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Summary 
The angular distribution of the single scattering of 33, 121, and 1065 ke V electrons 

at small angles in gold is calculated and compared with the distributions given by the 
Born approximation and by the WKB method as used by Moliere. The single scattering 
distribution for 1065 keY electrons is integrated numerically to give mean square 
angles of multiple scattering, and these are compared with the values given by the 
various multiple scattering theories. The results are discussed in conjunction with 
the experimental data for gold and other elements. The discrepancy between theory 
and the recent experiments with beryllium is shown not to be explained by the use of 
the Hartree instead of the Thomas-Fermi field. The difference of the root mean square 
angle for electrons and for positrons is estimated for gold and argon, and its value for 
argon-the only element for which this difference has been measured-is much less 
than the observed value. 

1. INTRODUCTION 

The angular distribution of the scattering of fast electrons and positrons 
at large angles is now fairly well understood (Bartlett and Watson 1940, Massey 
1942, McKinley and Feshbach 1948). The calculations just referred to were 
carried out for an unscreened Coulomb field, and this is justified, since for large 
angles of scattering the effect of screening is small for electrons with energy as 
low as 33 keY for even a heavy element like gold (Mohr and Tassie 1954). 

For small angles of scattering, however, screening of the nucleus by the 
atomic electrons is important. For heavy elements and relativistic energies the 
Born approximation is not likely to give very accurate results.. The WKB 
method of determining phase shifts has been used together with a method of 
summing the series of partial waves which should give fairly good results (Moliere 
1947), but certain approximations have been made and it is of interest to assess 
the accuracy of the distributions obtained. This may be done by carrying out 
a detailed phase shift analysis, but particular care has to be taken with the 
summation of the series of partial. waves, for it is extremely slowly convergent 
at small angles. 

Experiments on small angle scattering at high energies almost inevitably 
involve multiple scattering, any theory of which must be based to some extent 
on the form of the single scattering distribution. While the multiple scattering 
distribution does not depend critically on the form of the single scattering 
distribution, it involves a " screening angle" whose value depends on the form· 
of the atomic field. Some of the multiple scattering theories employ an 
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exponentially screened field, others a Thomas-Fermi field, and neither field will 
lie as close to the true field as the Hartree field. The exact single scattering 
distribution for gold is therefore used to compute mean square angles, and 
these are compared with the values given by multiple scattering theories. For 
this reason only those multiple scattering theories are discussed which give 
as first approximation a Gaussian distribution whose mean square angle is given 
by simple analytic formulae. 

Finally the difference in the intensity of single scattering of electrons and 
positrons due to spin-though small at small angles-could give rise to a detect­
able difference in the width of the respective multiple scattering distributions. 
There is experimental evidence for such a difference, and its magnitude is 
therefore investigated theoretically. 

II. ANALYTIC THEORIES OF MULTIPLE SCATTERING 

The differential cross section for single scattering may be written in the 
form 

I(6)=(Z2e4 cosec4 t6j4y2m2v4)R, ............ (1) 

where Z is the atomic number of the scattering atom, v is the velocity of the 
electrons, 

y=(1_~2)-! with ~=vjc, 

and R is the ratio of the scattering to the relativistic Rutherford scattering. 

The chance of occurrence of a single deviation through an angle between 6 
and 6 +d6 is given by 

P(6)=21tNtI(6) sin 6 d6 (2) 

=QRd6j63 for small 6, 
where 

Q =81tNtZ2e4jy2m2v4, (3) 

N is the number of atoms per c.c. of scattering foil, and t is the foil thickness~ 

For sufficiently large t there will be a large number of collisions, resulting 
in an approximately Gaussian distribution with mean square angle given by 

f6max, 
6;.m.s.- 62 = 0 62P(6)d6.. ............ . (4) 

It is well known that this integral does not converge to a limit as 6max, is 
increased, but 6max, must be appreciably smaller than the root mean square 
angle if the assumption of a Gaussian distribution is to be justified. An arbitrary 
" cut-off" to the integral is therefore adopted. 

