gauges, their advantage is that the vector potential only varies in one direction.
The wavefunctions obtained from a calculation done in any one of them may be
related to those done in another by means of (8).

There are three components of the vector potential and one scalar potential.
The freedom to choose the gauge means that one of these four components may
be made zero. For example, the temporal gauge is obtained by taking

χ =
∫ t

t0

φ(r, t′) dt′ + χ′ .

This gives φχ = −∂χ′/∂t so the scalar potential vanishes completely if ∂χ′/∂t = 0.
The axial gauge is obtained by setting one of the components of the vector
potential to zero in a similar manner. Because of the integrations that are
involved these two gauges are non-local in time and space respectively. The
dipole or Goppert-Mayer (1931) gauge is useful when the potentials are expanded
about the origin at, say, the centre of an atom. This gauge is obtained by using
the gauge function χ = −r .A+ χ′ and gives φχ = φ− (r .∇)φ−E . r − ∂χ′/∂t
and Aχ = −r ×× B − (r .∇)A+∇χ′. The potentials are seen to be expanded in
terms of the position vector r , the electric dipole term −E . r being dominant.

The differential equations (3) for the potentials are found to be invariant in
form under the gauge transformation of (5); the old values of the potentials
are replaced by the new ones. They are gauge covariant. Equations (3) will
be simplified considerably if it is possible to set ∇ .A + c−2∂φ/∂t = 0 because
doing this will separate the equations for A and φ. In this case equation (3a)
becomes a vector inhomogeneous wave equation and (3b) becomes a scalar one.
This desirable separation is achieved in the Lorentz gauge in which the gauge
function is chosen to be χ = χP +χ′ with χP satisfying the inhomogeneous wave
equation with A and φ specified:

∇2χP − c−2∂2χP/∂t2 = −(∇ .A + c−2∂φ/∂t) . (11)

Gauge arbitrariness remains through χ′ but only gauge functions that do
not satisfy the homogeneous wave equation ∇2χ′ − c−2∂2χ′/∂t2 = 0 maintain
it. In the process of applying this gauge transformation the gauge freedom, or
the amount of arbitrariness inherent in the gauge is reduced. This may be
understood by reference to Fig. 1. In this figure the rectangular box represents
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the set of all acceptable gauge functions, i.e. those that are single valued and
continuously differentiable. The small circle represents the set of functions that
are everywhere flat with ∇χ′ = 0 and ∂χ′/∂t = 0, or symbolically ∂χ′ = 0.
The oval represents the set of all functions that satisfy the homogeneous wave
equation ∇2χ′ − c−2∂2χ′/∂t2 = 0. Since all flat functions satisfy the latter
equation trivially the flat functions form a subset of these functions. Before the
Lorentz gauge transformation was applied the gauge could only be fixed, or set
to zero, by choosing a gauge function from among the flat functions. After the
transformation it can be fixed by choosing from a larger set of functions. In this
way gauge freedom has been reduced by the transformation as gauge arbitrariness
remains only for a smaller set of functions, namely those outside the oval.

Fig. 1. Illustration of the reduction of gauge freedom resulting from a Lorentz gauge
transformation. Within the rectangle is represented the set of all acceptable gauge functions
χ′, i.e. those that are single valued and continuously differentiable. The oval represents the
set of all gauge functions that satisfy the homogeneous wave equation. The small circle
represents the set of gauge functions that are everywhere flat, i.e. with ∂χ′ = 0 by which is
meant ∇χ′ = 0 and ∂χ′/∂t = 0. All flat functions satisfy the homogeneous wave equation so
the circle lies within the oval.

Another gauge that is useful for treating the interaction of radiation with
matter (Craig and Thirunamachandran 1984) is the Coulomb gauge. In this
gauge the condition ∇ .A = 0 is imposed by requiring the particular gauge
function to satisfy Poisson’s equation ∇2χP = −∇ .A. Equation (3b) then takes
the very simple form ∇2φ = −ρ/ε0; equation (3a) remains more complicated.
Gauge freedom remains for functions χ′ satisfying Laplace’s equation ∇2χ′ = 0.
The radiation gauge consists of the combination of the Lorentz gauge and the
temporal gauge, the consequence is that ∇ .A = 0 also. This gauge is frequently
used in treatments of quantum electrodynamics in which the electromagnetic field
as well as the particle system is described by quantum mechanics. In Table 1
the gauge transformations discussed above are listed together with the conditions
on χ′ needed to fix the gauge. Many other gauges are discussed by Leibbrandt
(1987).

From Table 1 it can be seen that gauge arbitrariness remains after a gauge
transformation. The standard method for proceeding with a calculation is to set
χ′ to zero and carry out the calculation in that gauge. As shown in Section 3
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this will always give the correct value of any physical observable. However, a
question of interest that arises is whether the standard operations of quantum
mechanics may be carried out in a gauge that remains fully arbitrary.

