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Abstract

We describe a surface gate-defined mesoscopic semiconductor billiard with a square geometry
which we can evolve continuously to a Sinai geometry by adjusting the bias on a circular
gate located at the centre of the square. We concentrate on clusters of magneto-conductance
structure formed on two magnetic field scales, which emerge during the transition from the
square to the Sinai geometry. This change in shape is accompanied by a transition from
non-chaotic to chaotic electron dynamics, which has been a topic of considerable interest for
many years. The observed structure is due to quantum chaotic processes induced by the
presence of the circle. Our experimental results agree with classical dynamics simulations
which suggest the two field scales are determined by two families of electron trajectories which
sample the full geometry and corner sub-geometry. Finally, we report the observation of
striking similarities in the structures observed on the two different field scales. This indicates
the emergence of self-similarity with the introduction of the circle to the Sinai billiard geometry.

1. Introduction

Since the discovery of chaotic behaviour in physical systems (see for example
Ott 1994), it has been of considerable interest to manufacture a system where
a transition from non-chaotic to chaotic behaviour can be induced by an easily
controllable experimental parameter. Investigations of the classical dynamics
of particles interacting with combinations of straight and curved walls were
carried out by Sinai in 1970 (Sinai 1970). In particular, he demonstrated that
certain combinations lead to particle trajectories becoming chaotic, whilst for
other combinations, trajectories are non-chaotic. However, until the development
of mesoscopic semiconductor systems, experimental analogues of Sinai’s work
have only been possible in microwave cavities (Doron et al . 1990). Advances
in semiconductor fabrication have led to the ability to deposit intricate gate
patterns on the surface of AlGaAs/GaAs heterostructures. Under negative bias,
the regions under the gate become depleted, allowing sub-micron patterns such
as cavities to be formed in the two dimensional electron gas (2DEG) located at
the AlGaAs/GaAs interface. In addition, molecular beam epitaxy allows such
heterostructures to be created with an electron mean free path much greater than
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1 µm. Combining these two fabrication and growth techniques we create a system
where the trajectories of electrons injected into the cavity are primarily determined
by the cavity geometry rather than material-related scattering processes (i.e.
ballistic transport) (Marcus et al . 1992; Chang et al . 1994). The gate pattern
used in our experiments consists of a square cavity with a circle at the centre,
as shown in Figs 1a and 1b. Billiards with this geometry are known as Sinai
billiards. By independently adjusting the voltage on the inner, circular gate it
is possible to introduce and remove the circular feature in the billiard geometry
allowing not only for investigation of the concepts proposed by Sinai, but the
transition between chaotic and non-chaotic dynamics in a single device. Such

Fig. 1. (a) Scanning electron micrograph of the Sinai billiard gate pattern. (b) Schematic
diagram of gate pattern (all dimensions in µm). (c) Schematic cross section of the bridging
technique used to provide electrical connection to the Sinai diffuser. Parts (d) to (g)
demonstrate the changing diffuser radius as the transition from a square (d) at VI = +0 ·7 V
to a Sinai billiard is made. At (e) V I = 0 V and the diffuser radius is close to the lithographic
radius of the circular gate. Parts (f ) and (g) are at more negative VI values where the
depletion region increases in size.
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a device acts as a chaotic transistor. Whereas a standard transitor modulates the
electron flow somewhat like a tap, our device fine tunes the electron dynamics,
switching between the two (chaotic/non-chaotic) dynamical regimes. In this
paper, we examine clusters of magneto-conductance structure obtained from the
billiard as the biases applied to both the inner circular and outer square gates
are changed. The clusters are observed at millikelvin temperatures in order to
preserve phase coherence of the electron waves and the data serve as a probe of
quantum chaos—the quantum behaviour of a classically chaotic system.

