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Abstract

It is shown that Wigner’s variant of Bell’s inequality does not exclude all local hidden variable
explanations of the Einstein–Podolsky–Rosen problem.

1. Introduction

In the foundation of quantum mechanics, Bell’s (1964) inequalities play an
important role. With these inequalities it became plausible that quantum
mechanics did not need to be supplemented with extra hidden variables, in order
to restore locality and causality to the theory, such as was argued by Einstein
et al . (1935).

Bell’s inequalities are related to Bohm’s reformulation of Einstein’s problem.
Bohm and Aharonov (1957) reformulated Einstein’s arguments into a ‘paradoxical’
correlation between spin states of spatially separated particles. Their argument
went as follows: Suppose ~σ1 and ~σ2 are the spin vectors of two particles prepared
somehow in the singlet state. At a later stage, the particles are separated
and their respective spins are measured with Stern–Gerlach magnets. If ~a is a
normalised three-dimensional parameter vector of the magnet used to measure
the spin of particle-1 and the measurement of ~σ1.~a yields +1, then according to
quantum mechanics, for particle-2 the result of measuring ~σ2.~a will be −1 and
vice versa. In the Bell inequalities, the parameter vector for measuring the spin
of particle-2 may be different from the parameter vector for particle-1. In view of
arguments on the inconsistency of local hidden variable models put forward by
Greenberger et al . (1989), Hardy (1993) and Jordan (1994), without making use
of the Bell inequalities, it is interesting to take a closer look at these inequalities.

The inequalities are a well studied subject to which many authors have
contributed. In the present paper only a few of these contributions are mentioned
and there is no intention of presenting a complete list of all relevant work on
this subject. This incompleteness is also unavoidable because the topic here is
Wigner’s version of Bell’s inequality, one which should not be burdened with, for
instance, discussions on the detector efficiency in an actual experiment. In the
present paper we concentrate on the algebraic-probabilistic side of the problem.
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For recent studies in quantum inequalities the reader is, for instance, referred
to papers presented at a congress in honour of J. A. Wheeler (Greenberger and
Zeilinger 1995).

In the present paper the probability of finding equal spin in both wings of
the experiment is studied. It is demonstrated that the proposed model does
not contradict standard quantum mechanics and that it, at the same time, can
violate Wigner’s version of Bell’s inequality. The starting point of the analysis
is the description of the equal spin probability in terms of a hidden state. This
enables us to redefine the relation between the probability of equal spin in both
wings and the associated local hidden variable weighted probability integrals.
Instead of the linear relationship between the probability and the local hidden
variable weighted probability integrals, such as proposed by Wigner, nonlinear
relationships arise. The question then occurs whether or not such equations
represent a local model. This question is referred back to the possibility of
creating, in an analogous way, Wigner’s local model from the postulated hidden
states and the weighted probability integrals.

2. The Model

In a series of lectures Wigner (1983) derived the Bell inequality as follows.
The spin part of the two particle state vector in the singlet state is

ψ = σ+(1)σ−(2)− σ−(2)σ+(2) . (1)

Here σ+(1) indicates a positive spin for particle-1 in the z direction, etc.
According to quantum mechanics, a correlation exists between measurements of
spin components along the directions ~e1 and ~e2, which enclose the angle θ1,2.

The probability of equal spins reads

P+,+(θ1,2) = 1
2 sin2(θ1,2/2) = P−,−(θ1,2) , (2)

while for opposite spins

P+,−(θ1,2) = 1
2cos2(θ1,2/2) = P−,+(θ1,2) . (3)