Table 1. Gauge transformations discussed in Section 4

Each gauge transformation uses a gauge function of the form χ = χP + χ′, where χP is a
particular function and χ′ is an arbitrary one. The gauge fixing condition is the condition
on χ′ that is sufficient for all gauge arbitrariness to be eliminated from the potentials. Here
∂χ′ = 0 indicates both ∇χ′ = 0 and ∂χ′/∂t = 0, meaning that χ′ is flat in space and time

Gauge transformation Particular gauge function χP Gauge fixing condition

Change of origin of A −(B ×× R) . r/2 ∂χ′ = 0
from 0 to R

Symmetric→ Landau ηxyB/2 ∂χ′ = 0
Temporal

∫ t
t0
φ(r, t′) dt′ ∂χ′/∂t = 0 (for φ)

Dipole −r .A ∂χ′ = 0
Lorentz Equation (11) ∇2χ′ + c−2∂2χ′/∂t2 = 0
Coulomb ∇2χP = −∇ .A ∇2χ′ = 0
Radiation ∇ .A = 0 and φ = 0 Already fixed

A problem closely related to this that has attracted interest, namely how
probability amplitudes may be defined in the presence of a time dependent gauge
function, was addressed by Yang (1976) following a comment made by Lamb
(1952). Contributions to this and similar matters were made subsequently by
many authors, see for example Kobe (1978, 1984), Power and Thirunamachandran
(1978), Aharonov and Au (1981), Haller (1984), Schlicher et al . (1984), Healy
(1988) and Power (1989). Clearly such a question can only be answered by
carrying out a calculation in which the gauge function is retained explicitly and
not set equal to zero.

In the next sections of this paper we describe the formal structure of quantum
mechanics when full gauge arbitrariness is preserved throughout. For the purpose
of this paper quantum mechanics is taken to be Schrödinger’s wave mechanics. Of
course, at the end of any calculation all observable quantities must be independent
of gauge and so must agree with the results of a conventional calculation which
assumes simply that the gauge function is zero. As expected this will always be
found to be the case.

5. Basis Functions

We write out explicitly the Schrödinger wave equation Sχ Ψχ = 0 for a single
particle in an arbitrary gauge χ

[{p− e(A+∇χ)}2/2m + e(φ − ∂χ∂t) − ih̄∂/∂t]Ψχ(r, t) = 0 . (12)

It can be seen that due to the presence of χ the Hamiltonian, which is the sum
of the first two operators, is time dependent even if the potentials A and φ are
static. In this situation the wavefunction cannot be separated into the product
of a time dependent part and a space dependent part and so the time-dependent
wave equation must be used throughout. However, if E and B have no time
dependence it follows from (2) that a set of potentials may be found that has no
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time dependence either and is a function of r alone. We write these potentials
as A0(r) and φ0(r). One such example, the potentials for a long solenoid, was
derived in Section 2. To solve (12) in this case we first set χ to zero. This gives
rise to

{(p− eA0)2/2m + eφ0}Ψ0(r, t) = ih̄∂/∂t Ψ0(r, t) . (13)

Since the operator on the left-hand side is independent of time the wavefunction
may be factored into parts that are respectively space and time dependent. These
separate in the usual way to give

Ψ0,n(r, t) = ψn(r) exp(−iEnt/h̄) , (14)

with En and ψn(r) given by the eigenvalue equation

{(p− eA0)2/2m + eφ0}ψn(r) = En ψn(r) , (15)

whose solutions are assumed to be known. They are complete and orthonormal
because the Hamiltonian operator is Hermitian. We can now restore gauge
dependence by making use of (8) which gives

Ψχ,n(r, t) = ψn(r) exp{i(eχ− En t)/h̄} . (16)

We emphasise that we have not fixed the gauge (at a value of zero) in this
process. It may be verified by substitution that equation (16) is a solution
of (13) with the time independent potentials A0 and φ0. The Ψχ,n are time
dependent solutions of the wave equation for time independent fields. Their time
and space dependences are inseparably linked together by the gauge function.
Any linear combination of them Ψχ(r , t) = Σn an Ψχ,n(r , t), where the an are
independent of time, is also a solution of (13) with static fields. In this situation
the gauge-explicit probability amplitude for the system to be in state m at time
t is defined to be the projection of state m onto the wavefunction Ψχ(r , t):

Probability amplitude =
∫

Ψ∗χ,m(r, t) Ψχ(r, t) dr , (17)

which is equal to am due to the orthonormality of the ψn(r) and so is independent
of gauge and, in this present case, of time. The probability of the system being
in a particular state m is equal to |am|2. If the operator on the left side of (15)
is the exact Hamiltonian operator the solutions are exact. If it is only part of the
total Hamiltonian then the solutions form a basis set with which perturbation
theory may be carried out.