2. Classical Simulations of the Electron Dynamics in the Sinai Billiard

Traditional descriptions of the depletion patterns created by the surface gates
have considered such a confining potential to be an infinite square well in nature.
Under such a ‘hard-walled’ description the circle acts as a ‘Sinai diffuser’ which
leads to an exponential divergence of electron trajectories with small differences
in initial condition—a characteristic of chaotic behaviour (Ott 1994; Sinai 1970).
This is in contrast to the non-chaotic dynamics of trajectories shaped by straight
walls where such exponential divergence does not occur—in the empty square,
for example. To date a number of geometries topologically equivalent to a Sinai
billiard have been investigated using mesoscopic semiconductor devices (Clarke
et al . 1995; Budantsev et al . 1996; Taylor et al . 1997a). However, the billiard
geometry we have used is the most flexible because it is the only device to date
where the Sinai diffuser can be removed. To experimentally sample the dynamics
one needs an ‘open’ system, hence our device has entrance and exit ports which
inject and collect electrons allowing us to measure the transmission of trajectories
through the billiard. The configuration and lithographic dimensions of our device
are shown in Figs 1a and 1b. Simulations where 106 classical trajectories were
injected through the entrance port with an angular spread of ±30◦ about the
port axis were carried out for a number of Sinai diffuser radii. The results are
displayed in Fig. 2 as plots of the number of trajectories N(L) versus their
length L. For the empty square (R = 0 µm) the length distribution is determined
by the escape of trajectories from a purely non-chaotic system and is bounded
by a power law (N ∝ L−3) (Jensen 1991). The introduction of a very small
(R = 0 ·01 µm) Sinai diffuser leads to a radical change in the length distribution
which clearly begins to condense onto an exponential distribution associated with
chaotic behaviour (Jensen 1991). This is due to some of the trajectories managing
to ‘find’ the diffuser. As R is increased further, more and more trajectories strike
the diffuser, and the exponential distribution characteristic of chaotic scattering
becomes considerably more dominant. At R = 0 ·15 µm, points remaining above
the exponential are due to trajectories injected slightly off the port axis towards
the side wall, which bounce alternately between the top and bottom walls before
leaving through one of the ports. These trajectories do not strike the diffuser and
hence do not condense onto the exponential distribution, remaining instead on
the power law distribution mentioned earlier. By R = 0 ·3 µm this path is blocked
and the last power law remnant disappears. In the radius range 0 ·3–0 ·4 µm
the emergence of a second exponential distribution occurs for small L. This
second exponential is due to trajectories restricted to a sub-geometry defined by
the bottom left corner of the billiard shown in Fig. 1. This is confirmed at
R = 0 ·45 µm where the diffuser is sufficiently large that it touches the square
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walls, pinching off the channel and preventing trajectories from circulating around
the diffuser. Only the corner sub-geometry still supports trajectories in this
pinched off state. Here we see that only the distribution associated earlier with the
sub-geometry remains. In Sections 3 and 4 we investigate electron transmission
through a semiconductor Sinai billiard for diffuser radii where the existence of
both families of chaotic trajectories is predicted.

Fig. 2. Classical simulation length distributions ln[N(L)] versus L for six
values of the diffuser radius R.

