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Abstract

A scheme is proposed for the reconstruction of two-mode entangled states in cavity QED
and ion traps. For a two-mode field we show that the Wigner function can be obtained by
measuring the probability of a two-level atom being in ground states after resonant interaction
with two classical fields and dispersive interaction with the two-mode cavity field displaced
by resonant sources. For the two-dimensional motion of a trapped ion the Wigner function is
obtained by measuring the probability of the ion in its ground electronic state after displacing
the ion motion and then resonantly exciting the ion.

1. Introduction

In recent years there has been much interest in the reconstruction of quantum
states. Using the homodyne detection and tomographic reconstruction methods,
the density matrix of a single-mode running field has been experimentally measured
(Schiller et al. 1996). Recently, an experimental reconstruction of the motional
quantum state of a trapped ion has also been reported (Leibfried et al. 1996).
However, the scheme involves a complex data analysis.

A scheme for the direct observation of the Wigner characteristic function of
a cavity field was proposed by Wilkens and Meystre (1991). In a recent paper,
Kim et al. (1998) have made a similar proposal applicable to both the cavity
field and ion motion. Bardroff et al. (1999) have proposed a simple and rapid
scheme to measure the Wigner characteristic function of the motional state of a
trapped ion. Lutterbach and Davidovich (1997) have presented a scheme for direct
measurement of the Wigner function, again in both cavity QED and ion traps.
For a cavity field, the Wigner function is obtained by detecting the probabilities
of a two-level atom being populated in its excited and ground states after its
resonant interactions with two classical fields and dispersive interaction with the
cavity field displaced by a microwave source. For a trapped ion, the Wigner
function is measured by detecting the probabilities of the ion being populated in
its ground and excited electronic states after interaction with two displacement
beams and then two carrier beams.

Most of the previous state reconstruction schemes have concentrated on the
single-mode case. Raymer et al. (1996) proposed a scheme for the reconstruction
of a two-mode running field by using balanced homodyne detection. In a more
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recent paper, Kim and Agarwal (1999) have suggested a scheme to reconstruct a
two-mode entangled cavity field states via the interaction of a V-type three-level
atom with the field displaced by resonant classical sources. More recently still,
Solano et al. (1999) have proposed a scheme for the measurement of the Wigner
function of two trapped ions with centre-of-mass and relative motion modes
along their alignment direction. In the present paper we propose a scheme for
the measurement of the Wigner function for a two-mode cavity field and the
two-dimensional (2D) motion of a trapped ion.

The paper is organised as follows. In Section 2 we show how we can measure
the Wigner function for a two-mode field in a cavity and two spatially separated
single-mode cavities respectively. We then discuss the reconstruction of an
entangled state for the 2D motion of a trapped ion in Section 3. Our conclusions
are presented in Section 4.

2. Two-mode Wigner Function in Cavity QED

We first consider a cavity filled with two modes. We assume the initial density
operator of the cavity field is ρ̂f . Two microwave sources are connected to the
cavity, inducing displacements for the respective cavity modes. This leads to

ρ̂f (α, β) = D̂a(α)D̂b(β)ρ̂f D̂+
b (β)D̂+

a (α) , (1)

where D̂(α) and D̂(β) are the displacement operators

D̂a(α) = eαâ
+−α∗â , (2)

D̂b(β) = eβb̂
+−β∗b̂ , (3)

and where â+ (b̂+) and â (b̂) are the creation and annihilation operators for the
cavity mode a (b). We then send a two-level atom through the cavity. The
atom is initially prepared in the superposition of its excited state |e〉 and ground
states |g〉,

|φ〉 =
√1

2 (|e〉+ |g〉) , (4)

by a classical field. We assume that the atomic transition frequency is somewhat
detuned from the frequency of mode a and thus the atom dispersively interacts
with mode a. We assume that the difference between the two mode frequencies is
large enough so that the atom is far off-resonant with mode b and the coupling
between the atom with mode b can be neglected. The effective Hamiltonian for
such a system is given by (Holland et al. 1991)

Ĥe = 2
g2

1

∆1

â+âŜz , (5)

where Ŝz is the atomic inversion operator, g1 is the coupling strength between
the atom and mode a, and ∆1 is the detuning between the atomic transition
frequency ω0 and the frequency ωa of mode a, i.e. ∆1 = ω0 − ωa. After an
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interaction time τ1 the density operator of the system is

1
2 (e−i(g

2
1/∆1)τ1â

+â|e〉+ ei(g
2
1/∆1)τ1â

+â|g〉)ρ̂f (α, β)

× (〈e|ei(g2
1/∆1)τ1â

+â + 〈g|e−i(g2
1/∆1)τ1

∧
a

+
â) .