In Williams's (1938) theory of multiple scattering 6max. is so chosen that 
the chance of a deviation through an angle greater than 6max. is unity, and 
therefore we have 

6~ax.=tQ· .................... (5) 
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It is also assumed that Coulomb scattering (R=l) holds down to an angle 6min., 
below which screening is supposed suddenly to reduce the scattering to zero, 
so that (4) gives 

Williams: 6;.m.s. =Q In (6max./6min,). ................ (6) 

6min. is chosen to make the mean square angle for Coulomb scattering with a 
lower cut-off 6min. the same as that for scattering by the Thomas-Fermi field, 
that is, one takes 

j 6max'62(1/63)d6 =j6max'62(R/63)d6, 
6min. 0 

where the value taken for R is that given by calculating the single scattering 
by the Thomas-Fermi field using Born's approximation. This finally gives 

6min• =1/(65 ·3~yZ-1/3). . ................... (7) 

The somewhat more accurate theory of Goudsmit and Saunderson (1940a, 
1940b) gives, for scattering by the Thomas-Fermi field, an approximately 
Gaussian distribution with a width given by (Mott and Massey 1949) 

Goudtsmit and Saunderson: 6;.m.s.=Q In (0·64 6max./6min,). . ..... (8) 

It may be noted that in both theories 6r .m.s. varies as tt In t+const. for a given Z. 

The theory of Moliere (1948) is based on a value of the screening angle 6min. 
obtained through a calculation of the single scattering by the Thomas-Fermi 
field using the more accurate WKB method, the value being given by 

where 
6min. =(1'13 +3, 76Z2/1372~2)!6o, 

6o=1/ak =1/(0 . 885aoZ-I /3k) 
=1/(121~yZ-1/3), 

(9) 

a being the Thomas-Fermi radius of the atom. The theory then gives 

Moliere: 6;.m.s. =QB/4, ........................ (10) 

where 
B-InB=b 

=2 In (6max./1·08 6min,), 

with 6max. as previously defined in (5). The appearance of B/4 instead of 
b/2 in (10) implies taking a value for the upper limit of the integral (4) which 
differs from 6max. and corresponds to the width of the multiple scattering peak 
(Bethe 1953). 

The theories all contain an addition to the Gaussian distribution which 
gives the transition to the" single scattering tail" at large angles, and this 
will slightly alter the width of the multiple scattering peak. We shall for 
simplicity compare the values of 6r.m.s. given by the above formulae and those 
obtained directly by numerical integration in (4), using single scattering distribu­
tions calculated in different ways. Moliere's theory gives a multiple scattering 
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distribution narrower than the Gaussian, which occurs as the first term in his 
distribution; and the total distribution may be fitted-up to an angle where 
the intensity is l/e of the maximum---,.by a slightly narrower Gaussian corres­
ponding to a slightly reduced value of B (Hanson et al. 1951). 

with 

III. CALCULATION OF THE EXACT SINGLE SCATTERING DISTRIBUTION 

FOR GOLD 

The differential cross section 1(6) is given by 

1(6)=lfI 2 +1 g 12, 

2ikf(6) =~((l + 1)(e2i7l1-·1) +1(e2i'fj -1-1 -l)}P I (cos 6), .. (11) 

and g(6)-essentially a spin term-negligible at small angles compared with 
f(6); where k =27tymv/h, and the 1l are phase shifts of the various order waves 
which have been calculated accurately for gold (Mohr and Tassie 1954). 

The series (11) is very slowly convergent at small angles, and therefore 
two methods were used for summing it in order to check the accuracy of the 
results. 

Method (a).-The series was summed to the first 30 or 40 terms, and the 
summation over higher values of I was replaced by an integral, the higher PI 
being calculated with high· accuracy from the relation 

PI (cos 6)~(6/sin 6)lJo((l +t )6). .. . . . . . . .. (12) 

The higher order phases are given with sufficient accuracy by the formula 

"1JI~"1J-I-l ~(yZI/kao)Ko()\1 (1 +t )/k) + (yZ 2/kao)Ko(J"2(1 +t )/k), 
...................... (13) 

where the Hartree field of the atom is fitted as closely as possible by the expression 

(Zle-A1T+Z2e-A,T)e:2/r with Zl +Z2=Z, ........ (14) 

For gold the values adopted were ZI =20, Z2i=59, Al =1'3/ao, A2=6/ao• It was 
found necessary to take into account values of l up to 500. 

The integrand being oscillatory, the values of the integral between successive 
zeros of the integrand were obtained by graphical integration. These values 
constitute a slowly convergent series with alternating signs, the last few terms 
of which were treated by the Euler transformation (Rosser 1951) in order to 
speed the convergence. 

Method (b).-As a check on the accuracy of the previous method, the 
following procedure was used in some cases, though it was found in general to 
be less accurate. 

