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Abstract

A simplified model for the rotating magnetic field (RMF) current drive in an infinitely long
cylindrical plasma is considered. The model allows for motion of both the electron and ion
fluids in the z and θ directions. It is assumed that equilibrium is satisfied on the average
and hence the r components of the equations of motion are not considered. It is shown that
the motion of the ion fluid does not introduce any significant modifications to the nonlinear
mechanism for the penetration of the RMF into the plasma.

1. Introduction

The rotating magnetic field (RMF) current drive and its applications have
been investigated in a number of laboratories over the the past two decades
(Jones 1990, 1998; Ohnishi et al . 1998; Hoffman 1998). In this paper the effect
of the motion of the ion fluid on the nonlinear mechanism for the penetration
of the RMF into the plasma is reexamined.

It is assumed, for the purpose of the discussion here, that the angular frequency
ω of the RMF, its magnitude Bω and the electron–ion momentum transfer
collision frequency νei satisfy the conditions

ωci ¿ ω ¿ ωce , (1)

νei ¿ ωce , (2)

where ωce = eBω/me is the electron cyclotron frequency in the RMF, ωci = eBω/mi

is the ion cyclotron frequency in the RMF, e is the electron charge, me is the
electron mass and mi is the ion mass. Under these conditions, the motion of the
electron fluid is approximately flux preserving (Newcomb 1958; Hugrass 1988).
For the plasma model under consideration, the only possible flux preserving
motion is that of rotation at the angular frequency of the RMF.

The conditions (1) and (2) would not be satisfied inside the plasma unless the
RMF penetrates into the plasma, contrary to predictions based on the classical
skin effect. A nonlinear theory for the penetration of the RMF into the plasma
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was investigated in earlier studies (Jones and Hugrass 1981; Hugrass and Grimm
1981) neglecting the effect of the motion of the ion fluid. These investigations
showed that the motion of the electron fluid is not exactly flux preserving, i.e.
the angular velocity of the electron fluid is not exactly equal to ω. The slip
between the electron fluid and the RMF ω − veθ/r depends on the parameter
νei/ωce. The RMF induces an axial current Jz in the plasma. In turn this axial
current tends to screen off the RMF (the skin effect). The effective skin depth
δ? is equal to the skin depth calculated at the Doppler-shifted frequency of the
RMF, as observed in a frame of reference rotating with the electron fluid,

δ? =

√
2η

µ0(ω − veθ/r)
=
√

ω

ω − veθ/r
δ , (3)

where

η =
meνei

ne2 (4)

is the resistivity, µ0 is the permeability of free space and

δ =

√
2η
µ0ω

(5)

is the classical skin depth. Alternatively, one may consider the quantity

η? =
η

1− veθ/ωr
(6)

as the effective resistivity for the axial component of the current

Jz = η?Ez. (7)

From this perspective, the penetration of the RMF into the plasma can be
attributed to the large value of the effective resistivity η?, since the effective skin
depth is given by

δ? =

√
2η?

µ0ω
. (8)

For the purpose of this work, it is more convenient to express the theory in
terms of the effective resistivity because, when one allows for the motion of the
ion fluid, there are two Doppler-shifted frequencies, one for the electron fluid
and another for the ion fluid. It should also be noted that the penetration of
the RMF into the plasma is a nonlinear phenomenon because η? is much larger
than η only when the electron fluid rotates almost synchronously with the RMF
(veθ ' ωr), and this condition can only be achieved and maintained if ωce À νei.
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Before proceeding further, it is useful to mention here that if the effect of the
electron inertia is included, the effective resistivity is complex:

η? =
η

1− veθ/ωr
+ j

meω

e2n
, (9)

and the effective skin depth is given by

1
δ?

= Re

[√
jωµ0

η?

]
. (10)

Equation (10) reduces to (8) when the electron inertia term is negligible. This
is a good approximation provided that

ω ¿ νei

1− veθ/ωr
. (11)

In the limit of a collisionless plasma, the electron inertia term is dominant and
the skin depth is known as the electron collisionless skin depth:

δe =
√

me

µ0ne
2 . (12)

The purpose of this work is to investigate the effect of the motion of the ion fluid
on the above results which were obtained assuming that the ions are immobile.
Intuitively, the effect of the motion of the ion fluid may be estimated as follows.
The motion of the ion fluid is approximately described by the equation

nmi
dviz

dt
= neEz . (13)

When the electron fluid rotates at the angular velocity of the RMF, the electrons
do not contribute to the axial current and hence the screening current can be
obtained from equation (13) as

Jz = neviz =
ne2

jωmi

Ez . (14)

This reasoning leads to the conclusion that the RMF does not significantly
penetrate into the plasma for distances greater than the ion collisionless skin
depth

δi =
√

mi

µ0ne
2 '

108

n
1
2
, (15)

where n is the number density in m−3. It will be shown in Section 3 that this
intuitive approach is not consistent with the results obtained by formally solving
the relevant equations of motion.
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2. The Physical Model

An infinitely long cylindrical plasma is considered. The fields consist of a
steady axial magnetic field Bz(r) and a transverse rotating magnetic field

B = Br(r) exp[j(ωt− θ)]ar +Bθ(r) exp[j(ωt− θ)]aθ +Bzaz , (16)

where ar, aθ and az are the unit vectors in the r, θ and z directions in a
standard cylindrical system of coordinates. Both Br and Bθ are in general
complex. In the absence of the plasma Br is constant and pure real [which means
that Br(r, θ, t) = Bω cos(ωt− θ)] and Bθ is constant and pure imaginary. In the
presence of the plasma the magnitudes and phases of Br and Bθ are functions
of r.