(6)

We then tune the atomic transition frequency so that it is somewhat detuned
from the frequency of mode b, and far off-resonant with the frequency of mode
a. This can be achieved by the Stark effect induced by a static field applied
between the cavity mirrors (Hagley et al. 1997). After a dispersive interaction
time τ2 of the atom with mode b, the density operator for the whole system is

1
2 (e−i(g

2
1/∆1)τ1â

+â−i(g2
2/∆2)τ2b̂

+b̂|e〉+ ei(g
2
1/∆1)τ1â

+â+i(g2
2/∆2)τ2b̂

+b̂|g〉)ρ̂f (α, β)

× (〈e|ei(g2
1/∆1)τ1â

+â+i(g2
2/∆2)τ2b̂

+b̂ + 〈g|e−i(g2
1/∆1)τ1â

+â−i(g2
2/∆2)τ2b̂

+b̂),
(7)

where g2 and ∆2 are the coupling strength and detuning between the atom and
mode b. We choose the atomic velocity and the moment when we switch on the
Stark field carefully so that

g2
1

∆1

τ1 =
g2

2

∆2

τ2 =
π

2
.

Then we have

1
2 [e−iπ2 (â+â+b̂+b̂)|e〉+ ei

π
2 (â+â+b̂+b̂)|g〉]ρ̂f (α, β)

× [〈e|eiπ2 (â+â+b̂+b̂) + 〈g|e−iπ2 (â+â+b̂+b̂)] . (8)

We then let the atom cross another resonant classical field, undergoing the
transition

|e〉 −→ √ 1
2 (|e〉+ |g〉) , (9)

|g〉 −→ √1
2 (|g〉 − |e〉) . (10)

Then we have

1
4{[e−i

π
2 (â+â+b̂+b̂) − eiπ2 (â+â+b̂+b̂)]|e〉+ [e−iπ2 (â+â+b̂+b̂) + ei

π
2 (â+â+b̂+b̂)]|g〉}ρ̂f (α, β)

× {〈e|[eiπ2 (â+â+b̂+b̂) − e−iπ2 (â+â+b̂+b̂)] + 〈g|[eiπ2 (â+â+b̂+b̂) + e−i
π
2 (â+â+b̂+b̂)]} .

(11)

We now measure the state of the atom. The probability of finding the atom in
the state |g〉 is

Pg(α, β) = 1
2 + 1

2Tr[eiπ(â+â+b̂+b̂)ρ̂f (α, β)] . (12)

The Wigner function for a two-mode field is expressed as (Solano et al. 1999)

W (α, β) = 4
π2 Tr[eiπ(â+â+b̂+b̂)D̂a(−α)D̂b(−β)ρ̂f D̂+

b (−β)D̂+
a (−α)]

= 4
π2 Tr[eiπ(â+â+b̂+b̂)ρ̂f (−α,−β)] .

(13)
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Thus we obtain

W (−α,−β) =
8
π2 [Pg(α, β)− 1

2 ] . (14)

Therefore the measurement of the probability at the point (α, β) directly yields
the two-mode Wigner function at the point (−α,−β).

We note the method can also be used to reconstruct the entangled state for two
spatially separated single-mode cavities. Again, we first displace the two cavity
modes by α and β. Then we send a two-level atom, prepared in the superposition
state of equation (4), through the cavities. We again assume the atom is initially
somewhat detuned from the first cavity mode and thus a dispersive interaction
occurs. During the passage through the second cavity the atom is tuned to
dispersively interact with the cavity mode. When the atom exits the second
cavity the density operator of the whole system is again given by equation (7).
We carefully choose the atomic velocity so that (g2

1/∆1)τ1 = π/2. Furthermore,
we adjust the strength of the Stark field to obtain an appropriate detuning ∆2

and thus (g2
2/∆2)τ2 = π/2 (for the case where the two cavities are identical this

procedure is not needed). After the atom crosses another resonant classical field,
undergoing a π/2 pulse, the density operator of the whole system is again given
by equation (11). Thus the probability of finding the atom in the ground state
is again directly related to the two-mode Wigner function by equation (14).

