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Abstract

Vapour–liquid equilibrium properties for both three- and two-dimensional Lennard-Jones fluids
were obtained using simple cubic-in-density equations of state proposed by the authors. Results
were compared with those obtained by other workers from computer simulations and also with
results given by other more complex semi-theoretical or semi-empirical equations of state. In
the three-dimensional case good agreement is found for all properties and all temperatures.
In the two-dimensional case only the coexistence densities were compared, producing good
agreement for low temperatures only. The present work is the first to give numerical data for
the vapour–liquid equilibrium properties of Lennard-Jones fluids calculated from equations of
state.

1. Introduction

The knowledge of phase transitions of pure or mixed fluids is essential in
many practical applications (Quirke 1996; Toulhoat 1996). Applied physicists and
chemists as well as engineers commonly use empirical expressions (Reid et al .
1987; Vetere 1986) or purely empirical equations of state (EOSs) (Soave 1972;
Peng and Robinson 1976; Patel and Teja 1982; Valderrama 1990; Zabaloy and
Vera 1996) that correlate directly with experimental data to a greater or lesser
degree of accuracy. Nevertheless, there is no purely empirical expression or EOS
that can give accurate results for different properties, for different substances and
over the complete temperature and density ranges. Moreover, these expressions
do not have a theoretical basis that permits an adequate connection to be
made between the intermolecular potential and the phase behaviour. Finally, the
application of these EOSs to the evaluation of vapour–liquid equilibrium (VLE)
properties is not an easy task numerically, and although some shortcut techniques
have been developed, they are not applicable to every EOS (Wisniak et al . 1998).

There are also some EOSs for real fluids that have a theoretical basis and
include analytical expressions that contain a number of adjustable parameters,
specific to each fluid, and which are obtained by reproducing the experimental
vapour pressure with greater or lesser precision (Aly and Ashour 1994; Plackov
et al . 1995). Nevertheless, for these EOSs, the VLE coexistence densities, i.e.
the VLE curves, have not been presented by the corresponding authors.

The calculation of phase diagram curves or properties from purely theoretical
models is an extremely difficult task, so solutions have been obtained only for
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a few important and well-known cases, such as the Lennard-Jones fluids, that
can serve as models for some simple fluids (rare gases, methane, etc.). In these
theoretical calculations the aim is to predict the VLE properties rather than to fit
one or more of them. Theoretical calculations can be made by using perturbation
theories (Ananth et al . 1974; Carley 1978; Fischer et al . 1984; Song and Mason
1989), density functional theories (Fairobent et al . 1982; Mederos et al . 1985;
Curtin and Ashcroft 1986; Mederos et al . 1993), integral equations (Duh and
Henderson 1996), or through the Born–Green–Yvon equation (Wendland 1997).
One needs, however, knowledge of difficult concepts in statistical mechanics and
sophisticated mathematical tools. Even then, these approaches do not provide
analytical equations that can facilitate their application to practical problems.

Direct molecular simulations of the phase transitions of a given model constitute
another tool in current use (Quirke 1996; Toulhoat 1996; Gubbins 1996) but
such simulations obviously require extraordinary computational effort and access
to adequate computers and software.

Another alternative is the use of EOSs based on a fit to computer simulation
results for a given model, such as the Lennard-Jones (LJ) fluid, over a wide range
of temperature and densities (Reddy and O‘Shea 1986; Johnson et al . 1993).
Despite their accuracy, there are two main problems with these semi-empirical
EOSs: the lack of a theoretical basis, which makes it difficult to apply the EOS
over different ranges and/or for different systems, and their complicated analytical
form (the Benedict–Webb–Rubin type EOS contains 33 adjustable parameters),
which makes their mathematical handling very complicated.

Finally, there are semi-theoretical EOSs (Henderson 1977; Kolafa and Nezbeda
1994), which have a theoretical basis and contain some parameters that can be
fitted to reproduce computer simulation results over a wide range of temperatures
and densities, including states far from the phase transitions. No data (only
figures) of the VLE properties of LJ fluids have been published for either the
semi-empirical or semi-theoretical EOSs.