3. Semiconductor Sinai Billiards

Details of the device and its fabrication are discussed elsewhere (Taylor 1994;
Taylor et al . 1997a, 1997b). As shown in Fig. 1 we have an AlGaAs/GaAs
heterostructure with a 2DEG 161 nm below the surface onto which are deposited
metal gates using an EBL/liftoff technique (Taylor 1994). The significant new
technology in this device is the bridging interconnect which allows the circle to
be biased independently of the square, as shown in Fig. 1c. Previous billiards
which were topologically equivalent to the Sinai geometry lacked the ability to
accurately and independently control the diffuser’s presence and its curvature
in a single device. The square formed by the outer gates is 1 µm wide which
is significantly less than the electronic mean free path of 25 µm ensuring that
transport in the cavity is indeed ballistic. The 50 nm gap in the upper right corner
is depleted under typical outer gate voltages. At the inner gate voltage VI = +0 ·7
V, the presence of the circular gate is minimised (Taylor et al . 1997a; Taylor
1994). As the positive bias is reduced the 2DEG becomes depleted in the region
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below the gate, with full depletion occurring by VI = 0 V. The radius of the
central depletion region continues to increase as VI becomes more negative (as
demonstrated in Figs 1d–1g). At the maximum bias of −3 ·0 V, we determine the
central radius to be 0 ·37 µm. This value is obtained from magneto-conductance
oscillations assuming a flux period of h/2e. This radius value is consistent
with other characterisations showing R to increase linearly by ∆R ≈ +40 nm for
∆VI ≈ −0 ·5 V above its lithographic radius of 0 ·15 µm at VI = 0 V (Taylor
et al . 1997a, 1997b). This leads to a value of R = 0 ·39 µm for VI = −3 V. A
comparison of these calculations with those obtained from the potential profile
generated by the self-consistent solution of the Schrödinger and Poisson equations
will be presented elsewhere (Fromhold et al . 1997). Leakage of current from the
gate to the 2DEG prevents the application of more negative biases. Measurements
of the low field magneto-conductance provide a ‘magneto-fingerprint’ of electron
trajectories through the billiard. At low temperatures (lattice temperature of
30 mK), electrons maintain phase coherence for times significant compared to
the traversal time of the geometry. Quantum interference effects can be assessed
semiclassically by monitoring the phase accumulated by electrons as they traverse
classical trajectories in the presence of a magnetic vector potential (Marcus et al .
1992; Chang et al . 1994; Aharonov and Bohm 1959). Such an approach is
successful in explaining the observed magneto-conductance structure.

Fig. 3. Fine and coarse scale magneto-conductance structure
for VO = −0 ·51 V and VI = −2 ·8 V.

As the diffuser is switched on and its radius increased, we observe the
emergence of clusters of magneto-conductance structure forming around two
distinct field scales. The characteristic field scale ∆BC of the coarse structure
is ∼20 times larger than the characteristic field scale ∆BF of the fine structure.
Structure on both scales appears as a central trough (of characteristic height
∆GC and ∆GF for the coarse and fine structure respectively) with quasi-
periodic structure, reminiscent of Al’tshuler–Aronov–Spivak (AAS) oscillations in
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disordered conductors (Al’tshuler et al . 1981). As shown in Fig. 3 for R ≈ 0 ·37 µm,
the fine scale structure is superimposed on the central coarse-scale ‘host’ trough.
The amplitude of the fine structure is visibly damped to either side of the central
coarse trough as demonstrated by the envelope displayed in Fig. 3. Assuming
that the Aharonov–Bohm (1959) flux–area relation holds, we expect

∆BF

∆BC

=
AC

AF

, (1)

where AC and AF are the characteristic areas enclosed by the coarse and fine
trajectories respectively. The resulting AC/AF is consistent with the coarse
structure being associated with electron trajectories restricted to the corner
sub-geometry and fine structure with trajectories sampling the full geometry
(i.e. circulating around the diffuser). This picture is also confirmed by the fine
structure evolution observed in Fig. 4. As VI is increased from +0 ·7 V (top
trace) to −3 ·1 V (bottom trace) in Fig. 4a, the geometry changes from that of
an empty square to a Sinai billiard with R ≈ 0 ·37 µm. The fine structure evolves
markedly with increasing diffuser radius. Higher inner gate voltages cannot be
used to achieve pinch-off due to problems with electrons leaking from the gates
into the 2DEG. Instead, the outer gate voltage is increased, extending the region
depleted below it inwards (see inset to Fig. 4b). The undepleted region between