The possibility that local hidden variables (LHVs) uniquely determine the spins
was contradicted by Wigner as follows: First let us examine spin components
along the directions ~e1, ~e2 and ~e3. Secondly, let (++−; −−+), for instance,
denote the LHV probability-weighted integral, whereby for (++−; −−+) we may
deduce for particle-1 (the particle in the left-wing of the experiment) positive
spin components (spin-up = +) along ~e1 and ~e2 and negative (spin-down = −)
along ~e3, while for particle−2 (the particle in the right-wing of the experiment),
the mirror image of particle-1 is obtained. In addition, because of the singlet
state, integrals with equal spin components in the same direction vanish, for
instance (++−; +−+) = 0.
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From the previous, a relation between quantum and LHV probabilities is
obtained for positive spins along ~ek, k = 1, 2, 3, enclosing the angles θk,m
k < m = 1, 2, 3. Hence, according to Wigner (1983),

1
2 sin2(θ1,2/2) = (+−+;−+−) + (+−−;−+ +),

1
2 sin2(θ2,3/2) = (−+−; +−+) + (+ +−;−−+) , (4)

1
2 sin2(θ1,3/2) = (+ +−;−−+) + (+−−;−+ +) .

Observe that for identical particles probabilities like (+−+; −+−) and (−+−;
+−+) are most likely equal.

The previous equations lead to

D ≡ sin2(θ1,2/2) + sin2(θ2,3/2)− sin2(θ1,3/2) = 4(+−+;−+−) . (5)

Because (+−+; −+−) is, by definition, positive it follows that D must be positive
definite. Clearly, this is contradictory (Wigner 1983) and, hence, the existence
of LHVs is refuted.

At first instance it might appear as if the previous analysis covers all possible
LHV models. This will be questioned however. Observe e.g. how the previous
conclusion depends on the way the probabilities P+,+(θk,m), k < m = 1, 2, 3, are
associated with the LHV weighted probability integrals like, for instance, (++−;
−−+). There is this nagging possibility that, perhaps, things were presented too
simple.

An indication of this possible state of affairs is the fact that in Wigner’s model
the probabilities are considered additive. This implies that the occurrence of a
configuration like, e.g., +,−,+, in one wing of the experiment is independent of
the possible occurrence of another configuration, e.g. +,−,−, in the same wing.
The assumed additivity appears self-evident, but what will happen if the possible
occurrence of, for instance +,−,+, is not independent of the possible occurrence
of, for instance +,−,−, in the same wing of the experiment? In other words
the present paper investigates what will happen if the additivity of probability
is not introduced as a hidden restriction on LHV models.

Suppose that there exist hidden states |~s〉, with ~s ∈ S3 = {+,−}3, and that
the inner product of hidden states equals the probability weighted integral like,
for instance, (+ +−;−−+) = 〈+ +−|−−+ 〉, etc. Because of the relation with
the probability integrals we have, for instance, 〈+ +−|+ +− 〉 = 0. This is in
agreement with the quantum description of the singlet state which eliminates
the probability that both particles have the same spin along any of the axes,
~ek, k = 1, 2, 3. We then see that the first relation in equation (4) can be
reproduced with {〈−+−|+ 〈−++|}{|+−+ 〉+ |+−−〉}. Generally, we suppose
that (~s1;~s2) = (~s2;~s1), which is different from zero, only when ‘the mirror image
condition’, ~s1 = −~s2, related to the singlet state of both particles, for ~s1 and ~s2,
applies.

In the second place, let us for brevity define x = (+−+; −+−) = (−+−;
+−+), y = (+−−; −++) = (−++; +−−) and z = (++−; −−+) = (−−+;
++−). The symmetry in the LHV integrals is not an essential restriction.
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In the third place, let us assume that the probabilities P+,+(θk,m) arise from
the application of projection operators Π+,+(θk,m) on the compound state vector,

|Φ〉 =
∑
~s∈S3

|~s〉 . (6)

Here, in accordance with the mirror image condition, we assume that the ‘bra’-type
state vector refers to particle-1, while the ‘ket’-type vector refers to particle-2.

The operators are defined by

Φ+,+(θ1,2) = {| −+ + 〉〈+−+|} − {t1,2| − − − 〉〈+ + +|} ,

Φ+,+(θ2,3) = {|+−+ 〉〈+ +−|} − {t2,3| − − − 〉〈+ + +|} , (7)

Φ+,+(θ1,3) = {| −+ + 〉〈+ +−|} − {t1,3| − − − 〉〈+ + +|} .