The particular study of two-dimensional (2D) systems is of great interest in
research on surface phenomena. Experimental studies on the physical adsorption
of fluids (rare gases) onto a solid substrate (graphite) indicate that the adsorbed
molecules behave qualitatively in many ways like a 2D fluid that exhibits numerous
phase transitions (Fairobent et al . 1982). Thus, as we have shown in previous
work (Mulero and Cuadros 1997), the study of the 2D LJ fluid is a good
starting point towards the goal of reproducing experimental results in adsorption
phenomena. A subject of interest, and indeed of some controversy, is the shape
of the phase diagram for 2D LJ fluids (Bakker et al . 1984; Mederos et al . 1985;
Singh et al . 1990). In particular, the data for the VLE curve has always been
determined by using molecular simulations (Singh et al . 1990; Smit and Frenkel
1991; Jiang and Gubbins 1995), and there have been no attempts to use EOSs,
as proposed by Henderson (1977) or by Reddy and O‘Shea (1986). Indeed, we
know of only two attempts to study the phase transitions of adsorbed fluids
theoretically (Fairobent et al . 1982; Jiang and Gubbins 1995).

In order to overcome the difficulties presented by the different approaches, we
have proposed semi-theoretical equations for LJ fluids (Mulero and Cuadros 1996;
Cuadros et al . 1997), which are based on the well-known Weeks–Chandler–Andersen
(WCA, 1971) theory, by fitting our computer simulation results obtained over a
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wide range of temperatures and densities. The proposed EOSs have a simple
analytical form (they are cubic in density, as is, for example, the van der Waals
EOS) in both 3D and 2D fluids, and have given good results in the calculation of
different properties (Mulero and Cuadros 1996; Cuadros et al . 1997). Moreover,
these equations can include the perturbative parameter of the WCA theory, and
hence can be used for substances in which the attractive or repulsive forces play
a greater or lesser role than in the LJ model (Cuadros et al . 1996b).

The proposed analytical expressions for the EOSs are used in this work in
order to obtain the VLE properties for 3D and 2D LJ fluids. Comparison is
made with results of computer simulations and of other EOSs proposed in the
literature. We note that the main idea is to predict, rather than to fit, the VLE
properties, by using EOSs that were not specifically designed to study phase
transition properties.

The paper is organised as follows. In Section 2 we present the EOSs
used. In Section 3, results for the VLE properties are presented and compared
with earlier results obtained from computer simulations and semi-empirical and
semi-theoretical equations of state. Finally, the most important conclusions of
the work are presented in Section 4.

2. Equations of State for LJ Fluids

The Lennard-Jones fluids are defined by their intermolecular potential:

u(r) = 4(r−12 − r−6) , (1)

where r denotes the intermolecular distance. In this paper we shall use only
reduced LJ variables, i.e. all properties are expressed and calculated in units of
the minimum value of the LJ intermolecular potential, ε, and of the distance
at which the potential is zero, σ. As is well-known, the use of an effective LJ
potential for each real fluid permits the determination of its properties. Also,
we note that this model can be used as a first step towards the study of real
adsorbed systems. Indeed, Jiang and Gubbins (1995) have shown recently that,
because of the large density fluctuations in 2D fluids, the effect of the solid
substrate on the coexistence properties is very small. Thus these properties can
be calculated for real physisorbed systems by using a 2D LJ model with the
adequate effective LJ parameters (Mulero and Cuadros 1997).

There are semi-empirical EOSs that are based solely on the fitting of computer
simulation data for the LJ potential, and thus describe at least the pressure
and potential energy with relatively good precision. However, as noted in the
Introduction, they contain a large number of adjustable parameters and are thus
difficult to handle. The Johnson et al . (JZG, 1993) and the Reddy and O’Shea
(RO, 1986) semi-empirical EOSs are the most accurate for 3D and 2D LJ fluids,
respectively. The analytical expression proposed for the reduced pressure (P , in
units of σn/ε, n being the dimension), as a function of the reduced temperature
(T , in units of kB/ε, kB being Boltzman’s constant) and of the reduced density
(ρ, in units of σn), is

P = ρT + C1ρ
2 + C2ρ

3 + C3ρ
4 + C4ρ

5 + C5ρ
6 + C6ρ

7 + C7ρ
8 + C8ρ

9

+ (C9ρ
3 + C10ρ

5 + C11ρ
7 + C12ρ

9 + C13ρ
11 + C14ρ

13)exp(−3ρ2) , (2)
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where the coefficients Ci are polynomial functions of the temperature, and contain
32 adjustable parameters.