6. Gauge Properties of Operators

The operator Oχ in gauge χ is defined by the relation Oχ(A, φ) = O0(A+∇χ,
φ−∂χ/∂t), whereO0 is the operator with zero gauge function. A gauge independent
operator I is defined to be one that is unchanged by a gauge transformation so
that Iχ(A, φ) = I0(A, φ). An operator such as r or p that does not depend
explicitly on the potentials is gauge independent.
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As discussed in Section 3 the Schrödinger equation (5) Sχeieχ/h̄ Ψ0 = 0 transforms
unitarily to S0 Ψ0 = 0 under a gauge transformation. This requires that

Sχ = eieχ/h̄ S0 e−ieχ/h̄ . (18)

The first exponential factor is needed to make the transformation unitary. Any
operator that satisfies such a relation is said to be gauge invariant. From Section
3 it can be seen that any operator O that has the functional form O0 = O0(r ,
t , p−eA, ih̄∂/∂t−eφ) will be gauge invariant if the operator can be expanded
in sums of powers of its arguments. An important property of gauge invariant
operators is that their matrix elements are independent of gauge. This is shown
by using equations (8) and (18) so that

〈Ψχ,m|Oχ|Ψχ,n〉 = 〈ψm(r) exp(iEm t/h̄)|O0|ψn(r) exp(−iEn t/h̄)〉 . (19)

If O does not contain a time derivative the matrix element is

〈Ψχ,m|Oχ|Ψχ,n〉 = exp{i(Em − En)t/h̄}
∫
ψ∗m(r)O0 ψn(r) dr . (20)

It is apparent that an operator that represents a physical observable is required
to be gauge invariant but need not be gauge independent.

The semi-classical Hamiltonian operator that we use in this paper is neither
gauge invariant nor gauge independent. From examination of equations (6) and
(7) it is seen that

Hχ = eieχ/h̄H0 e−ieχ/h̄ − e∂χ/∂t . (21)

Its matrix elements are

〈Ψχ,m|Hχ|Ψχ,n〉 = (En − e∂χ/∂t)δm,n (22)

due to the orthonormality of the ψn(r), where δ is the Kronecker delta. So
although there is a gauge dependent shift of individual energies, energy differences
remain unchanged (Cohen-Tannoudij et al . 1977, Vol. 1, p. 326). Spectroscopy
is independent of gauge. It should be noted that a treatment of the interaction
between charged particles and radiation in which the radiation field as well as
the particle system is treated dynamically gives rise to a Hamiltonian that is
gauge invariant (Schiff 1968). It is the semi-classical approximation’s assumption
of prescribed external fields, with their concomitant inability to exchange energy
with the radiation field, that destroys the gauge invariance. However, as is shown
in Section 10, the lack of gauge invariance of the semi-classical Hamiltonian does
not affect the observable predictions of thermodynamics arising from its use.

Table 2. Gauge properties of operators

Operator r p (A, φ) v , (p−eA), Unit H
(ih̄∂/∂t−eφ) operator

Gauge independent Yes Yes No No Yes No
Gauge invariant Yes No No Yes Yes No
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The quantum mechanical operator identified with the particle velocity is
v = dr/dt = [r , H]/ih̄. This is readily verified to be Hermitian as both r and
H are themselves and from (18) it is also gauge invariant. By commuting r with
the Hamiltonian of equation (6) the velocity operator is given by mv = p−eA.
If other terms involving p are present in the Hamiltonian the commutator of
r with them will contribute further to the velocity operator. For example, the
spin–orbit interaction s ×× E . (p− eA)eh̄/4m2c (Frohlich and Studer 1993) will
add a term s ×× Eeh̄/4mc to mv .

It is important to distinguish the notions of gauge invariance, defined by
(18), and gauge independence, which means that the quantity concerned does
not change when the gauge function is changed. In Table 2 these properties are
summarised for various operators.

7. Perturbation Theory

If the potentials are separated into two parts so that A→A0 + A1 and
φ→φ0 + φ1 then the quantum wave equation {Hχ − ih̄∂/∂t}Ψχ(r, t) = 0 may
be written in the following form:

{H0
χ + Vχ − ih̄∂/∂t}Ψχ(r, t) = 0 , (23)

where H0
χ = {p− e(A0 +∇χ)}2/2m + e(φ0 − ∂χ/∂t), which has the form of an

unperturbed Hamiltonian and a perturbation

Vχ = eφ1 −A1 . {p− e(A0 +∇χ)}e/m + e2(A1)2/2m + ieh̄(∇ .A1)/2m,

where the relation (p .A−A .p) = −ih̄(∇ .A) has been used. The perturbation
depends on χ but it can be seen to satisfy the relation Vχ = exp(ieχ/h̄)V 0

exp(−ieχ/h̄) because the operator p generates the e∇χ term from the phase
factor on the right that contains the gauge function. Any additional perturbation
must be gauge invariant to satisfy the relation. To illustrate the importance of
this requirement, the spin–orbit interaction is sometimes incorrectly taken to be of
the form ξ(r)l . s where l = r ×× p. However, the correct form of this interaction
is gauge invariant as it involves the gauge invariant quantities E , (p−eA) and
s (Frohlich and Studer 1993) and it is in this form that it must be used as a
perturbation. For a perturbative approach to be useful it is necessary for the
matrix elements associated with V 0 to be smaller than those associated with
H 0

0. If the magnetic field is zero it is permissible to choose the gauge A0 = 0,
A1 = 0. The operators then reduce to H0

0 = p2/2m+ eφ0, V0 = eφ1, the usual
expressions of the perturbation theory of the scalar potential.

