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Summary 
Fenyes (1952) has attempted to base quantum mechanics on a theory of Markoff 

processes in the configuration space of any system considered. 
It is shown here that for certain systems the allowable stationary-state solutions 

of the basic equations of this theory are more numerous than the stationary states 
predicted by quantum mechanics through the Schrodinger equation, and that it is 
not possible to identify the probability amplitude defined in this theory with the 
Schrodinger wave function. It is pointed out that the " total stochastic velocity" of 
a particle in this theory cannot equal the linear momentum divided by the mass, that 
Fenyes' uncertainty relation is not equivalent to the Heisenberg relation, and that the 
total-stochastic-velocity operator has properties different from those of the quantum­
mechanical momentum operator. It is shown that Fenyes' proof that the addition 
of further parameters to a set of statistical parameters cannot lead to a set affording 
a causal description of the motion of a system is unsatisfactory, but that this con· 
elusion may reasonably be drawn from his theory, by making a consistent auxiliary 
assumption. 

1. INTRODUCTION 

Fenyes (1952) has attempted to describe the motion of a general microscopic 
system as a Markoff process in a configuration space, which is implied to be 
that of the Oartesian position coordinates of the particles constituting the 
system. Then quantum mechanics becomes a statistical theory. Only the 
briefest outline can be given here of Fenyes' lengthy exposition. 

The theory is based upon an analytical treatment of stochastic processes· 
due to Kolmogoroff (1931, 1933). Fenyes begins with a set of parameters 
(position coordinates) and probability and transition probability densities 
wand v which are functions of these parameters and the time. He takes these 
densities to be appropriately normalized, and interrelates them through an 
integral equation which defines a Markoff process. An integral relation then 
follows between the transition probability densities at three distinct instants of 
time. Fenyes assumes the existence of certain limits in order to derive two 
differential equations from the original integral relations. One equation leads 
to a continuity or conservation equation, the Fokker equation. Fenyes defines 
a "total stochastic velocity" and corresponding operators, and deduces an 
" uncertainty relation". He then further restricts the class of systems con­
sidered and defines a probability amplitude~. When expressed in terms of ~, 
the Fokker equation is formally identical with the equation of " conservation of 

* Physics Department, Birkbeck College, University of London; present .address: Long 
Range Weapons Establishment, Salisbury, S.A. 



ON A THEORY DUE TO I. FENYES 15 

probability" in quantum mechanics (see e.g. Tolman (1938)). Fenyes modifies 
his original total stochastic velocity definition to define "the velocity corres­
ponding to ~ ", which he claims is the same as the quantum-mechanical velocity. 

After a consideration of formal analogies and further discussion, Fenyes 
decides that the mathematical apparatus of quantum mechanics is identical 
with that of his treatment of Markoff processes, and that quantum-mechanical 
processes are special Markoff processes. This conclusion leads Fenyes to suppose 
that further degrees of freedom, hidden parameters, must be assigned to the 
electron. Fenyes dismisses von Neumann's (1932) objections to the existence 
of hidden parameters in quantum mechanics by stating that von Neumann 
proposes to reach a causal description in terms of ~ plus further parameters, and 
arguing that, since ~ characterizes the state of the system from the statistical 
standpoint, it cannot be considered as a causal state parameter. 

Fenyes then attempts to demonstrate that his set of statistical configuration 
coordinates cannot be completed by the addition of further parameters to a set 
of coordinates in terms of which a causal description of the motion may be given. 
He also tries to show that the state of a system for which the " scattertensor" 
does not vanish cannot be characterized by a phase-space distribution function 
of the kind considered in statistical mechanics. 

Finally, Fenyes assumes a Lagrangian function and by using a variation 
principle deduces the Fokker equation and the Schrodinger equation for a certain 
class of systems. 

This paper is an attempt to show that Fenyes' theory is unsatisfactory. 
Many points of the theory which seem open to debate will not be discussed 
here because they are part of long verbal arguments which would require consider­
able analysis. Some further discussion may be found in the writer's thesis 
(Nicholson 1953). The theory has also been criticized by Weizel (1953). 

II. FENYES' MARKOFF RELATION AND QUANTUM MECHANICS 

The Lagrangian function used by Fenyes appears to be of arbitrary form. 
Fenyes has not shown that the resulting Schrodinger equation and its physically 
admissable solutions are equivalent to his original equations and their allowable 
solutions. 

We shall now show that quantum mechanics cannot be based solely on 
Fenyes' original integral relations which define a Markoff process, but that 
further restrictions are necessary on the class of solutions of the Markoff equations 
before these solutions can be taken to describe quantum-mechanical motions. 