For the purpose of simplifying the analysis the motion of the electron and ion
fluids in the r direction will not be considered. Such motion takes place on a
relatively longer time scale and its inclusion would complicate the analysis and
obscure the physical picture.

It was shown in a previous paper (Hugrass 1982) that the physical quantities
relevant to our physical model can be divided into two groups. The first group
includes Bz and the transverse components of the electric field, the current
density and fluid velocities. These quantities can be expressed as superpositions
of constant parts (dc) and even harmonics of (ωt− θ):

Q(r, θ, t) = Q0(r) + ΣmQm(r) exp[j2m(ωt− θ)] . (17)

The second group includes Br, Bθ and the z components of the electric field,
the current density and fluid velocities. These quantities can be written as
superpositions of odd harmonics of (ωt − θ). The effects of the second and
higher harmonics are in general small and will be neglected in the remainder of
this paper. Quantities of the first group are assumed to depend only on r and
quantities of the second group are assumed to vary as f(r) exp[j(ωt− θ)]; hence

∂

∂t
= jω,

∂

∂θ
= −j (18)

for quantities of the second group.

3. The Equations of Motion

The RMF satisfies Faraday’s law

∇×E = −∂B
∂t

. (19)

Using equations (18) and (19) one obtains

Ez(r) = ωrBr(r) . (20)
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The equations of motion for the electron and ion fluids are

men

(
∂ve
∂t

+ ve·∇ve

)
= − en(E + ve×B)−∇Pe

+menνei(vi − ve) , (21)

min

(
∂vi
∂t

+ vi·∇vi

)
= en(E + vi×B)−∇Pi

+menνei(ve − vi) . (22)

The z components of the equations of motion are

jmeωn

(
1− veθ

ωr

)
vez = −en

(
1− veθ

ωr

)
Ez +

meνei

e
Jz , (23)

jmiωn

(
1− viθ

ωr

)
viz = en

(
1− viθ

ωr

)
Ez −

meνei

e
Jz , (24)

where equation (20) has been used to write Br in terms of Ez. Equations (23)
and (24) can be written as

vez =
−e
jωme

Ez +
e

jωme

η

1− veθ/(ωr)
Jz , (25)

viz =
e

jωmi

Ez −
e

jωmi

η

1− viθ/(ωr)
Jz , (26)

Using equations (25) and (26) together with

Jz = en(vzi − vze)

one obtains

Ez = η†Jz , (27)

where

η† =
mi

mi +me

(
η

1− veθ/(ωr)
+
me

mi

η

1− viθ/(ωr)
+ j

meω

e2n

)
. (28)

Note that in deriving equation (28) one does not need to assume that (1) and
(2) are satisfied. When the magnitude of the RMF is such that ωce À νei, the
electron fluid rotates almost synchronously with the RMF, and η† is much larger
than η. The effective skin depth is, in this case, much larger than the classical
skin depth and the RMF penetrates into the plasma accordingly.
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4. Discussion and Conclusions

The effective resistivity in the z direction is given by equation (6) when the
motion of the ion fluid is neglected, and by equation (28) when the motion of
the ion fluid is taken into account. It is evident that the effect of the motion
of the ion fluid is of order me/mi and can in general be neglected. Equation
(28) however seems a little paradoxical, as it is in sharp disagreement with the
intuitive reasoning presented at the end of Section 1, and further discussion is in
order. It is helpful to consider the form which this equation takes for the simpler
(but perhaps of little interest) case where the electron and ion fluids rotate at
the same angular velocity vθ/r:

η† =
η

1− vθ/ωr
+ j

memiω

(me +mi)e2n
. (29)

In this case the inertial (second) term is obtained, from its value for the fixed ion
model, by replacing the electron mass me by the reduced mass memi/(me +mi).
This modification is both plausible and consistent with the linear theory.

The collisional (first) term is the same as that obtained from the fixed ion
model. This can be explained as follows. When the motion of the ion fluid is
included, the ions contribute to the axial current. However, this contribution
is cancelled out by the change in the axial component of the velocity of the
electron fluid which results from a change in the collisional drag from −meνeivez
to meνei(viz−vez). The z component of the current density, everything else being
the same, remains unchanged to order me/mi and hence the effective resistivity
is not changed to order me/mi.

Finally, it should be stated that most of the results presented in this paper
are implicitly stated in Hugrass (1982), assuming ωce À νei. This assumption is
shown here to be unnecessary.
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