We also consider the semi-theoretical equation of Kolafa and Nezbeda (KN,
1994), which is valid only for 3D LJ fluids, and is based on a perturbed virial
expansion. The KN expression for the pressure is

PKN/ρT = ZK(dKN) + ρ(1− 2γρ2)exp(−γρ2)β(T ) +
∑
i,j

KijT
i/2−1ρj , (3)

where Z K is an analytical expression for the compressibility factor of the reference
system (including only contributions from repulsive forces), which is very similar
to the well-known Carnahan and Starling (1969) EOS for hard spheres, and which
includes an analytical expression for the effective repulsive diameter dKN, with
five adjustable coefficients; β(T ) is the residual (with respect to that of hard
spheres) second virial coefficient, for which KN propose a temperature dependence
that includes a fractional power of the temperature as well as a logarithmic term:

β(T ) =
∑
i

CiT
i/2 + ClnlogT , (4)

so that seven coefficients are needed (Kolafa and Nezbeda 1994). The coefficients
Kij are constant, where i takes values from 0 to −4 and j from 2 to 6 (19
coefficients in all). Finally, γ is also an adjustable parameter.

In previous work (Mulero and Cuadros 1996; Cuadros et al . 1997), we have
shown the validity for both 2D and 3D LJ fluids of semi-theoretical EOSs based
on WCA theory (Weeks et al . 1971) and with simple analytical expressions. In
WCA theory, the LJ intermolecular potential (1) is separated into a reference
part, which contains all the short-range repulsive forces, and a perturbation part
containing all the long-range attractive forces. A perturbative parameter permits
a continuous variation from the reference system to the full LJ system.

In WCA theory, the EOS can be written as follows:

P (T, ρ) = P0(T, ρ)− ρ2α(T, ρ)− ρ3

(
∂α(T, ρ)
∂ρ

)
, (5)

with P0 being the pressure of the reference system (only repulsive forces), and
α(T, ρ) a temperature and density function that represents the contribution of
attractive forces and is expressed by Weeks et al . (1971) as a double integral.
We note here that the validity of WCA theory has been amply verified and the
theory widely used (Mulero and Cuadros 1996; Cuadros et al . 1996a; Matyushov
and Schmid 1996).

To calculate the properties of the reference system, i.e. P0, a scaling procedure
from the properties of hard sphere (3D case) or disk (2D case) systems must be
made. In our EOSs we use the Carnahan and Starling (1969) expression for the
3D LJ reference system,

P0(T, ρ) = ρT
1 + y + y2 − y3

(1− y)3 , (6)
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and the scaling particle theory expressions for the 2D LJ case,

P0(T, ρ) =
1

(1− y)2 . (7)

Here y is the packing fraction

y = πρd(T )n/2n , (8)

n being the dimension of the system, and d(T ) the molecular diameter expression
proposed by Verlet and Weis (1972),

d = (0 ·3837T + 1 ·068)/(0 ·4293T + 1) , (9)

which gives practically the same values as the dKN proposed by Kolafa and
Nezbeda (1994).

In order to calculate α(T, ρ) in (5), molecular dynamics simulations were
carried out for 3D and 2D LJ fluids over a wide range of temperatures and
densities (Cuadros et al . 1997; Mulero and Cuadros 1996), and the results were
then fitted by the analytical expression

α(T, ρ) =
5∑
i=0

BiT
i + ρ

12∑
i=6

BiT
(i−6) , (10)

the coefficients Bi being given in Table 1 for both 2D and 3D cases.
In an earlier work (Cuadros et al . 1997), we have shown that the thermodynamic

properties of 3D LJ fluids can be accurately calculated by taking different coefficients
for α(T, ρ) in the vapour and in the liquid regions of the phase diagram. Here,
to describe the coexistence region we use coefficients given in Table 1 and we
denote the resulting equation the ‘CM’ EOS.

For 2D LJ fluids we consider here the coefficients given in Table 1, which
we recently proposed (Cuadros et al . 1997), and which were obtained through
a thermodynamic shift from 3D to 2D and are valid for both the vapour and
the liquid ranges. This model gives very small deviations in the calculation
of pressure at low temperatures, so that a good-quality calculation of the
VLE curve must be expected. In this case we denote the resulting EOS by
‘CMO’.