For large 1 we may take for Ko in (13) the first term in the asymptotic 
formula, namely, 

K o(x)......,(7tJ2x)ie -x. 
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Let us denote the resulting expression for '1)/ by '1)n +'1)/2. One may fit sin 2'1)1 

by the expression 
2'1)n(l-ot1l-1) +2'1)/s(l- ot2l- 1) 

and I-cos 2'1), by 

2'1)~1(1-~ll-i) +2'1)~2(1-~2l-1) +4'1)1'1)2(1-~3l-i), 

where otll ot2' ~ll ~2' and ~3 are arbitrarily adjusted constants, the fit being good 
down to relatively small values of l. The discrepancy at the lower values of l 
is allowed for in a separate numerical calculation. Substituting these expressions 
for sin 2'1)/ and I-cos 2'1)/ in (11), replacing the series by an integral, and using 

(12) with l+l replaced by l, we require to evaluate the integral fCC l.1Ie- rz1Jo(l6)dl 
. 0 

for p =t, 0, and -t. The value of this integral is given by a hypergeometric 
series (Watson 1948) which is readily evaluated numerically. 

The results of this calculation are shown by the heavy curves marked El 
and Es in Figure 1. Curve Es was obtained using the two-term field (14), 
and El using a one-term field (ZI =79, Z2=0, Al =3jao) which does not fit the 
Hartree field for gold so well but which was used as a check on the sensitivity 
of the results to the precise form of the field. Curve Em for 1065 keV electrons, 
was obtained by using method (a) with the phases calculated accurately for the 
Hartree field of mercury by Gunnersen (1952). 

The undulations in the curves occur near those angles at which either the 
real or the imaginary part of f(6) passes through a zero, and appear to have a 
real existence. Recent calculations by Hoerni and Thera (1953) for 40 keV 
electrons in uranium are found to give a curve of R v. 6 which has undulations 
very similar to those in curves El and E2 for 33 keV electrons. 

IV. COMPARISON OF SINGLE SCATTERING DISTRIBUTIONS FOR GOLD 

For comparison, Figure 1 shows curves obtained using the Born approxi­
mation, according to which one has 

f(6) = (81tSm jh2.)f: V (sin KrjKr)r2dr, •........ (15) 

where 
K=2ksin 16. 

We insert the form of the potential energy V for the one-term field 

V = (yZE2e-"Arjr) +(Z2E4e -2"Arj2mc2r2), 

where the second term is a relativistic spin term which contributes appreciably 
to the scattering only at large angles and has little effect at the angles considered 
here. Spin terms which have an even smaller effect have been omitted from V. 
An elementary integration then leads to the result 

R={(K2jA2+K2)+~(ZjI37) artan (K/2A) sin 16}2. . .. (16) 

The required modification to the formula for the two-term field is obvious. 
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The curves so obtained for the one- and two-term fields are labelled Bl 
and B2 respectively in Figure 1. As the second term in brackets in (16) is 
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Fig. I.-Angular distribution of single scattering of electrons in gold. Curves 
Bl and B. were calculated using the Born approximation with the one·term 
and two·term potential fields respectively, together with the spin correction 
term in Z'. Curve M was calculated from the formulae (9.1) and (9.3) given 
by Moliere for application to multiple scattering, and M' obtained using 
Moliere's more accurate formula (8.6). Curves E 1 , E 2 , and EH were calculated 
using the exact theory in the present paper with the one·term and two·term 

fields. and the Hartree field of mercury respectively. 

almost negligible compared with the first term at the angles with which we are 
concerned, the value of R is practically a function of k sin if} only, and this 
suggests that the sets of curves obtained on the different approximations be 
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plotted on a scale of a which is inversely proportional to the value of k. When 
this is done the Born curves at the different energies are almost identical. 

Moliere obtains a single scattering distribution, using the WKB method 
together with a three-term representation of the Thomas-Fermi field, for the 
limiting cases of Z/137~--+O (Born approximation) and Z/137~--+co (classical 
approximation). Then, with the aid of an asymptotic formula he produces his 
empirical interpolation formula (8.6), which gives R for all values of Z/137~. 
This leads to the curves labelled M' in Figure 1. For application to the theory 
of multiple scattering he characterizes the single scattering distribution by a 
single parameter, the "screening angle" amin.-given by his equation (9.3) 
(our equation (9)), which implies a single scattering distribution given, somewhat 
less accurately than by his formula (8.6), by his formula (9.1), namely, 

R=a4/(a~in.+a2)2 ................... (17) 

From this formula are derived the curves marked M. This formula, while more 
accurate than the first term of (15), has the same form and significance, since 
K =ka for small angles, and )..,,-,kamin. by a simple application of the uncertainty 
principle. amin. is the minimum detectable deflection for a field of range 1/)", 
and hence for a particle of angular momentum kh/21t)... 