(7a) Time Independent Perturbation Theory

If A1 and φ1 are independent of time, then V0 is as well, so instead of the
eigensolutions ψn(r) and En being determined by (15): H0

0 ψn = En ψn, where
H0

0 is the unperturbed Hamiltonian in the χ = 0 gauge, they will be determined
by the new eigenvalue equation (H0

0+V0)ψn′ = En
′ ψn

′. This may be solved for
the En

′ and ψn
′ in terms of the En and ψn by the standard methods of time

independent perturbation theory. New gauge dependent wavefunctions may then
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be constructed with the primed quantities by means of (16) and the expectation
values of operators that represent physical quantities may be obtained.

Generally, the quantities under the control of an experimenter are the fields
E and B which are determined by the placement of electrodes and magnets.
Because of their gauge arbitrariness the potentials are not under such control.
Therefore, when the fields are considered to be applied externally and their
operator nature is ignored, an appropriate form of perturbation to use is the
derivative of the Hamiltonian with respect to these fields

V = δE . ∂H/∂E + δB . ∂H/∂B + higher terms , (24)

where the partial derivative with respect to a vector means the gradient with
respect to that vector and δE and δB are small variations of these fields. This
form of perturbation fits readily into the structure of thermodynamic perturbation
theory (Stewart 1996a). If the potentials corresponding to static uniform fields
E and B are taken to be φ = −E . (r−R) and A = B ×× (r−R)/2, the origin
of the potentials being at R, then from (6), −∂H/∂E = e(r −R) the electric
dipole moment. The term E .R in the Hamiltonian gives rise to a shift of all
energy levels and is unobservable.

The derivative of H with respect to the ith component of B is

∂H/∂Bi = Σj(∂H/∂Aj) (∂Aj/∂Bi) . (25)

The quantity ∂H/∂A is given by H(A + δA) . (p − eA)e/m for a gauge with
∇ .A = 0. For a uniform magnetic field, ∂Ai/∂Bj = Σk εijk r′k/2, where the
anti-symmetric unit tensor εijk is zero if any two of the subscripts are the same,
is unity if they are in cyclic order and zero otherwise and r′ = r−R. Therefore,
we have

∂H
∂Bx

= 1
2

(
y′
∂H
∂Az

− z′ ∂H
∂Ay

)
, (26)

etc. and so −∂H/∂B = r′ ×× (p− eA)e/2m = m. The latter is the expression for
the orbital magnetic moment operator m in non-relativistic quantum mechanics,
the first and second terms representing the paramagnetic and diamagnetic
contributions respectively. Since the paramagnetic and diamagnetic terms are not
individually gauge invariant they are not observable individually, only the sum of
them is (Stewart 1996b), a matter that will be discussed further in Section 8. The
expression for ∂H/∂B involves a cross product with (r−R). The term containing
R ×× (p− eA) is the cross product of the constant vector R with an operator that
represents a drift current. By Maxwell’s equations a drift current is inconsistent
with a uniform magnetic field and consequently in this case the expectation value
of ∂H/∂B is independent of R; this is shown in more detail in Section 8. The only
remaining non-zero derivative is ∂2H/∂Bi ∂Bj = −χ̂dij where the operator (not to
be confused with the gauge function) is χ̂dij = −(r′2δi,j − r′i r′j)e2/4m (Stewart
1996a, 1996b). The derivatives of the Hamiltonian have been calculated in the
gauge with χ = 0. Since (p−eA) is a gauge invariant operator the derivatives
of the Hamiltonian with respect to the fields are gauge invariant.
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(7b) Time Dependent Perturbation Theory

When the perturbing fields and potentials depend on time the wave equation
will have the form of (23) with V being a perturbation that is now time dependent.
In this situation the wavefunction may be expressed in the form

Ψχ(r, t) = Σn an(t) Ψχ,n(r, t) , (27)

where the Ψχ,n(r , t) are the basis functions of (14) containing the ψn(r) that
are solutions of H0

0 ψn(r) = En ψn(r) given in (15) for the time independent
fields A0 and φ0, but now the an depend on time. If the explicit form, given
by (14), of the wavefunction of (27) is substituted into (23) then, with the help
of the result

{H0
χ − ih̄∂/∂t}Ψχ(r, t) = −ih̄Σn ψn(r) exp{i(eχ− En t)/h̄} dan/dt , (28)

which is a consequence of (23), and after using the relation Vχ = exp(ieχ/h̄)
V0 exp(−ieχ/h̄) and making the appropriate cancellations the gauge function
disappears altogether and the result

ih̄
dam
dt

=
∑
nei(Em−En)t/h̄ an Vmn(t) (29)

is obtained, where

Vmn(t) =
∫
ψ∗m(r)V0(t)ψn(r) dr . (30)

Equation (29) is exactly the same as is obtained in the conventional treatment of
quantum mechanics where gauge is ignored (Cohen-Tannoudij et al . 1977) and
it does not depend upon V being a small quantity. The probability amplitude
in arbitrary gauge for the system to be in state m at time at t is given by
(17). By using equations (16) and (27) and the orthonormality of the ψn(r) this
amplitude is found to be simply am(t). This also is identical to that obtained
when χ = 0. Probability amplitudes are independent of gauge.