Finally, because our computer simulations were performed with the intermolecular
potential truncated at distances r > 2 ·5, the asymptotic contributions to the
thermodynamic properties must be added. For the 3D case these asymptotic
contributions are included in the coefficients, whereas in 2D, the contributions
are −0 ·240484ρ2 and −0 ·320777ρ for the pressure and chemical potential,
respectively.
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Table 1. Coefficients for the CM equation of state (10) for 3D and 2D LJ fluids

3D 2D
Vapour Liquid

B0 16 ·53202 −14 ·13750 1 ·57183
B1 −20 ·12203 122 ·09695 2 ·51944
B2 15 ·21162 −282 ·03559 −2 ·48617
B3 −4 ·12454 320 ·63715 0 ·68022
B4 0 −180 ·60196 0
B5 0 40 ·456090 0
B6 3313 ·63909 89 ·57846 2 ·73231
B7 −19583 ·72760 −491 ·09891 −5 ·14467
B8 48000 ·27322 1085 ·86562 4 ·70071
B9 −62433 ·34138 −1189 ·26565 −1 ·24911
B10 45433 ·04423 646 ·48983 0
B11 −17533 ·11813 −139 ·74604 0
B12 2802 ·89418 0 0

3. Vapour–Liquid Equilibrium Properties

Although there are different methods for determining the VLE curve from
EOSs (rectilinear diameters, graphical methods, Maxwell’s construction, etc.),
the standard thermodynamic procedure requires the equality of the pressure and
chemical potential of the vapour phase with their corresponding values in the
liquid phase at a given temperature:

P (T, ρv) = P (T, ρl), µ(T, ρv) = µ(T, ρl) , (11)

where ρv and ρl are the densities at the liquid and vapour coexistence phases,
respectively, and where the expression for the chemical potential, µ, can be
obtained directly from the pressure through well-known thermodynamical relations.

As was remarked in the Introduction, computer simulations can be used
to obtain the VLE curves directly. Although the simulation methods should
guarantee the fulfillment of equation (11), in some cases the values of P or
µ at the coexistence densities are not given (Adams 1976; Singh et al . 1990;
Smit 1992; Jiang and Gubbins 1995). In other cases, when these values are
given (Panagiotopoulos et al . 1988; Smit and Frenkel 1991; Plackov and Sadus
1997), the associated uncertainties can be very high. In the following sections
we therefore first compare the present results with those obtained from different
published computer simulations, and then with the results obtained from other
EOSs.

(3a) Three-dimensional Lennard-Jones Fluid

We consider here three sets of data for the VLE properties of 3D LJ fluids
obtained from computer simulations. First, we examine the results obtained by
Panagiotopoulos et al . (1988), which have maximum uncertainties of 12.5% and
6.5% for ρv and ρl, and of 13% and 189% for the vapour and liquid pressures,
respectively. Uncertainties in the chemical potentials are not given, but the
maximum relative difference between the values of µv and µl is 2.4%. Second, we
note the results obtained by Lotfi et al . (1992) in the range T = 0.7–1.3, with
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maximum uncertainties of 5.6% for ρv, 0.5% for ρl (except at T = 1.3, where
the value is 3.5%), 4.6% for the pressure, and 0.7% for the chemical potential.
Third, we consider the most recent results of Plackov and Sadus (1997), which
are given with maximum uncertainties of 22.7%, 4.9%, and 100% for ρv, ρl and
the pressure, respectively. The maximum relative difference between the values of
µv and µl is 1.4%. In this case, the large uncertainties in the pressure may not
be important to the main aim of their work, which is to evaluate the repulsive
and attractive contributions to the VLE properties.

From the above analysis, we can conclude that the results of Lotfi et al . (1992)
are the most accurate for the VLE of 3D LJ fluids, and must therefore be taken
as a reference for comparison with other theoretical results.

Recently Duh and Henderson (1996) have reported VLE properties for 3D LJ
fluids obtained from a new integral equation theory in the range T = 0 ·6–1 ·25
(see Fig. 1). Although the shape of the VLE curve in Fig. 1 is practically
the same as that obtained by Lotfi et al . (1992), except for the liquid density
there are important numerical discrepancies. Thus deviations with respect to
the results of Lotfi et al . (1992) are less than 7% for ρl, from 0.3% to 35%
for ρv, and from 0.022% to 35.8% for the pressure. The best results of the
Duh–Henderson approximation are obtained for temperatures near 1.1.

Fig. 1. VLE curves (densities versus temperature) for 3D LJ fluids obtained
by Lotfi et al . (1992) and by using two theoretical equations (Duh and
Henderson 1996; Wendland 1997).

Theoretical results for ρv and ρl have also been obtained recently from a new
approach to the Born–Green–Yvon equation (Wendland 1997). These results are
practically the same as those obtained from an EOS based on the attractive
mean field approximation. However, as is shown in Fig. 1, there are major
differences with respect to the Lotfi et al . (1992) results, and especially for the
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liquid densities. The deviations are around 10% for ρv and around 20% for ρl.
No data for either pressure or the chemical potential have been given.