We now the discuss the effect of a detection efficiency of less than 1. Assume
that an atom is not detected after interacting with the cavity field. Then the
cavity field is described by the reduced density operator

1
2e
−iπ2 (â+â+b̂+b̂)ρ̂f (α, β)eiπ2 (â+â+b̂+b̂) + 1

2e
iπ2 (â+â+b̂+b̂)ρ̂f (α, β)e−iπ2 (â+â+b̂+b̂) . (15)

After the interaction of the next atom with the cavity field the system combined
by the field and this atom is

1
8{[e

−iπ2 (â+â+b̂+b̂) − eiπ2 (â+â+b̂+b̂)]|e〉

+[e−iπ2 (â+â+b̂+b̂) + ei
π
2 (â+â+b̂+b̂)]|g〉}e−iπ2 (â+â+b̂+b̂)

× ρ̂f (α, β)eiπ2 (â+â+b̂+b̂){〈e|[eiπ2 (â+â+b̂+b̂) − e−iπ2 (â+â+b̂+b̂)]

+〈g|[eiπ2 (â+â+b̂+b̂) + e−i
π
2 (â+â+b̂+b̂)]}

+ 1
8{[e

−iπ2 (â+â+b̂+b̂) − eiπ2 (â+â+b̂+b̂)]|e〉

+[e−iπ2 (â+â+b̂+b̂) + ei
π
2 (â+â+b̂+b̂)]|g〉}eiπ2 (â+â+b̂+b̂)

× ρ̂f (α, β)e−iπ2 (â+â+b̂+b̂){〈e|[eiπ2 (â+â+b̂+b̂) − e−iπ2 (â+â+b̂+b̂)]

+〈g|[eiπ2 (â+â+b̂+b̂) + e−i
π
2 (â+â+b̂+b̂)]} . (16)
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The probability of detecting this atom in state |g〉 is again given by equation
(12). Thus the scheme is insensitive to the detection effect.

3. Two-mode Wigner Function in Ion Traps

We now show how we can measure the Wigner function for the 2D motion of a
trapped ion. We first consider the case where a two-level ion is trapped in a 2D
isotropic harmonic potential. The ion is driven by two laser beams, tuned to the
ion transition frequency, propagating along the X and Y directions respectively.
The Hamiltonian for such a system is

Ĥ = ν(â+â+ b̂+b̂) + ω0Ŝz + [λE+(x̂, ŷ, t)Ŝ+ + h.c.] , (17)

where â+ (b̂+) and â (b̂) are the creation and annihilation operators for the
vibrational mode along the X (Y ) axis, Ŝ+, Ŝ−, Ŝz are the raising, lowering, and
inversion operators for the two-level ion, ω0 and λ are the transition frequency
and coupling constant characterising the transition for the two-level ion, and ν
is the vibrational frequency. In equation (17) E+(x̂, ŷ, t) is the positive part of
the classical driving fields:

E+(x̂, ŷ, t) = Exe
−i(ω0t−k0x̂+φx) + Eye

−i(ω0t−k0ŷ+φy) , (18)

where El and φl (l = x, y) are the amplitudes and phases of the driving fields,
respectively, and k0 is the wave-vector. The position operators x̂ and ŷ can be
expressed by x̂ =

√
1/(2νM)(â+ â+) and ŷ =

√
1/(2νM)(b̂+ b̂+), with M being

the mass of the trapped ion.
In the resolved sideband limit the vibrational frequency ν is much larger than

Rabi frequencies. Then the interactions of the ion with lasers can be treated
using the nonlinear Jaynes–Cummings model (Vogel and de Matos Filho 1995).
In this case the Hamiltonian for such a system, in the interaction picture, is
given by

Ĥi = e−η
2/2

∞∑
j=0

(iη)2j

(j!)2

[
Ωxe−iφx â+j âj + Ωye−iφy b̂+j b̂j

]
Ŝ+ + h.c. , (19)

where Ωl = λEl are the Rabi frequencies of the respective lasers, and the
Lamb–Dicke parameter η is defined by η = k0/

√
2νM .