8. Paramagnetism and Diamagnetism

The gauge is of significance for the orbital motion of a particle because, by
the property that the canonical momentum p = −ih̄∇ has of being a derivative
operator, it operates on the gauge function through (8). On the other hand
the spin s may be ignored in connection with the gauge because it appears in
the Hamiltonian in the form −s .Be/m and does not operate explicitly on the
gauge function. This characteristic of the orbital motion has consequences for
the orbital magnetic moment. The classical expression for the orbital magnetic
moment m of a particle of charge e about the point R′ is m = (r−R′) ×× ve/2.
Because we deal with a physical system of finite extent, such as a molecule, the
expectation value of the drift velocity v is zero and consequently the expectation
value of m is independent of R′.

The operator for the orbital moment is therefore composed of two terms
m = mp+md, with the velocity v taken to be given by mv = p−eA, where
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the diamagnetic moment is md = −(r−R′) ×× Ae2/2m and the paramagnetic
moment is mp = (r−R′) ×× pe/2m. In calling the latter term paramagnetic no
assumption is made that the magnetisation associated with it is proportional to
the applied field; it could be a permanent moment. Now let us make the general
gauge transformation of (5); md becomes md

χ = −(r−R′) ×× (A+∇χ)e2/4m and
mp
χ = mp since p is gauge independent. However, the wavefunction changes

according to (8). When the effect of the operator p acting on the transformed
wavefunction is allowed for, the matrix elements of mp and md in the new gauge
are found to be

〈Ψχ
′|md

χ|Ψχ〉 = − (e2/2m)〈Ψ0
′|(r −R′) ×× A|Ψ0〉

− (e2/2m)〈Ψ0
′|(r −R′)|Ψ0〉 ×× ∇χ , (31a)

〈Ψχ
′|mp

χ|Ψχ〉 = (e/2m)〈Ψ0
′|(r −R′) ×× p|Ψ0〉

+ (e2/2m)〈Ψ0
′|(r −R′)|Ψ0〉 ×× ∇χ . (31b)

It is seen that under any gauge transformation the matrix elements of the
paramagnetic and diamagnetic moments are changed by equal and opposite
amounts. The sum of the two is independent of gauge (Stewart 1996b). Since,
as shown in Section 4, a change of origin of the vector potential of a uniform
magnetic field is equivalent to making a gauge transformation it is proved that the
matrix elements of the total orbital moment are independent of the origin of the
vector potential. This is a more general and simple derivation than previous ones
that applied only to the susceptibility and depended on perturbation methods
or a particular basis set of wave functions (Geersten 1989; Griffith 1961; Van
Vleck 1932).

We may be more specific. Taking, from Section 4, A = B ×× r/2 for a
uniform magnetic field and χ = −(B ×× R) . r/2 +χ′, so that ∇χ = −(B ×× R)/2
(dropping χ′ for the moment), equations (31) become

〈Ψχ
′|md

χ|Ψχ〉 = − (e2/4m)〈Ψ0
′|(r −R′) ×× (B ×× r)|Ψ0〉

+ (e2/4m)〈Ψ0
′|(r −R′)|Ψ0〉 ×× (B ×× R) , (32a)

〈Ψχ
′|mp

χ|Ψχ〉 = (e/2m)〈Ψ0
′|(r −R′) ×× p|Ψ0〉

− (e2/4m)〈Ψ0
′|(r −R′)|Ψ0〉 ×× (B ×× R) . (32b)

Now take the expectation value in the state Ψ, denoted 〈 〉. Further, for
convenience choose the origin of coordinates to be at the centre of charge so that
〈r〉 = 0. Because A = B ×× r/2 it follows that 〈A〉 = 0, and since p = mv−eA
and the drift velocity 〈v〉 = 0 it follows that 〈p〉 = 0 too. Under these conditions
the only terms of equations (32) that survive are

〈md
χ〉 = − (e2/4m)〈r ×× (B ×× r)〉 − (e2/4m)R′ ×× (B ×× R) , (33a)

〈mp
χ〉 = (e/2m)〈r ×× p〉+ (e2/4m)R′ ×× (B ×× R) . (33b)



Gauge Invariant Magnetism 1075

Although, as noted above, the expectation value of the total moment is
independent of R′ this is not true for the individual components. Putting
R′ = R demonstrates that if mR denotes the component of the orbital magnetism
calculated about the point R with the origin of A at that point also, then

md
R = md

0 − (e2/4m)R ×× (B ×× R), mp
R = mp

0 + (e2/4m)R ×× (B ×× R) . (34)

A shift of the origin to R is seen to result in the equal and opposite numerical changes
of the paramagnetic and diamagnetic components given above. The changes
are quadratic in R and, using the identity R ×× (B ×× R) = R2B − (R .B)R,
maximum when R is perpendicular to B . The ith Cartesian component of this
latter expression is Σj Bj(R2δi,j − RiRj) and by differentiating with respect to
this component of B the corresponding contribution to the susceptibility may
be obtained (Stewart 1996b). We remember that we still are able to add and
subtract a ∇χ′ term onto each of (33), so equations (34) are still gauge dependent.
They only have meaning individually if χ′ is fixed at zero but, of course, their
gauge independent sum does not depend on χ′.