The Born approximation (15) is based on the assumption that the phase 
shifts are all small compared with unity, whereas in Moliere's application of the 
WKB method this assumption is not made. For a heavy element like gold a 
large number of the phases are of the order of unity. One therefore finds that 
the Moliere curves M and M' lie closer to the " exact" curves E than do the 
Born curves B. The supposedly more accurate Moliere curve M', however, 
falls further and further below the true values of R as the angle increases. This 
is not surprising, since Moliere's value of R approaches 1 always from below, 
whereas the true value of R becomes greater than 1 for electrons as a increases 
(Bartlett and Watson 1940). Furthermore the Moliere theory gives the same 
angular distribution for positrons as for electrons, whereas the value of R for 
positrons is, at the larger angles where screening is less important, less than that 
for electrons (Massey 1942). The curve M is a better fit than the curve M' 
except at the very lowest angles, but it is given by a less accurate formula, so 
that the closeness of fit is to some degree fortuitous. 

A.s the energy increases the various approximations should improve in 
accuracy, and one sees that the various theoretical curves for a given energy 
do approach each other more and more closely with increasing energy. 

Finally, the degree of sensitivity of the scattering to the form of the atomic 
field is shown by the difference between the curves El and E 2, and between 
Bl and B 2• 

V. MEAN SQUARE A.NGLE OF MULTIPLE SCATTERING IN GOLD 

The values of ar.m.s. for 1065 keY electrons predicted by the multiple 
scattering theories discussed in Section II (formulae (6), (8), (10)) are compared in 
Figure 2 (curves W, G & S, M l ) with the values obtained by direct numerical 
integration of the exact single scattering distribution, using (4) (curve E). Also 
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included in the figure are values obtained by numerical integration of the single 
scattering distributions given by the Born approximation with the two-term 
field (curve B), and by the Moliere theory (curve M 2 ). In the latter case the 
curve M in Figure 1 (given by (17)) is used, as it is this-and not the curve M'­
which is given by the use of the screening angle Smin. involved in the multiple 
scattering theory. 

Au 
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8 r .m •s . 

100 

o 0·01 

SO 
8max. 
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t1/2 (eM'/') 

100 150 

0·03 0'04 

Fig. 2.-Multiple scattering of 1065 keY electrons in gold. Qurves W, G& S, and "'Ii, 
were obtained directly from the formulae for Or.m.s. given by Williams, Goudsmit and 
Saunderson, and Moliere respectively (formulae (6), (8), and (10) of the present paper). 
Curves E, B, and M 2 were obtained by numerical integration of the single scattering 
distribution given by exact calculation, by the Born approximation with two-term field, 
and by Moliere's formula (9.1) respectively (formulae (11), (16), and (17) of the present 

paper). 

The Born and the Williams values of Sr.m.s.lie above, and the Moliere values 
below, the exact values. This is to be expected since the Born and Moliere 
single scattering distributions lie respectively above and mostly below the exact 
distribution. Comparison of formulae (6) and (8) shows that the Goudsmit 
and Saunderson values of Sr.m.s. lie below the Williams values by an absolute 
amount which increases with the thickness t, but by a fractional amount which 
decreases with increasing t. 
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The Moliere curve _V 2 lies closest to the exact curve as is to be expected, 
since it is based on the direct use of the single scattering distribution which lies 
closest to the exact distribution. The curve M 1 is based virtually on the use of the 
same single scattering distribution, and therefore coincides with curve M 2 

over a fair range. The increasing separation of the curves M 1 and M 2 at layer 
thicknesses arises partly from the fact that a different value of 6max. is involved 
in the two cases. Thus one finds that at tl =0 . 025, a change of only lOin 6max. 

in the upper limit of the integral (4) alters 6r.m.B• by 10 per cent. The agreement 
is good, however, up to 6r.m.B.=20°, by which time the actual path length is 
appreciably greater than the thickness t, and energy loss is appreciable, so that 
the simple formulae no longer apply. The arbitrariness in the choice of 6max. 

cannot be avoided since some scatters will always occur at still larger angles, 
and in fact the distribution is not accurately Gaussian. The Moliere theory 
gives the form of the complete distribution, with which comparison should be 
made in any experimental investigation. 