We consider the behaviour of the ion in the Lamb–Dicke regime, η ¿ 1. In
this limit we can expand the Hamiltonian Ĥi of equation (19) up to second order
in η. Furthermore, small Lamb–Dicke parameters lead to e−η

2/2 ' 1. Then the
Hamiltonian can be simplified to

Ĥi = [Ωxe−iφx(1− η2â+â) + Ωye−iφy (1− η2b̂+b̂)]Ŝ+ + h.c. (20)
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We choose the strengths and amplitudes of the laser beams appropriately so that
Ωx = Ωy and φx = π, φy = 0. Then we obtain

Hi = g(â+â− b̂+b̂)Ŝ+ + h.c. , (21)

where g = Ωxη2 = Ωyη2.
We assume that the initial density operator of the 2D motion is ρ̂m. We

first displace the motional modes a and b by α and β by application of two
displacement beams to each vibrational mode (Monroe et al. 1996), leading to

ρ̂m(α, β) = D̂a(α)D̂b(β)ρ̂mD̂+
b (β)D̂+

a (α) . (22)

The ion is initially in the ground electronic state |g〉. Then after an interaction
time τ of the ion with the lasers the density operator for the whole system is

[|g〉 cos(Ôτ)− i|e〉 sin(Ôτ)]ρ̂m(α, β)[cos(Ôτ)〈g|+ i sin(Ôτ)〈e|] , (23)

where Ô is the Hermitian operator

Ô = g(a+a− b+b) . (24)

We now detect the internal state of the ion. The probability of measuring the
ion in the ground state |g〉 is

Pg(α, β) = 1
2 + 1

2Tr{cos(2Ôτ)ρ̂m(α, β)} . (25)

We choose the Rabi frequency or duration of the lasers appropriately so that
gτ = π/2. Then the probability of the ion in its ground electronic state is also
related to the Wigner function of the 2D motion in the form of equation (14).

In order to detect the electronic state, we employ an electronic V scheme (de
Matos Filho and Vogel 1996; Poyatos et al. 1996), where the upper levels |e〉 and
|r〉 couple to the common ground level |g〉. The transition |e〉 → |g〉 is dipole
forbidden, while |r〉 → |g〉 is dipole allowed. After the interaction of the ion with
the above-mentioned two carrier beams, a laser on resonance with the transition
|r〉 → |g〉 is used to detect the fluorescence. The presence of fluorescence is
correlated with the ion being in the electronic state |g〉, while the absence of
fluorescence is correlated with the ion in the state |e〉.

We now consider the case where the ion is trapped in an anisotropic trap
with vibrational frequencies νx and νy along the X and Y axes. In this case
the procedure can be simplified. After the displacement of the motional modes
we drive the ion with a laser tuned to the carrier, having a wave vector kx
along the X axis and a wave vector ky along the Y axis. We assume that νx,
νy, and |νx − νy| are much larger than other characteristic frequencies of the
problem. Then in the Lamb–Dicke limit, the Hamiltonian for such a system, in
the interaction picture, is

Ĥ ′i = [Ωe−iφ(1− η2
xâ

+â− η2
y b̂

+b̂)]Ŝ+ + h.c. , (26)
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where Ω and φ are the Rabi frequency and phase of the laser, and the Lamb–Dicke
parameters ηx and ηy are defined by ηx = kx/

√
2νxM and ηy = ky/

√
2νyM . We

choose the propagating direction of the laser appropriately so that ηx = ηy = η.
The initial electronic state is again assumed to be |g〉. Then after an interaction
time τ the density operator for the whole system is

[|g〉 cos (Ô′τ)− ie−iφ|e〉 sin(Ô′τ)]ρ̂m(α, β)

× [cos(Ô′τ)〈g|+ i sin(Ô′τ)〈e|eiφ] , (27)

where Ô′ is defined by

Ô′ = Ω(1− η2â+â− η2b̂+b̂) . (28)