The reason why equations (34) may be of interest is that at zero temperature the
calculation of the diamagnetic moment requires only a ground state expectation
value to be taken, but if the molecule is initially unpolarised the paramagnetic
moment is harder to obtain as it must be calculated by second order perturbation
theory which requires the excited states of the molecule to be known. Because
of this it is sometimes useful to calculate the diamagnetic and paramagnetic
moments separately. The question then arises of how to combine the separate
moments arising from atoms situated at different origins. The answer to this
question is provided by equations (34). Of course, it is only valid to do this if the
arbitrary gauge function χ′ is the same for the diamagnetic and paramagnetic
terms.

9. The Aharonov–Bohm Effect

One of the most fascinating and still controversial issues concerning the vector
potential is the Aharonov–Bohm effect (Ehrenberg and Siday 1949; Aharonov
and Bohm 1959; see Oliaru and Popescu 1985 and Peshkin and Tonomura 1989
for reviews). A solenoid (Fig. 2) of radius R is concentric with the z axis which
is directed out of the paper. As discussed in Section 2 the magnetic field inside
the solenoid is B , outside it is zero. A beam of electrons coming from the left
in a two slit interference experiment is split into two parts that pass either side
of the solenoid without passing through it and are recombined at a detector on
the right-hand side. The diffraction pattern at the detector indicates that the
electron wavefunction acquires a phase whose magnitude is proportional to the
magnetic flux in the solenoid and whose sign depends on which way they travelled
around it. This phase difference produces measurable interference effects at the
detector, the interference pattern shifting as the flux in the solenoid is varied.
This is despite the fact that the electrons have not passed through any region
of space in which the magnetic field is non-zero and so have not been subjected
to any force of the form of equation (1).

The effect may be understood as follows (Griffiths 1994). Consider the
Schrödinger equation for a charged particle moving in a pure gauge field, i.e.
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in a region in which the magnetic field is zero, which is the case outside the
solenoid. As discussed in Section 2 the vector potential is given by the spatial
gradient of a time independent scalar g(r) so A = ∇g. For the time being we
ignore the arbitrary gauge function. The Schrödinger equation is then

{(p− e∇g)2/2m + eφ}Ψg(r, t) = ih̄ ∂Ψg(r, t)/∂t , (35)

the wavefunction depending on g . Now substitute the relation Ψg = Ψ0 exp(ieg/h̄)
into (35). Using exactly the same arguments involving the effect of the gradient
operator that were used in Section 3 we arrive at

(p2/2m+ eφ)Ψ0 = ih̄ ∂Ψ0/∂t . (36)

This is the equation of motion for a particle moving in zero magnetic potential.
In other words the wavefunction for a particle moving in a pure gauge field
is obtained from that in zero gauge field by multiplying it by a phase factor
proportional to the potential of the pure gauge field. As shown also in Section 3
the charge and current densities are the same in both cases. However, for the
particular gauge field considered here the phase that is acquired depends upon
the topology of the path taken by the particle. For the particle travelling through
the upper slit in Fig. 2 the phase is given by e/h̄ times

∫
∇g . dl =

∫
A . dl, the

integral taken over the path ABD. As the integrand is a gradient the integral is
independent of path providing that the end points and topology of the path are
the same. For the path through the lower slit the phase is given by the integral
over ACD. The phase difference is therefore given by the closed path integral
(e/h̄)

∮
A . dl around the loop ABDCA. By equation (4) this is equal to (e/h̄)

Fig. 2. The Aharonov–Bohm effect. A solenoid of radius R is concentric with the z axis
which is directed out of the paper. Inside the solenoid the magnetic field is B , outside it
is zero. A beam of electrons coming from the left passes through a two slit interferometer,
the two beams pass either side of the solenoid and combine at a detector on the right-hand
side of it. By putting suitable electrostatic shields around the solenoid the electron beam
is precluded from travelling through its magnetic field. The interference pattern is found to
depend on the magnetic flux in the solenoid.
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times the magnetic flux enclosed by the loop. This phase difference is responsible
for interference observed at the detector, and experimentally the difference is
indeed observed to be proportional to the flux. Although only one path is shown
in the schematic illustration in Fig. 2, because the phase difference does not
depend upon the details of the path the phase difference is the same for all paths
of the same topology. It is noted that no interference effect is observable when
the phase shift is an integer multiple of 2π, or the flux a multiple of the flux
quantum e/h. If the path of integration were taken around a loop that did not
enclose the solenoid the phase difference would be zero. The phase factor depends
upon the topology of the path that is followed and is said to be non-integrable.