For 121 ke V electrons the various single scattering distributions in Figure 1 
lie further apart than for 1065 keY electrons, and-as one would therefore 
expect-the values of 6r.m.s. on the various theories show larger percentage 
differences amongst themselves than at 1065 keY. Also the exact curve for 
6r .m.s. is found to lie close to the Williams curve and well above the Moliere curve. 
No practical significance, however, can be attached to results calculated for 
energies as low as 121 keY, since the thicknesses of foil for which values of 6r.m.s. 

less than 30° occur are so small that too few collisions would occur for multiple 
scattering theory to be applicable. 

The experiments of Oleson, Chao, and Crane (1941) at 6 MeV, and those of 
Kulchitsky and Latyshev (1942) at 2 ·25 MeV give, for heavy elements, values 
of 6r.m.s. less than the Williams values by 10-15 per cent. Using (6) and (10) 
one finds that at these energies and for the values of 6r.m.s. concerned, the Moliere 
value of 6r.m.s. is less than the Williams value by about the same percentage. 
This result indicates that, at these higher energies and for heavy elements, there 
is fairly good agreement with the Moliere theory. This conclusion is also 
supported by the more recent experiments of Hanson et aZ. (1951) on the scattering 
of 15· 7 MeV electrons in gold. 

VI. MULTIPLE SCATTERING IN LIGHT AND INTERMEDIATE ELEMENTS 

Let us now consider light and intermediate elements. Firstly there are the 
fairly recent experiments on beryllium, carried out by Hanson et aZ. (1951) with 
15·7 MeV electrons. The observed values of 6r.m.B• are less than Moliere's by 
3-7 per cent., and the discrepantly is thought to be possibly due to the use of 
the Fermi field, which would not be very accurate for as light an atom as 
beryllium. 

The sensitivity of the scattering to the field was put to the test, not by the 
le~gthy and tedious phase shift analysis, but by the approximate methods which 
should be fairly accurate for li~ht elements at this high energy. In any case the 
methods should give accurately the difference in the scattering due to a small 
difference in the field. 
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As a first step the single scattering distribution was calculated in the 
following ways : 

(a) using the Born approximation result (16) modified for a two-term 
field fitted to the Hartree field for beryllium, 

(b) using the Born approximation result (16) modified for a three-term 
field fitted to the Thomas-Fermi field, 

(0) using Moliere's formula (( 17) above), based on the WKB method and 
the Thomas-Fermi field. 
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Fig. 3.-Angular distribution of single scattering of 15·7 Me V electrons in 
beryllium. Curves B(F) and B(H) were calculated using the Born approxima­
tion with the Fermi and Hartree fields respectively, and curve M(F) using 

Moliere's formula based on the WKB method and the Fermi field. 

The three curves so obtained are shown in Figure 3. The differences between 
them are much less than the difference between the curves marked B2 and M 
in Figure 1 for 1065 keV electrons in gold. One therefore expects fairly small 
differences in the values of flr.m.s. obtained from them; the more so since the 
effect of the Moliere curve lying below the Born curves at the smallest angles 
is largely offset by its lying above at the larger angles. 

These single scattering curves were then integrated numerically, using (4), 
to give values of flr.m.s. for the two thicknesses of foil used in the experiment. 
The results are given in Table 1. 

Using in place of the Fermi field the more accurate Hartree field thus makes 
a difference in fl r.m.s. of only t per cent. with the Born approximation, and about 
the same difference should occur with the WKB method as used in the Moliere 
theory. The discrepancy of 3-7 per cent. between theory and experiment can 
therefore hardly be attributed to the use of the less accurate Fermi field. 

Experiments on carbon with 3-11 MeV electrons by Oleson, Chao, and 
Crane (1941) give values of flr.m.s.less than the Williams values by 10-15 per cent. 
About the same percentage difference is found between the Williams and Moliere 
values, on substitution in (6) and (10). The results for carbon are therefore 
in fair agreement with the Moliere theory. 
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Values obtained for elements of intermediate Z by Oleson, Ohao, and Orane 
(1941) and by Kulchitsky and Latyshev (1942) are in fair agreement with the 
Goudsmit and Saunderson values, and substitution in (8) and (10) shows these 
to be higher by several per cent. than the Moliere values. Taking into account 
the higher terms of the Moliere multiple scattering distribution narrows it and 
merely increases the discrepancy. Theory thus lacks agreement with experiment 
over the whole range of Z. 