Taking into account that the aforementioned theoretical results lead to results
with high discrepancies with respect to those obtained in computer simulations,
and that these theoretical methods do not give analytical expressions for the
calculation of the thermodynamical properties, a more practical alternative seems
to be the use of semi-empirical or semi-theoretical equations of state. For 3D
LJ fluids, the VLE curves have been presented graphically by Johnson et al .
(1993) and by Kolafa and Nezbeda (1994), for which they used their own EOSs.
However, neither the method used nor the data are given in their publications.
Their diagrams show that the vapour and liquid densities, as well as the vapour
pressure, obtained from these EOSs are practically equal to those given by Lotfi
et al . (1992), except for temperatures near the critical point. As Kolafa and
Nezbeda (1994) use the Lotfi et al . (1992) data to fit the coefficients of their
equation, and as is noted by the authors themselves, the KN EOS reproduces
better the vapour density and pressure, especially for temperatures near the
critical point. However, no numerical deviations are given by the authors.

In the present study, we solved equation (11) numerically, and then obtained
the VLE coexistence properties (densities, pressure and chemical potential, in
reduced LJ units) for the 3D LJ model from the JZG (2), KN (3), and our CM
(5) EOSs in the range T = 0 ·7–1 ·3 (with intervals of 0 ·05 units). The results
are listed in Tables 2 to 4. By comparing the values in these tables with those
given by Lotfi et al . (1992), we found that the average of the absolute deviations
(AAD) in the calculation of ρv is 3.0% for the JZG EOS, 1.7% for the KN, and
2.7% when our CM EOS is used. As can be seen in Fig. 2, the KN EOS gives
results for the vapour density within the uncertainties of the Lotfi et al . (1992)
results, except for T = 0.85, whereas the JZG and our CM EOSs systematically
give values greater than the Lotfi et al . results.

For the liquid densities the corresponding AADs are 0 ·44%, 0 ·44% and 0 ·46%,
respectively. However, the results for this ρl given by Lotfi et al . (1992) have
only small uncertainties, so that these results are more difficult to reproduce
when EOSs are used. As can be seen in Fig. 3, there are a good many results

Table 2. VLE properties for 3D LJ fluids obtained from the Johnson et al . (1993) EOS (2)

T ρv ρl P µ

0 ·70 0 ·00201 0 ·84324 0 ·00138 −3 ·67369
0 ·75 0 ·00366 0 ·82169 0 ·00266 −3 ·50516
0 ·80 0 ·00616 0 ·79887 0 ·00469 −3 ·34809
0 ·85 0 ·00974 0 ·77551 0 ·00772 −3 ·20258
0 ·90 0 ·01466 0 ·75166 0 ·01197 −3 ·06756
0 ·95 0 ·02121 0 ·72703 0 ·01777 −2 ·94182
1 ·00 0 ·02981 0 ·70117 0 ·02519 −2 ·82433
1 ·05 0 ·04096 0 ·67345 0 ·03469 −2 ·71424
1 ·10 0 ·05543 0 ·64299 0 ·04647 −2 ·61089
1 ·15 0 ·07449 0 ·60839 0 ·06083 −2 ·51376
1 ·20 0 ·10051 0 ·56692 0 ·07808 −2 ·42247
1 ·25 0 ·13941 0 ·51182 0 ·09859 −2 ·33677
1 ·30 0 ·21977 0 ·41019 0 ·12290 −2 ·25684
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Table 3. VLE properties for 3D LJ fluids obtained from the Kolafa–Nezbeda
(1994) EOS (3)

T ρv ρl P µ

0 ·70 0 ·00199 0 ·84277 0 ·00136 −3 ·68237
0 ·75 0 ·00361 0 ·82186 0 ·00262 −3 ·51487
0 ·80 0 ·00608 0 ·80012 0 ·00463 −3 ·35914
0 ·85 0 ·00960 0 ·77740 0 ·00767 −3 ·21428
0 ·90 0 ·01446 0 ·75352 0 ·01181 −3 ·07943
0 ·95 0 ·02095 0 ·72824 0 ·01748 −2 ·95380
1 ·00 0 ·02946 0 ·70127 0 ·02487 −2 ·83667
1 ·05 0 ·04049 0 ·67218 0 ·03425 −2 ·72738
1 ·10 0 ·05477 0 ·64033 0 ·04586 −2 ·62529
1 ·15 0 ·07335 0 ·60475 0 ·05995 −2 ·52982
1 ·20 0 ·09805 0 ·56375 0 ·07678 −2 ·44042
1 ·25 0 ·13241 0 ·51396 0 ·09662 −2 ·35658
1 ·30 0 ·18609 0 ·44593 0 ·11972 −2 ·27780