What about the gauge function? Since it appears as a gradient it is simply
added to g . The integral of its gradient around any closed loop is zero because
it is single valued scalar, in contrast to g which is multi-valued. Hence the
Aharonov–Bohm phase shift depends only on the flux enclosed by the path and
is, as it must be, independent of gauge.

10. Statistical Mechanics

It is assumed that the behaviour of an assembly of particles i , j , is described
by the Schrödinger equation SΨ(ri, rj , t) = 0, where S = H − ih̄∂/∂t and
H(ri, rj , t) is a non-relativistic Hamiltonian consisting of the sum of single-
particle terms, for example as in (6), plus an interaction term involving only
the coordinates of the particles. The interaction is gauge invariant as it depends
only on coordinates so the many particle Schrödinger operator is gauge invariant
too. Because the many-body wavefunction is the (in principle infinite) sum of
determinants of single particle wavefunctions the gauge function Ξ of the many
body wavefunction is the sum of the individual gauge functions of the particles:
Ξ(ri, rj , t) = Σiχ(ri, t) so that ΨΞ(ri, rj , t) = Ψ0(ri, rj , t) exp(ieΞ/h̄). For
the time independent fields that are necessary for a thermodynamic treatment
the solutions of the wave equations are analogous to those of the single particle
situation except that the eigensolutions of (15) are now those for the many
particle rather than the single particle Hamiltonian and χ becomes Ξ.

We examine the quantity Tr(e−βHΞOΞ) where Tr stands for trace, β = 1/kT
where T is the temperature and O is a gauge invariant operator. This quantity
is given explicitly by

Σn,m〈nΞ|exp(−βHΞ)|mΞ〉 〈mΞ|OΞ|nΞ〉 . (37)

If the states |nΞ(t)〉 over which the trace is taken are the exact solutions of the
Hamiltonian (the solutions given in equation 16) then using equations (21) and
(22) the trace becomes

Tr e−βHΞ OΞ = eβe∂Ξ/∂t Tr e−βH0 O0 , (38)

where the trace on the right is taken over states with Ξ = 0. IfO is the unit operator
we obtain a formally time dependent partition function ZΞ(t) = eβe∂Ξ/∂t Z0, where
Z 0 = Tr e−βH0 , the time dependence residing in the gauge function. The free energy
is given by the usual expression F = −kT ln(Z) and is FΞ = −kT ln(Z0) −e∂Ξ/∂t.
It is gauge dependent, but its derivatives with respect to thermodynamic variables,
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which give observable thermodynamic quantities, do not contain Ξ and so are
gauge independent. The statistical average of any gauge invariant operator
〈OΞ〉 = (Tr e−βHΞOΞ)/ZΞ, for example a spatial correlation function, is gauge
independent because the factors involving the gauge function in the numerator
and denominator cancel. Also, differences of internal energy, like differences of
free energy, are gauge independent. We conclude that the observable quantities
calculated with statistical mechanics are independent of gauge.

11. Magnetic Static Linear Response

If a magnetic field is applied to a system in thermal equilibrium its free energy
and the statistical average of its magnetic moment will change. For small applied
fields the change in magnetic moment is proportional to the field, the constant of
proportionality being the susceptibility; the change of free energy is proportional
to the square of the field. The description of systems in which the coupling to
the external fields in the Hamiltonian is linear, such as spin paramagnetism, is
well established. However, from equations (6) or (7) it can be seen that in the
case of a static uniform magnetic field B with vector potential A = B ×× r/2
the coupling has terms that are both linear and quadratic in B . In view of the
necessity, discussed in Section 8, of maintaining gauge invariance by treating
both terms on an equal footing we need to consider the quadratic as well as the
linear term. We outline how to do this in this section; more details are given in
(Stewart 1996a). We work in the gauge with χ = 0 which, as explained before, is
permissible so long as we are careful to deal only with gauge invariant operators.

We use the operator identity of Kumar (1965)

∂

∂µ
e−βH = −e−βH

∫ β

0

exH
∂H
∂µ

e−xH dx , (39)

where H(µ, ν) is an operator that is a function of the parameters µ and ν which
are c-numbers (i.e. not operators themselves, for example the components of the
classical magnetic field) but not a function of β. The Hamiltonian H will not,
in general, commute with its derivatives with respect to these parameters. The
correctness of (39) is established by noting that if the sides of it are denoted as
Q(β) then they both satisfy the equation ∂Q/∂β = −∂/∂µ{H exp(−βH)} with
Q(0) = 0.

We take the trace of (39). The operators on the right-hand side cycle under the
trace to eliminate the exponents containing x and the integral is evaluated trivially
to give ∂Z/∂µ = −βZ〈∂H/∂µ〉. The free energy is given by F = −kT log Z and
so

∂F

∂µ
=

〈
∂H
∂µ

〉
. (40)

The next step is to differentiate (40) with respect to another parameter ν. This
second derivative has three terms. The first comes from the derivative of the
operator itself and is simply 〈∂2H/∂µ ∂ν〉. The second comes from the derivative
of the Z in the denominator of the ensemble average and is ∂Z/∂ν Z−1〈∂H/∂ν〉.
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The third term comes from differentiating the exp(−βH) in the ensemble average
with respect to ν using (39); this gives

−
∫ β

0

dy
〈

eyH
∂H
∂µ

e−yH
∂H
∂ν

〉
.