Let us consider a quantum-mechanical system for which the Schrodinger 
equation has only a discrete set of energy eigenvalues E i and associated physically­
admissible normalized linearly-independent eigenfunctions ~i' We suppose 
that no continuous ranges of eigenvalues exist and that none of the energy 
eigenstates is degenerate. One such system is the one-dimensional linear 
harmonic oscillator which has a denumerably infinite set of discrete energy 
eigenstates. Let ~l' h be any two of the energy eigenfunctions. Then ~;~u 
~;~2 are time independent and are interpreted as probability densities. If 



16 A. F. NICHOLSON 

Fenyes' theory is applicable then the motion of the system can be represented 
as a Markoff process defined by the relations 

w(y,t) = J: 00 v(x,s; y,t)w(x,s)dx, (1) 

J:oo w(y,t)dy=l, .................. (2) 

w(y,t) =o,Ji*(y,t)o,Ji(y,t), ...................... (3) 

with obvious meanings. Fenyes supposes that any non-negative solution of 
(1) and (2) represents a possible mode of motion of the system. If Fenyes' 
theory is applicable we must suppose that the time-independent distributions 

w 1(y) =o,Ji~o,Jil' w 2(y) =o,Ji;h 

are solutions of (1) and (2). But it is then clear that any linear combination 

w(y) =kw1 (y) +(1-k)w2(y), k constant, O<k<l, 

also satisfies (1) and (2) and is non-negative and so must represent a possible 
stationary state of the system. 

Since k can assume a continuous infinity of values in the range (0,1), Fenyes' 
theory predicts an infinite set of power continuum of stationary states of the 
system. But the system considered has only a discrete set of energy eigen­
values, so that the set of stationary states is at most denumerably infinite. 
Hence Fenyes' equations permit an infinitely greater number of station~ry 

states than are allowed by quantum mechanics, for certain systems. Such a 
continuum of states can be constructed from each pair of discrete states. 

Hence any theory, like that of Fenyes, based on the equations (1), (2), 
and (3) cannot be equivalent to quantum mechanics, which is based on a linear 
equation for the probability amplitude o,Ji. This conclusion is also suggested by a 
discussion of the principle of superposition of states given by Feynman (1948), 
The solutions w of (1) and (2) would need to satisfy some further equation 
involving w non-linearly before the resulting theory could be equivalent to 
quantum mechanics. 

In a representation of quantum mechanics as a form of statistical mechanics 
by Moyal (1949), the state of the system is described by a phase-space distribution 
function F(p,q;t) which satisfies an equation of Markoff form, namely, 

F(p,q;t) = J J K(p,q I Po,qo;t -to)F(pOlqo;to)dPodqo' 

As for Fenyes' theory, we can see that for certain systems the possible 
normalized time-independent solutions of such an equation, if they exist at all, 
are more numerous than the stationary states of the systems as given by quantum 
mechanics, so that quantum mechanics cannot be based solely on equations of 
this form. However, Moyal defines his F directly in terms of the Schrodinger 
amplitude o,Ji, and, although F satisfies the equation above, this equation does 
not define the class of admissible F in his theory. 
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III. GENERALITY OF FENYES' THEORY 

The SchrOdinger equation deduced by Fenyes applies only to a certain 
class of systems, in which the interactions between the particles and the external 
field can be expressed completely in terms of scalar potential functions. The 
Schrodinger equation given by Fenyes is not applicable, for instance, to a particle 
moving in an external electromagnetic field. 

Fenyes' form of the Schrodinger equation is in position-coordinate language. 
If his basic variables were declared to be, say, linear momenta instead of position 
coordinates, then the Schrodinger equation would be in momentum language, 
but the class of known physical systems to which it would then apply would be 
very small: for the Hamiltonian would have to involve the position coordinates 
qi only in the form of the term ~qi2. The harmonic oscillator is a member of 

i 

this small class. Further, if Fenyes' basic variables were linear momenta, then 
the various "velocities" and the "uncertainty relation" which occur in his 
theory would have no familiar interpretation. 

It appears to be difficult to extend Fenyes' method to yield the wave 
equation in coordinate language for more general systems, or to deduce a satis­
factory eigenvalue-eigenfunction equation in other languages, or for other 
dynamical variables. 

IV. FENYES' Ij; AND THE PROBABILITY AMPLITUDE OF QUANTUM MECHANICS 

We now show that it is impossible to identify Fenyes' Ij; with the probability 
amplitude Ij; of quantum mechanics. 

Consider two energy eigenstates Ij;lI 1j;2 of a suitable quantum-mechanical 
system, which eigenstates belong to the discrete unequal eigenvalues Ell E 2• 

Then we can write 

Ij;l(q,t) =ul (q)e- 27tiE,t/h, 1j;2(q,t) =u2(q)e-27dE,t/h. 