Table 4. VLE properties for 3D LJ fluids obtained from the CM EOS (5) (this
work)

T ρv ρl P µ

0 ·70 0 ·00199 0 ·84404 0 ·00137 −3 ·67822
0 ·75 0 ·00368 0 ·82089 0 ·00267 −3 ·50118
0 ·80 0 ·00617 0 ·79879 0 ·00469 −3 ·34752
0 ·85 0 ·00971 0 ·77617 0 ·00769 −3 ·20515
0 ·90 0 ·01461 0 ·75226 0 ·01194 −3 ·06991
0 ·95 0 ·02121 0 ·72694 0 ·01770 −2 ·94179
1 ·00 0 ·02989 0 ·70036 0 ·02525 −2 ·82220
1 ·05 0 ·04107 0 ·67259 0 ·03477 −2 ·71205
1 ·10 0 ·05544 0 ·64305 0 ·04648 −2 ·61074
1 ·15 0 ·07428 0 ·60974 0 ·06069 −2 ·51588
1 ·20 0 ·10038 0 ·56819 0 ·07796 −2 ·42423
1 ·25 0 ·14007 0 ·50944 0 ·09883 −2 ·33490
1 ·30 0 ·21441 0 ·41379 0 ·12246 −2 ·25851

obtained with EOSs that lie outside these uncertainties. For T = 1 ·3, which is
not shown in Fig. 3, only the CM expression gives a deviation less than the
uncertainty of 3 ·5% given by Lotfi et al . (1992).

In the case of the vapour pressure, the AADs are 1 ·8%, 1 ·1% and 1 ·7% for
the JZG, KN and CM EOSs, respectively. As can be seen in Fig. 4, the KN EOS
gives values that are always within the uncertainties given by Lotfi et al . (1992).
Here the maximum deviations are found at T = 0 ·7, i.e. at the temperature of
the triple point.

From the above results, we can conclude that there is good agreement between
the values for the VLE properties of 3D LJ fluids obtained from EOSs and
those obtained from computer simulations. The maximum deviations are found
near the critical point (T = 1 ·3) for the vapour and liquid densities, and near
the triple point (T = 0 ·7) for the vapour pressure. The semi-theoretical EOSs,
including the one proposed here, give results a little better than those obtained
from semi-empirical EOSs. In particular, the KN EOS gives excellent results
except for the liquid density at T = 1 ·3. Our CM EOS, which is only cubic
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Fig. 2. Deviations between values for the vapour density of 3D LJ fluids obtained from EOSs
(points) and those given by Lotfi et al . (1992), together with the uncertainties in the latter
(curves).

Fig. 3. Deviations between values for the liquid density of 3D LJ fluids obtained from EOSs
(points) and those given by Lotfi et al . (1992), together with the uncertainties in the latter
(curves).
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Fig. 4. Deviations between values for the vapour pressure of
3D LJ fluids obtained from EOSs (points) and those given by
Lotfi et al . (1992), together with the uncertainties in the latter
(curves).

Fig. 5. VLE curves (densities versus temperature) for 2D LJ fluids obtained
from computer simulations [points: SPDP, Singh et al . (1990); SF, Smit
and Frenkel (1991); JG, Jiang and Gubbins (1995)], from the RO EOS (2),
and from the CMO EOS (5).

in density, gives similar results to those obtained with the JZG EOS (which is
analytically more complex and has no theoretical basis). In particular, excellent
results are obtained with the CM expression for temperatures near 0 ·85 (see
Figs 2–4) and in the case of the liquid density for T = 1 ·3.
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If the uncertainties in the results given by Lotfi et al . (1992) are taken
into account, then the KN EOS is the only one that gives adequate results
(within these uncertainties) for the vapour density and pressure over the full
temperature range. Although the liquid density is the property that is most
accurately determined, the deviations obtained by using EOSs are greater than
the uncertainties in the computer simulations.