Collecting the three terms together we get the second derivative of the free energy

∂2F

∂µ∂ν
=

〈
∂2H
∂µ ∂ν

〉
−

∫ β

0

dy
〈

eyH δ
∂H
∂µ

e−yH δ
∂H
∂ν

〉
, (41)

where δO = O − 〈O〉, the fluctuation of the operator from its ensemble average
value.

We now express the free energy as a Taylor series in powers of the components
of the magnetic field using the derivatives that we calculated in Section 7a:

F (Bi + δBi, Bj + δBj)− F (Bi, Bj) = Σi δBi 〈mi〉 − 1
2Σij(χ

p
ij + χd

ij)δBi δBj ,

(42)

where we call χd
ij = 〈χ̂d

ij〉 the diamagnetic susceptibility and χp
ij the paramagnetic

susceptibility given by

χp
ij =

∫ β

0

dy〈eyH δmi e−yH δmj〉 . (43)

Although the susceptibilities have been defined here in terms of thermodynamics it
can be shown that χd

ij and χp
ij are identical to the diamagnetic and paramagnetic

susceptibilities defined with the usual meaning of the linear coefficient of response
to an applied field. By using (39) again it is found that for any operator O(λ)

∂〈O〉
∂λ

=
〈
∂O
∂λ

〉
−

∫ β

0

dy
〈

eyH δ
∂H
∂λ

e−yH δO
〉
. (44)

If O is taken to be the magnetic moment operator mi = r ×× (p − eA)e/2mi

and the parameter λ to be B j then, recalling that with a uniform magnetic
field 〈∂mi/∂Bj〉 = χd

ij , it follows that ∂〈mi〉/∂Bj = χp
ij + χd

ij , the first term of
(44) giving the diamagnetic part, the second term the paramagnetic part. In
Stewart (1993, 1994, 1996a) it is also shown that the susceptibilities satisfy the
inequalities χp

ii ≥ 0 and χp
ii χ

p
jj > +(χp

ij)
2 and −χd

ii ≥ 0 and χd
ii χ

d
jj ≥ (χd

ij)
2. It

is interesting that these inequalities hold for quantities that are not individually
gauge invariant, and therefore not observable and that no such relations appear
to exist for their gauge invariant and observable sum. It is straightforward to
show that the inequalities remain valid under a change of the origin of the vector
potential of the type discussed in Section 8.

Some other thermodynamic relations may also be obtained from the formalism
above. By taking O in (44) to be the Hamiltonian operator it is found that the
derivative of the internal energy U = 〈H〉 is given by
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∂U/∂λ = ∂F/∂λ − β〈δH δ(∂H/∂λ)〉 , (45)

and so the derivative of the entropy is ∂S/∂λ = −〈δH δ(∂H/∂λ)〉/kT 2.

12. Conclusion

It is a general principle of quantum mechanics that its predicted consequences
must not depend on the electromagnetic gauge function that is chosen for a
calculation. In this paper an examination has been made of those aspects of gauge
invariance that impinge on condensed matter magnetism either by exhibiting
the gauge function explicitly throughout the calculation or by ensuring that a
calculation remains gauge invariant at every stage. One particular issue that
has been stressed is the division of orbital magnetism into paramagnetism and
diamagnetism. Only by treating both on an equal footing may a gauge invariant
treatment of magnetism be constructed.

One question that is inevitably raised by this paper is whether any of the
standard results of theoretical magnetism that involve orbital magnetism are
invalid because of inadequate treatment of gauge issues. The answer appears to be
no. Calculations of atomic paramagnetism and diamagnetism are generally correct
because the origin of coordinates, in effect the gauge function, is chosen at the
same point, the nucleus, for both. Calculations of orbital magnetism in itinerant
systems following Landau (Lifshitz and Pitaevskii 1980) involve differentiating
the partition function with respect to magnetic field. This, in turn, requires
differentiating the Hamiltonian. As shown in Section 7a, its derivatives are gauge
invariant so the procedure is justified in this respect.

A further interesting question concerns the arbitrariness implied by the presence
of the gauge function. Wu and Yang (1975) have argued as follows. The fields E
and B by themselves under-describe the behaviour of a physical system in the
sense that they alone are unable to account for the Aharonov–Bohm effect. On
the other hand the potentials A and φ over-determine the physics because, as
discussed in this paper, a degree of gauge arbitrariness always exists in them. Wu
and Yang argue that the quantity that describes the physics most succinctly is
the phase factor exp(iϕ) where ϕ = (e/h̄)

∫
A . dl or its relativistic generalisation.

Further discussion of this matter may be found in their paper and in Felsager
(1981). Discussion of the place of gauge in fundamental physics may be found in
the many books on the theory of quantum electrodynamics, quantum fields and
gauge fields. An outstanding history of the development of modern fundamental
theory and the part in it played by gauge has been written by Pais (1986).
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