Here the tk,m are real positive numbers, while the braces are employed to distinguish
between operators. For instance, the operator Π+,+(θ1,2) is the difference between
the operator | − + + 〉〈+ − +| and the operator t1,2| − − − 〉〈+ + +|, etc. The
operators do not violate locality because there is no indication how the state of
particle-1 would depend on the state of particle-2 and vice versa.

In the fourth place, we define the relation between the hidden states and the
probability P+,+(θk,m). We have

P+,+(θk,m) = 〈Φ|Π+,+(θk,m)|Φ〉, ∀k<m∈{1,2,3} , (8)

This gives

P+,+(θ1,2) = xy − p1,2, P+,+(θ2,3) = xz − p2,3, P+,+(θ1,3) = yz − p1,3 . (9)

Here we suppose that pk,m = (−−−; + + +)2tk,m, with tk,m real and positive.
Suppose we define the outcome of the probability integrals, thereby using the

x, y, z notation given previously, with for completeness x = (+−+; −+−) =
(−+−; +−+), y = (+−−; −++) = (−++; +−−) and z = (++−; −−+) =
(−−+; ++−):

x =
√1

2

√
[sin2(θ1,2/2) + 2p1,2][sin2(θ2,3/2) + 2p2,3]

sin2(θ1,3/2) + 2p1,3

,

y =
√ 1

2

√
[sin2(θ1,3/2) + 2p1,3][sin2(θ1,2/2) + 2p1,2]

sin2(θ2,3/2) + 2p2,3

, (10)

z =
√ 1

2

√
[sin2(θ2,3/2) + 2p2,3][sin2(θ1,3/2) + 2p1,3]

sin2(θ1,2/2) + 2p1,2

,
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The probability weighted integrals must be within the interval [0, 1]. Hence the
condition

1
2 ≤ sin2(θk,m/2) + 2pk,m ≤ 1, ∀k<m∈{1,2,3} , (11)

must apply. This implies that for θk,m ∈ [0, 2π] we have

P+,+(θk,m) = 1
2 sin2(θk,m/2), ∀k<m∈{1,2,3} . (12)

Table 1. Numerical simulation of instances violating Bell’s inequality
D = xy−p1,2+xz−p2,3−yz+p1,3 = {sin2(θ1,2/2)+sin2(θ2,3/2)−sin2(θ1,3/2)}/2

The x, y, z are as given in equation (10), while pk,m = p(θk,m) are as in (13) (c = 1 ·35/4)

D θ1,2 θ2,3 θ1,3 x y z p1,2 p2,3 p1,3

(deg.) (deg.) (deg.)

−0 ·15 351 ·2 46 ·3 308 ·3 0 ·552 0 ·559 0 ·477 0 ·003 0 ·077 0 ·095
−0 ·27 56 ·2 11 ·3 123 ·0 0 ·441 0 ·614 0 ·684 0 ·111 0 ·005 0 ·386
−0 ·02 103 ·6 68 ·9 194 ·2 0 ·465 0 ·796 0 ·621 0 ·309 0 ·160 0 ·492

In Table 1 the results of the numerical simulation of instances where Bell’s
inequality is violated are presented, whereby pk,m = p(θk,m) is taken with

p(θ) =
c

π2 θ
2 − 2c

π
θ + c (θ ∈ [0, 2π]) , (13)

and c = 1 ·35/4. This entails that quantum probabilities can be reproduced with
the present LHV scheme. Any argument on the nonlocality of the Π-operators
of equation (7) also has to explain why operators like

Ω+,+(θ1,2) =
| −+− 〉〈+−−|
(+−−;−+ +)

+
| −+ + 〉〈+−+|
(+−+;−+−)

(14)

can be employed such as in (8) to produce an accepted local model (equation
4) (Wigner 1983). Alternatively, calling |Φ〉 non-local leads us to the same
question. Hence, if |Φ〉 and/or Ω+,+(θ1,2) are non-local, how can the LHV
measure P+,+(θ1,2) be construed out of non-local entities, such as in P+,+(θ1,2)
= 〈Φ|Ω+,+(θ1,2)|Φ〉?