In this case the probability of finding the ion in the ground electronic state |g〉 is

Pg(α, β) = 1
2 + 1

2Tr{cos(2Ô′τ)ρ̂m(α, β)} . (29)

We choose the Rabi frequency or duration of the laser appropriately so that
Ωη2τ = π/2. Then we have

W (−α,−β) =
8

π2 cos(π/η2)
[Pg(α, β)− 1

2 ] . (30)

In order for the scheme to be valid the condition η2 6= 1/(m+ 1
2 ) should be

satisfied, where m is an integer. If a trap happens to have such vibrational
frequencies such that η2 = 1/(m+ 1

2 ), then we use a pair of lasers to excite the
ion in a Raman manner (Meekhof et al. 1996). In this case we can adjust the
Lamb–Dicke parameter by setting the directions of the wave vectors of the two
lasers appropriately.

4. Conclusion

In summary, we have proposed a scheme for the direct measurement of the
Wigner function for an entangled state of a two-mode cavity field and the 2D
motion of a trapped ion. In comparison with the scheme of Kim and Agarwal
(1999), the present scheme has the following advantages. First, the previous
scheme employs V-configuration three-level atoms with two excited states |a〉 and
|b〉 coupled to the common ground state |g〉 and requires the transition |a〉 → |g〉
to be resonant with mode a and the transition |b〉 → |g〉 to be resonant with
mode b, which might be problematic experimentally. This drawback is avoided
in the present scheme. Second, the present scheme is insensitive to the detection
efficiency. Third, in order to reconstruct the entangled state for two separated
single-mode cavities, the previous scheme additionally requires the measurement
of two probabilities of the atom being in the ground state as the atom interacts
only with the first or second cavities, respectively. This is unnecessary in the
present scheme. Finally, the present scheme is easily generalised to reconstruct
the 2D motional state of a trapped ion.



436 S.-B. Zheng

Acknowledgments

This work was supported by the Science Research Foundation of the Education
Committee of Fujian Province and with funds from Fuzhou University.

References

Bardroff, P. J., Fontenelle, M. T., and Stenholm, S. (1999). Phys. Rev. A 59, R590.
de Matos Filho, R. L., and Vogel, W. (1996). Phys. Rev. Lett. 76, 4520.
Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J. M., and Haroche, S.

(1997). Phys. Rev. Lett. 79, 1.
Holland, M. J., Walls, D. F., and Zoller, P. (1991). Phys. Rev. Lett. 67, 1716.
Kim, M. S., and Agarwal, G. S. (1999). Phys. Rev. A 59, 3044.
Kim, M. S., Antesberger, G., Bodendorf, C. T., and Walther, H. (1998). Phys. Rev. A 58, R65.
Leibfried, D., Meekhof, D. M., King, B. E., Monroe, C., Itano, W. M., and Wineland, D. J.

(1996). Phys. Rev. Lett. 77, 4281.
Lutterbach, L. G., and Davidovich, L. (1997). Phys. Rev. Lett. 78, 2547.
Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M., and Wineland, D. J. (1996). Phys.

Rev. Lett. 76, 1796.
Monroe, C., Meekhof, D. M., King, B. E., and Wineland, D. J. (1996). Science 272, 1131.
Poyatos, J. F., Cirac, J. I., Blatt, R., and Zoller, P. (1996). Phys. Rev. A 54, 1532.
Raymer, M. G., McAlister, D. F., and Leonhardt, U. (1996). Phys. Rev. A 54, 2379.
Schiller, S., Breitenbach, G., Pereira, S. F., Müller, T., and Mlynek, J. (1996). Phys. Rev.

Lett. 77, 2933.
Schleich, W. P., and Raymer, M. G. (1997). J. Mod. Opt. 44, 11.
Solano, E., de Matos Filho, R. L., and Zagury, N. (1999). Phys. Rev. A 59, R2539.
Vogel, W., and de Matos Filho, R. L. (1995). Phys. Rev. A 52, 4214.
Wilkens, M., and Meystre, P. (1991). Phys. Rev. A 43, 3832.

Manuscript received 4 January, accepted 14 March 2000