In the quantum-mechanical case, Fenyes' definition of Ij; becomes 

Ij; = (Xe21t'(a+i:E)/h, 

where (X can be taken as a real positive constant. Equating the probability 
densities in the two theories we obtain 

and similarly for 1j;2' so that 

_ 21t<1 1 =In ~, 
h (Xl 

.Allowing for an arbitrary phase factor, we equate the probability amplitudes 
fJ,'om the two theories to obtain 

and similarly for h, where '1)1 is a constant (cf. Witmer and Vinti 1935). 
B 
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We can write 
U 1 =1 U 1 le-i8,(q), 

where ~l(q) is a real function of q. Then 

~l =a1 +E1t +n1h +1)1' 'lJ,l an integer. 
Similarly 

But by Fenyes' definitions 
~=8+cr, 

where 8 =8(q,t) is independent of the state of the system and depends only upon 
its nature. Therefore 

and 

cr1 +8=~1 +E1t+n1h+1)D 

cr2 +8 =a2 +E2t +n2h +1)2' 

crl-cr2-al +~2=(El -E2)t+h(n1-n2 ) +(1)1-1)2)' 

But this is impossible, as the right side is a non-zero function of t (since 
El i=:E 2) but not of q, whereas the left side is a function of q only. Hence we 
cannot equate the probability amplitudes ~ in the two theories, and Fenyes' 
theory is not a possible representation of quantum mechanics. 

V. TOTAL STOCHASTIC VELOCITY AND THE UNCERTAINTY RELATION 

We next discuss Fenyes' total stochastic velocity of components Ci , and 
his uncertainty relation. If w(y,t) is Fenyes' space-time distribution function 
then 

1 a 
ci=ai-ul;;iii~(bikW)' .................. (4) 

where ai(y,t) and bik(y,t) depend upon the nature of the system but not upon its 
state. The important thing here is that ci is a precise function of position and 
time. 

Fenyes defines the means C;'Yi and the variances flc;,flYi of the stochastic 
velocity components ci and the configuration coordinates y i with respect to w 
over all configuration space, and deduces a lower bound for the product flYifloi' 
A similar relation has been given by Furth (1933) for the case of one-dimensional 
Brownian motion of a particle. Fenyes attempts to identify this uncertainty 
relation with the Heisenberg uncertainty relation of quantum mechanics. To 
do this for a particle it is necessary to identify ci with pdm where m is the particle 
mass and Pi is the quantum-mechanical linear momentum component corres­
ponding to the coordinate Yi' But ci is a function of the configuration co­
ordinates Yi as well as the time, whereas the quantum-mechanical momentum 
distribution is a function of the Pi and time only, for any state of the system. 
Any dependence of Pi on the configuration coordinate Yi would amount to a 
violation of the Heisenberg uncertainty principle. Hence it is impossible to 
identify ci with pdm or flo i with flpdm. The" uncertainties" flo i and flpi 
have different meanings. 
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This basic difference is reflected in Fenyes' definition of a stochastic velocity 
operator c j which satisfies 

for any admissible state w of a system, that is, every possible state of the system 
is an eigenstate of cj • In quantum mechanics only a subset of all admissible 
states t.j; of a system are eigenstates of PH that is, satisfy 

Later in his paper Fenyes modifies his velocity definition to define a velocity 
of components c~ which, he states, agree with the quantum-mechanical velocity 
components. But again c~ is a precise function of position and time, and thus 
cannot be identified with pj/m. Further c; is in general complex, whereas Pi 
is always real. 

VI. CAUSAL AND STATISTICAL DESCRIPTION 

Some of the mathematical arguments in Fenyes' paper appear doubtful. 
We shall only consider one such argument here, namely, Fenyes' proof that the 
addition of further parameters Yn+ll •.. 'YN to the basic parameters Yl' .. . ,Yn 
cannot cause the scattertensor bik to vanish in the completed parameter system 
jf it does not vanish in the original system. This proposition is probably correct 
though the argument seems wrong. From this proposition Fenyes concludes 
that a causal description cannot be obtained from a statistical description by 
the addition of further parameters. 

In the original parameter system the transition probability density is 
denoted by 'O(Yll .. . ,Yn, t, Zl, •• "zn,t+~) while in the completed set it is 
V(Yll •• "YN,t, Zll' . "zmt+~). 

The scattertensors in the two systems are 

. ,y .. t)~ ~2~f("-y,)(,,-y,)vdz, . .. d, .. 1 
~ik(Yll' .. ,Ymt ) = ~~2~J(Zi-Yi)(Zk-Yk)VdZl'" dzN• J 

Fenyes states that it is obvious that 

" (5) 

'0= J Vdzn+l' .. dzN• ................ (6) 

But V is a function of Y n+ 1" • • ,Y N while v is not. There is a class of functions V 
for which fVdzn+l' .. dZN is independent of Yn+l' •.. 'YN' but Fenyes has 
not shown that the functions V considered in his paper belong to this class. 