TABLE 1 

VALUES OF er .m .s . FOR 15· 7 Mev ELECTRONS IN BERYLLIUM, OBTAINED BY 

NUMERICAL INTEGRATION OF THE SINGLE SCATTERING DISTRIBUTION 

Born Approxn. Born Approxn. WKB (Moliere) 
Thickness with with with 

(mg/cm 2 ) Fermi Field Hartree Field Fermi Field 
~-----

257 2 '18° 2·17° 2·14° 
495 3·02° 3·01° 2.97° 

The Moliere theory is based on a more accurate treatment of the single 
scattering problem than the other theories, and might therefore be expected to 
give more nearly correct results for multiple scattering. .Any discrepancies 
would be most likely for heavy elements, as suggested by the calculations in 
this paper; but the experiments indicate better agreement with Moliere for 
heavy than for intermediate elements. Further experiments thus seem desirable. 

VII. DIFFERENCE OF MEAN SQUARE ANGLE FOR ELECTRONS AND POSITRONS 

There is a difference-which increases with Z-in the single scattering of 
electrons and positrons at large angles, due to electron spin; though the difference 
tends to zero as the angle tends to zero. One may therefore expect a difference 
in the value of er.m.s. for electrons and positrons, though it is not obvious how 
large it will be. None of the multiple scattering theories gives a difference, and 
it must therefore be obtained by numerically evaluating the integral (4) for 
er.m.s. using separate single scattering distributions for electrons and positrons. 

(i) Gold.-Using the phase shifts given by Gunnersen (1952) for 1070 keV 
positrons in mercury, the single scattering distribution was calculated and found 
to diverge appreciably from the corresponding curve for electrons as the angle 
increased from 5 to 100. Then, using (4), it was found that, for foil thicknesses 
giving values of er .m.s. less than' 20 , the difference between er.m.s. for electrons 
and positrons was less than 2 per cent.; as er.m .s. increased to 100 the difference 
increased to about 6 per cent., where it remained for further increase in er.m.s .• 

Oalculations were also carried out at 121 keV, making approximate estimates 
of the phases for positrons. It was found that for thicknesses giving a er.m.s. 

greater than 100, the difference between er.m.s. for electrons and positrons was 
from 2-3 per cent. 
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The experimental results of McDonell (1953) on the scattering of 1 MeV 
electrons and positrons are consistent with a difference in er.m.s., but its magnitude 
cannot be obtained accurately, since multiple scattering was involved only as a 
correction to single scattering observations at large angles. 

(ii) Argon.-Estimates were made for argon, since Groetzinger, Humphrey, 
and Ribe (1951) report a difference of about 10 per cent. in the value of er.m.s. 

for electrons and positrons over the range 0·3-2 Me V, the corresponding values 
of er.m.s. varying from 10° to 3°. 

For argon, (1.==Z/137 is sufficiently small to allow one to use for small angles 
the approximate single scattering formula (McKinley and Feshbach 1948) 

R=1-~2 sin2 te+7t(1.~ sin te (l-sin te), ........ (18) 

with (1. positive for electrons and negative for positrons. 

For an energy of 1 MeV, which is near the middle of the experimental range, 
the observed value of 4tO for er.m.s.is calculated from (5), (6), and (7) to correspond 
to emax. =3°. From (18) the difference in R for electrons and positrons for an 
angle of 3° is 2 per cent. A similar calculation at the high and the low energy 
ends of the experimental range gives differences of 1 and 3 per cent. respectively 
in R. The value of the integrand in (4) at the upper limit of the integral differs 
for electrons and positrons by the percentages mentioned, and the differences 
will be less over the lower part of the range of integration, and hence less for the 
value of er.m.s .. 

Furthermore the formula (18) is for scattering by a Coulomb field, and at 
the angles in question screening will reduce the difference in R, and hence in 
er .m.s., for electrons and positrons. The difference can hardly exceed 2 per cent. 
in any part of the experimental range of energies, but the observed difference is 
10 per cent. Further experiments with other elements are clearly desirable in 
order to clarify the situation. 
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