Concerning the relation between the hidden states |~s〉, with ~s ∈ S3 = {+,−}3,
and standard quantum mechanics, the following remarks are made. In the paper
it is claimed that

∃|~s1〉,|~s2〉〈~s1|~s2〉 = (~s1;~s2) . (15)

A possible objection to the existence of such states is that, because 〈~s|~s〉 = 0, they
appear to contradict standard quantum mechanics. However, it is not strictly
necessary that |~s〉 is a standard quantum state (i.e. 〈~s|~s〉 6= 0). There is nothing
in the orthodox interpretation of quantum mechanics which implies that |~s〉 must
be a part of standard quantum mechanics, otherwise the alternative is flawed.
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Recall that we claim that there is an alternative explanation without contradicting
standard quantum mechanics. The only thing that is necessary here is, hence,
that no contradiction arises between postulating the existence of local hidden
states and standard quantum mechanics.

Moreover, we claim that the mirror image condition, which reflects the singlet
state, is insufficiently described by standard quantum mechanics. This is the
bare essence of Einstein’s criticism of standard quantum mechanics. Because the,
experimentally controllable, argument to rule out local hidden states is based on
the denial that a local model may reproduce the quantum probabilities, while
here we have demonstrated that such a model actually may do this, an important
reason to demand that |~s〉 is a part of standard quantum mechanics has been
eliminated.

Finally, it will be shown below that |~s〉 can, without conflict, be related to
standard quantum mechanics, despite the fact that 〈~s|~s〉 = 0. Here we assume
that the |~s〉 are not elementary, but are built out of standard quantum states.
Suppose that

〈~s1|~s2〉 =
3∏
k=1

〈sk1 |sk2〉 . (16)

The superscripts denote the kth component (k = 1, 2, 3) of the vector. Moreover,
suppose there are quantum states

|ψ(~s)〉 = |ψ1(s1)〉|ψ2(s2)〉|ψ1(s3)〉, |ϕ(~s)〉 = |ϕ1(s1)〉|ϕ2(s2)〉|ϕ3(s3)〉,

such that, from |skα〉 = |ψk(skα)〉+ |ϕk(skα)〉 (α = 1, 2, k = 1, 2, 3), we have

〈~s1|~s2〉 =
3∏
k=1

[ψk(sk1)|ψk(sk2)〉+ 〈ϕ(sk1)|ϕk(sk2)〉

+〈ψk(sk1)|ϕk(sk2)〉+ 〈ϕk(sk1)|ψk(sk2)〉] . (17)

In standard quantum mechanics we must have that

〈ψ(~s1)|ψ(~s2)〉 = 〈ψ1(s1
1)|ψ1(s1

2)〉〈ψ2(s2
1)|ψ2(s2

2)〉〈ψ1(s3
1)|ψ1(s3

2)〉,

and similarly 〈ϕ(~s1)|ϕ(~s2)〉, are both not equal to zero when ~s1 = ~s2. Let us
assume that 〈ψk(sk1)|ψk(sk2)〉 = 〈ϕk(sk1)|ϕk(sk2)〉 = 1 when sk1 = sk2 (k = 1, 2, 3).
Moreover, observe that there is nothing in standard quantum mechanics to
prevent 〈ψk(sk1)|ϕk(sk2)〉 = 〈ϕk(sk1)|ψk(sk2)〉 = −1, when sk1 = sk2 (k = 1, 2, 3).
Recall that the quantum correlation −cos(θ) itself can take values between −1
and +1. Hence, it can be acknowledged that the postulation of |ψk(skα)〉 and
|ϕk(skα)〉 (α = 1, 2, k = 1, 2, 3) does not contradict standard quantum mechanics.
Therefore, the postulation of hidden states |~s〉 does not contradict standard
quantum mechanics.
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Concerning the interesting question of whether or not possible phase factors
in the hidden states will change the quantum probability, the following must be
noted. In the first place, we must observe that the probability integral only
depends on the spin configuration in both wings of the experiment. In the second
place, the local hidden states only take care of the probabilistic connection between
the two wings. The probabilistic connection will only change when the spin
configurations change. Hence, possible phase transformations are, by necessity,
restricted by the conservation of probability (~s1; ~s2). A transformation with a
phase ω then gives