Fig. 4. (a) Fine structure for VO = −0 ·51 V. Evolution from square to Sinai: VI and
G(B = 0) values are (from top to bottom) (+0 ·7 V, 265 µS), (−0 ·5 V, 209 µS), (−1 ·7 V,
173 µS) and (−3 ·1 V, 151 µS). (b) Fine structure for VI = −3 ·1 V. Evolution from Sinai
geometry to pinch-off: VO and G(B = 0) values are (from top to bottom) (−0 ·50 V, 231 µS),
(−0 ·51 V, 151 µS), (−0 ·52 V, 108 µS) and (−0 ·55 V, 26 µS).
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the square and circular gates contracts under this process until the depletion
regions merge and the conducting channel is pinched off. The result of this is
shown in Fig. 4b where the fine structure is removed as the outer gate voltage
is taken from −0 ·50 V (top trace) to −0 ·54 V (bottom trace) to pinch off
the channel. This is consistent with the fine structure being associated with
trajectories which circulate the diffuser, as these trajectories will be blocked in
the pinched off state. It should be noted that this is not due to changing
port widths as the outer gate voltage is increased, indeed this should have the
opposite effect, since increased trough amplitude is expected with narrowing
ports under a semiclassical approach (Baranger and Mello 1995). Clearly the
presence of the Sinai diffuser plays a major role in the electron dynamics through
the device. A transition from non-chaotic to chaotic dynamics occurs as the
diffuser is activated, followed by an interplay of two families of trajectories,
generating magneto-conductance structure on two distinct magnetic field scales,
as the diffuser radius is increased.

Fig. 5. Magneto-conductance
structure at three different magnetic
field scales for VO = −0 ·512 V
and VI = −2 ·7 V demonstrating
similarity between scales: (a) coarse
scale, (b) fine scale and (c) ultrafine
scale.

4. Self-similarity in the Sinai Billiard

The experimental results suggest that the origin of the coarse and fine field scales
of magneto-conductance structure may be more fundamental. Fig. 5a displays
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structure observed on the coarse scale for an outer gate voltage VO = −0 ·51 V and
inner gate voltage VI = −2 ·7 V. A closer look at the central trough reveals fine
structure, as mentioned earlier, with a characteristic field scale ∼20 times smaller
than that of the background coarse structure (Fig. 5b). Zooming in a second
time, at a much finer magnetic field scale, ultrafine structure is observed residing
on the fine structure trough (Fig. 5c). Of most interest here is the similarity
observed between the structure obtained on the three different magnetic field
scales, in particular between the coarse and fine levels. The ultrafine structure is
quite close to the magnetic field resolution limit of the measuring electronics and
although the similarity between it and the fine structure is not as striking as the
coarse to fine, it is apparent nonetheless. Fig. 6 provides another example of the
similarity between fine and ultrafine levels for VO = −0 ·524 V and VI = −1 ·5
V. Such ‘exact’ self-similarity is a characteristic of uniform fractal behaviour
(Mandelbrot 1982) which is generally associated with chaotic systems. Hence, it
is not surprising that the self-similarity is only observed whilst the Sinai diffuser
is activated and the associated electron dynamics are chaotic. Indeed for the
empty square VI = +0 ·7 V, which is a non-chaotic system, exact self-similarity
is not observed on any field scale.

Fig. 6. Fine and ultrafine
magneto-conductance structure for
VO = −0 ·524 V and VI = −1 ·5 V.

5. Conclusions

Physical realisation of a Sinai billiard using a surface gated AlGaAs/GaAs
heterostructure involving new device technologies has resulted in a system where
the nature of electron dynamics (chaotic/non-chaotic) can be easily changed via
a simple gate voltage adjustment which controls the presence and radius of a
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circular Sinai diffuser in the billiard geometry. Classical dynamics simulations have
demonstrated a striking change in the trajectory length distribution, associated
with a change in electron dynamics as the Sinai diffuser is activated, and the
emergence of two distribution components at higher diffuser radius. One of
these distributions is associated with coarse scale magneto-conductance structure
due to electron trajectories confined to the corner sub-geometry, with the other
associated with fine scale structure due to trajectories circulating the Sinai diffuser.
Experiments on the billiard have demonstrated the evolution of structure on
two field scales (coarse and fine) as the diffuser is introduced, with a striking
similarity apparent between them. The observation of self-similarity in the
magneto-conductance structure of the billiard is of considerable interest to the
further understanding of uniform fractal behaviour and its relation to particle
dynamics in such a system. The fine structure is removed as the channel between
the diffuser and the square wall is pinched off, consistent with the association
between fine structure and trajectories sampling the full billiard geometry. In
turn, coarse structure is associated with the corner sub-geometry.
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