(3b) Two-dimensional Lennard-Jones Fluids

We examine here three sets of data for the VLE properties of 2D LJ fluids
obtained from computer simulations. First, we consider that given by Singh
et al . (1990), in the range T = 0 ·415–0 ·468, with uncertainties between 2 ·9%
and 6% (at T = 0 ·468) for ρv and between 0.4% and 10% (at T = 0.468) for
ρl. No data for the pressure or the chemical potential were reported by the
authors. Second, Smit and Frenkel (1991) gave results in the range T = 0.45 to
0.515, with uncertainties of 7% to 40% and 1.2% to 6.2% for the vapour and
liquid densities, respectively, and with maximum uncertainties of 31%, 300%,
9% and 28% in the determination of Pv, Pl, µv and µl, respectively. Third,
we consider the most recent computer simulation of Jiang and Gubbins (1995),
where uncertainties are not given and only ρv and ρl data are published. The
VLE curves obtained in these three computer simulations are shown in Fig. 5.

Smit and Frenkel (1991) assert that their VLE curve is in good agreement
with those presented by Singh et al . (1990). However, we can see in Fig. 5 that
their results can be compared only for two temperatures (T = 0.45 and 0.46).
We find that their ρv data are in agreement (within their uncertainties), whereas
great differences are found in the case of the liquid densities.

When the Smit and Frenkel (1991) results are compared with those of Jiang
and Gubbins (1995) (see Fig. 5), we find that the vapour densities coincide,
within the great uncertainties of the former, only at T = 0 ·46. With respect to
the liquid densities, where the uncertainties are lower, the results are in good
agreement only in the range T = 0 ·48–0 ·495, with great deviations occurring at
lower or higher temperatures.

Finally, the data given by Singh et al . (1990) can be compared with the Jiang
and Gubbins (1995) data only for T = 0.46, where excellent agreement is found
(see Fig. 5).

In general, all the results for ρv obtained in the aforementioned computer
simulations can be considered as equal in the range 0.41 ≤ T ≤ 0 ·46. For
T > 0 ·46, and especially for T near to or greater than 0.5, the results are very
different. For the liquid density, the data given by Singh et al . (1990) must be
taken as good only for 0 ·42 ≤ T ≤ 0 ·46, whereas for 0 ·46 ≤ T ≤ 0 ·49 the values
given by Smit and Frenkel (1991) or by Jiang and Gubbins (1995) are adequate.
No conclusions can be drawn for T > 0 ·49. Finally, for the vapour pressure, the
lack of results in the case of the Jiang and Gubbins (1995) computer simulation
and the great uncertainties reported by Smit and Frenkel (1991) do not permit
these studies to be taken as a clear reference for comparison with theoretical
results.

No calculations of VLE properties for 2D LJ fluids from EOSs have been
reported until now. For instance, this calculation was not considered in the work
of Reddy and O’Shea (1986). We therefore obtained these properties by solving
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equation (11) and using the RO expression (2). Results are given in Table 5
and Fig. 5. As can be seen, the RO VLE curve is in good agreement with
the computer simulation results of Smit and Frenkel (1991), while being only in
minor agreement with the results of Jiang and Gubbins (1995) for T > 0 ·45.

Table 5. VLE properties for 2D LJ fluids obtained from the semi-empirical
RO EOS (2)

T ρv ρl P µ

0 ·38 0 ·00854 0 ·77625 0 ·00297 −1 ·49547
0 ·39 0 ·01034 0 ·77350 0 ·00363 −1 ·47016
0 ·40 0 ·01244 0 ·76892 0 ·00442 −1 ·44455
0 ·41 0 ·01490 0 ·76276 0 ·00533 −1 ·41893
0 ·42 0 ·01776 0 ·75532 0 ·00639 −1 ·39352
0 ·43 0 ·02109 0 ·74685 0 ·00761 −1 ·36850
0 ·44 0 ·02494 0 ·73755 0 ·00899 −1 ·34397
0 ·45 0 ·02940 0 ·72752 0 ·01055 −1 ·32000
0 ·46 0 ·03460 0 ·71677 0 ·01232 −1 ·29661
0 ·47 0 ·04070 0 ·70521 0 ·01430 −1 ·27380
0 ·48 0 ·04794 0 ·69262 0 ·01652 −1 ·25156
0 ·49 0 ·05672 0 ·67859 0 ·01902 −1 ·22985
0 ·50 0 ·06772 0 ·66236 0 ·02181 −1 ·20865
0 ·51 0 ·08241 0 ·64220 0 ·02494 −1 ·18793
0 ·52 0 ·10504 0 ·61268 0 ·02853 −1 ·16768
0 ·53 0 ·23368 0 ·48612 0 ·03285 −1 ·14805

Table 6. VLE properties for 2D LJ fluids obtained from the CMO EOS (5)