|~s〉transformed = eiω|~s〉 . (18)

This implies that the inner product of the transformed hidden states, e.g.,
transformed〈~s1|~s2〉transformed must be equal to the original inner product 〈~s1|~s2〉 =
(~s1;~s2).

Hence, no conflict arises between postulating local hidden states |~s〉 and
standard quantum mechanics, because 〈~s|~s〉 = 0 does not entail |~s〉 = 0. The case
where 〈~s1|~s2〉 = (~s1;~s2) ≥ 0, with ~s1 = −~s2, has been dealt with previously and
enables us to reproduce quantum mechanical results. This easily follows from the
association of the probability integral (~s1;~s2) with the spin configuration in the
left-wing 〈~s1|, and the spin configuration in the right-wing |~s2〉. Moreover, the
phase transformations in the hidden state |~s〉 are restricted by the conservation
of probability.

In conclusion, there are no reasons left to rule out the present local hidden
variables model. The demand that |~s〉 must be a standard quantum mechanical
state is unwarranted, while calling the model nonlocal immediately questions
Wigner’s accepted local model.

3. Summary

It has been demonstrated here that a local hidden state exists which may
reproduce the quantum probability P+,+(θk,m) = 1

2 sin2(θk,m/2). This probability
refers to the situation where equal spin occurs along the unitary vector ~ek in
one wing, and the unitary vector ~em in the other wing of the experiment, where
θk,m (k < m) is the angle between the two unitary vectors, θk,m = cos−1(~ek .~em).
It was demonstrated that the proposed model does not contradict quantum
mechanics and that it, at the same time, is able to violate Wigner’s version of
Bell’s inequality. The author believes that this analysis questions the elimination
of local hidden variables by verifying Bell’s inequalities in actual experiments.
As examples of those experiments the reader is, in the first instance, referred to
polarisation of photon pairs (Aspect et al . 1982) or spin correlation with pairs
of protons (Lamehi-Rachti and Mittig 1976). Of course, more experiments have
been conducted in this field. For more recent developments in experimentation,
the reader is referred to Greenberger and Zeilinger (1995).

The key point of the analysis is the redefinition of the relation between the
quantum probability; for instance, the probability of finding equal spins in both
wings and the local hidden variable weighted probability integrals. It should be
noted that when one opposes such a redefinition by claiming that it is nonlocal,
one also has to explain why Wigner’s model, which can be construed in an similar
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fashion, can be called local. Hence, given the extra condition that additivity
and non-additivity can be obtained from similar operators and if explicit reasons
are there to call |Φ〉 and/or the operators Π+,+(θk,m), non-local, then why is
the additivity of Wigner’s model a characteristic of locality, while dropping the
hidden restriction of additivity leads to non-locality? We claim that both |Φ〉
and the operators Π+,+(θk,m) are local in the sense of Einstein (1949), because
there is no indication how a change in the state of the particle in the right-wing
will change the behaviour of the particle in the left-wing and vice versa.

Generally speaking, the present paper questions the elimination of local causality
in quantum mechanics by Bell inequalities. In addition, it is also claimed that
the explicit construction of a local hidden variables model, such as that presented
here, also contradicts the attempts to eliminate local hidden variables without
making use of Bell inequalities (Greenberger and Zeilinger 1995).
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