Fenyes' conclusion can be drawn, however, on the basis of a plausible 
assumption. It seems clear from the meaning ofa probability denSity that 

W(Yll' .• ,Yn,t) = J W(Yll' .. 'YN,t)dYn+l' •• dYN' 
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where wand Ware the probability densities in the two systems. Then equation 
( 1) applied in the two systems yields 

= f f W(Yll ••• 'YN,t)V(Y1' ... 'YN,t, Z1' ... ,zN,t+~)dYl ... dYN dZn+1 ••• dZm 

. which suggests that 

wv= I I WVdYn+l' •• dYN dZn+1' •• dzN ........ (7) 

is true, instead of (6). 

In Fenyes' theory the probability of a transition from the point (Yl" .. ,Yn) 
at t to the region dz1 • • • dZn about (Zll' . . ,zn) at t +~ is 

and similarly for V. Classically, the probability of transition from (Yll' .• 'YN) 
at t to dz1 • • • dzn about (Z1" . • ,zn) at t +~ is 

and the probability of transition from (111,' .• ,Yn) at t to dz1 ••• dZn about 
(Z1" . . ,zn) must then be 

d If W(Yll' .. 'YN,t) fVd d }d • Zn fWd d' Zn+l . .. ZN Yn+1' Yn+1' .. YN 

But this transition probability is vdz1 • •• dzn. Hence (7) is true for a 
classical theory, and we assume it to hold true in Fenyes' theory as it is con­
sistent with Fenyes' relations between v and w, which are of a classical kind. 

We now consider the integral 

for i<,.n, k<,.n. 
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Olearly, 

I=2~J(Zi-Yi)(Zk-Yk){JVWdYn+l' .. dY~Zn+l' .• dZN}dZ1 ••• ~II 

= 2~J (Zi -yj)(Zk-Yk)W(y,t)V(y,t,Z,t+d)~l' .• dzn, by equation (7), 

=W(y,t)2~J(Zi-Yi)(Zk-Yk)V(y,t,z,t+d)dZl' •. ~n' 
But also 

I =J W(y,t){ 2~f(Zi-Yi)(Zk-Yk)VdZl' .. dZN }dYn+1' •• dYN' 

21 

We equate these expressions for I, and let Ll~O. Then the definitions (5) 
yield, for i,k <. n, 

. w(yu'" ,Yn,t)bik(yu' •• ,Yn,t) = J W(yu· ~. 'YN,t)~ik(YU' •• 'YN,t)dYn+l' •• dYN' 

Hence, if, for i,k <. n, 

then 
~ik=tO. 

This is Fenyes' conclusion, and shows that the addition of further coordinates 
Yn+U' .. 'YN cannot cause the scattertensor to vanish in the completed system 
if it does not vanish in the original system. Fenyes also concludes that, for 
i,k<.n, ~ik=bik! but this does not follow from the present argument, and is 
doubtful since ~ik is in general a function of Yn+u' .. 'YN while bik is not. 

Fenyes next proves that a system can only be assigned a phase-space 
density function f(u,y,t) and be treated by the methods of statistical mechanics 
if the scattertensor bik vanishes identically. Some objections to this proof are 
stated in the writer's thesis (Nicholson 1953). 

VII. ACKNOWLEDGMENT 

The writer desires to express his gratitude to Dr. R. Fiirth for his kindness 
and encouragement during the course of this work. 

VIII. REFERENCES 

FtNYES, I. (1952).-Z. Phys. 132: 81. 
FEYNMAN, R. P. (1948).-Rev. Mod. Phys. 20: 368-9. 
FURTH, R. (1933).-Z. Phys. 81: 143. 
KOLMOGOROFF, A. N. (1931).-Math. Ann. 104: 415. 
KOLMOGOROFF, A. N. (1933).-Math. Ann. 108: 149. 
MOYAL, J. E. (1949).-Proc. Oamb. Phil. Soc. 45: 99. 
VON NEUMANN, J. (1932).-" Mathematische Grundlagen der Quantenmechanik." Ch. 3. 

Section 2; Ch. 4, Sections 1 and 2. (Springer: Berlin.) 
NICHOLSON, A. F. (1953).-M.Sc. Thesis, University of London. 
TOLMAN, R. C. (1938).-" The Principles of Statistical Mechanics." p. 219. (Oxford Univ. 

Press.) 
WEIZEL, W. (1953).-Z. Phys. 134: 264. 
WITMER, E. E., and VINTI, J. P. (1935).-Phys. Rev. 47: 538. 