T ρv ρl P µ

0 ·38 0 ·00681 0 ·79445 0 ·00250 −1 ·53955
0 ·39 0 ·00829 0 ·78669 0 ·00311 −1 ·50789
0 ·40 0 ·00997 0 ·77884 0 ·00381 −1 ·47734
0 ·41 0 ·01189 0 ·77088 0 ·00462 −1 ·44784
0 ·42 0 ·01405 0 ·76282 0 ·00555 −1 ·41935
0 ·43 0 ·01646 0 ·75464 0 ·00659 −1 ·39183
0 ·44 0 ·01915 0 ·74634 0 ·00777 −1 ·36523
0 ·45 0 ·02212 0 ·73793 0 ·00909 −1 ·33951
0 ·46 0 ·02541 0 ·72938 0 ·01055 −1 ·31464
0 ·47 0 ·02903 0 ·72069 0 ·01216 −1 ·29057
0 ·48 0 ·03299 0 ·71187 0 ·01393 −1 ·26728
0 ·49 0 ·03734 0 ·70290 0 ·01586 −1 ·24472
0 ·50 0 ·04209 0 ·69377 0 ·01796 −1 ·22287
0 ·51 0 ·04727 0 ·68447 0 ·02023 −1 ·20168
0 ·52 0 ·05293 0 ·67500 0 ·02268 −1 ·18113
0 ·53 0 ·05911 0 ·66532 0 ·02532 −1 ·16118

Results were also obtained by using our CMO EOS (Cuadros et al . 1997). As
is shown in Table 6 and Fig. 5, this EOS seems to be valid for the calculation
of VLE densities only for low temperatures (T ≤ 0.46). By comparing the
results in Tables 5 and 6, one sees there is a clear disagreement between the
vapour pressures obtained from the RO and the CM equations, whereas a better
agreement is found for the chemical potential values.
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4. Conclusions

Vapour−liquid equilibrium properties for both 3D and 2D LJ fluids have
been obtained from EOSs proposed by the authors in this (3D) and a previous
work (2D). These semi-theoretical EOSs are based on the use of WCA theory
expressions together with a fit to computer simulation results. Results were
compared with those obtained from computer simulations or from other (more
complex) semi-empirical or semi-theoretical equations of state.

For 3D LJ fluids we took the results obtained by Lotfi et al . (1992) as the
best reference for comparison with theoretical results. We also considered the
results reported recently by Duh and Henderson (1996), who use a new integral
equation theory. We found major numerical discrepancies with respect to the
results of Lotfi et al . (1992), except in the case of the liquid density. Also,
the most recent results given by Wendland (1997) using a new approach to the
Born–Green–Yvon equation are in great disagreement with their previous ones
(Wendland 1997).

We also solved numerically the equations that give the coexistence properties
(densities, pressures and chemical potentials) for the 3D LJ model by using the
semi-empirical JZG EOS, the semi-theoretical KN EOS and a new cubic-in-density
EOS proposed in the present work. Good agreement was found with the results
obtained by Lotfi et al . (1992). The maximum deviations are found near the
critical or the triple point. The liquid density is the property that is most
accurately determined. However, the deviations obtained by using EOSs are
greater than the uncertainties in the computer simulations. In particular, the
KN EOS gives excellent results [within the uncertainties of the Lotfi et al . (1992)
results] for the vapour density and vapour pressure. Our EOS, which is only cubic
in density and thus simpler, gives similar results to those obtained with the others.

For 2D LJ fluids we compared and contrasted the results given in three different
computer simulations. Values given for the vapour and liquid densities are similar
only for low temperatures (T ≤ 0.46), being very different near the critical point.
No adequate data for the vapour pressure have been reported in these computer
simulations so that no adequate comparison with theoretical results is possible.

We obtained the VLE properties for 2D LJ fluids from the semi-empirical RO
EOS and a simple cubic-in-density EOS proposed by some of us in a previous
work. The two EOSs give similar results for the coexistence densities at low
temperatures, these results being in good agreement with those obtained through
computer simulations. For high temperatures, i.e. for temperatures near the
critical point, the RO EOS, which is analytically more complex, seems to present
better behaviour. Results for the vapour pressure obtained from the RO and our
EOS are in marked disagreement.

In conclusion, we would like to emphasise that the proposed models, being
simpler and having a clearer separation of the contributions of the repulsive and
attractive forces than other analytical expressions, allow us to determine the VLE
properties of both 3D and 2D LJ fluids, giving results close to those obtained
from computer simulation data.
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