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Summary 

It is shown by a quasi-static treatment there is not one but a multiplicity of plasma 
resonant modes which will emit dipole radiation in a cylindrical column of ionized 
gas with a radially symmetrical but non-uniform electron density. It is shown that 
the multiple resonances obtained by Romen in scattering of short waves from a gas 
discharge column may be qualitatively explained assuming a reasonable electron 
distribution. Approximate values for the resonant frequencies for a Gaussian distribu
tion, relevant to meteor trails, are found and some of these may be observable. 

The status of the finite energy loss and phase shift, shown by Herlofson and other 
authors to arise where the real part of the dielectric constant vanishes, is examined 
and mechanisms pointed out which modify the expressions given. 

I. INTRODUCTION 
It was shown by Tonks (1931) and emphasized by Herlofson (1951) that the 

frequencies of plasma oscillations depend on the shape of the boundaries and 
that putting a dielectric constant 

K =1-ne2 j(1tmv2) =0, 

where n is an electron density, does not always serve to locate these frequencies. 
Not much study has yet been given to the oscillations occurring with non-uniform 
densities; it does not, for example, appear to be realized that in this case there 
will in general be a number of dipole modes of different frequencies apart from a 
multiplicity of guadrupole and higher modes. This is shown in: the following 
paragraphs and related to the experiments of Romell (1951) where such modes 
were found in reflection from a gas discharge column. 

Oloser examination is also needed of the paradoxical conclusion that with 
vanishing collision frequency there is still a finite energy loss and phase shift 
(Makinson et al. 1951; Kaiserand Closs 1952) arising near the region where the 
real part of K goes through zero. 

II. THE FIELD EQUATIONS 
If the quantities varying with time have frequency v, the electron density is 

no(r)+n(r, t) and the force on an electron is taken as -Eejm to the first order, 
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we obtain .from Maxwell's equations when streaming and thermalv:elocities are 
supposed zero: 

div E = -47t'ne, 

div (KE) =0, K=l- noe2 

7t'mv2 ' 

(1 ) 

(2) 

. e2 
K dlV E=--2E. grad no, ........ , ...•.....• (3) 

7t'mv 

~2n -47t'n e2 e d (4) _u_ 0 n+-E. gra no, ... ....• . ot2 m m 

so that K is the dielectric constant of the plasma. We will neglect at first energy 
losses due to collisions; this is known to be a useful approximation in many 
problems. The positive ions in the plasma are effectively stationary at the 
frequencies of interest and the mean net charge density is taken as zero. 

(a) Un~form Density 
It follows from (2) and (3) that if no is uniform over a region, either 

(i) div E =0 over that region so that, in any forced oscillations produced by 
external fields of arbitrary frequency, the electron cloud moves without density 
changes, or (ti) K =0 and oscillations may take place only at the corresponding 
(Langmuir) frequency vL = (noe2 j7t'm)!, there being oscillation of the electr\ln 
density. The name" plasma electron resonance" was given by Tonks (1931) 
to such motion. Both types may coexist at the Langmuir frequency .. 

In case (i) there are restoring forces produced at the boundaries of tl}e 
plasma, and there are resonant frequencies in general quite different from V L 

which depend on the shape of the boundaries and the orientation and order of 
the multipole electric moment produced. Tonks called these plasma resonanCes. 
They are discussed also by Herlofson (1951). 

If the free-space wavelength is much greater than the extent of the plasma, 
as will now be assumed, we may find such plasma-resonant frequencies simply 
from the well-known expressions in electrostatics by noting the values of K for 
which the field inside the region is infinite, that is, finite for vanishing external 
field (Kaiser and Oloss 1952). If the external field is uniform,frequencies of the 
dipole modes result; from the expressions for a non-unif()rm field, frequencies 
of the multipole modes as well. 

(b) Non-uniform Density 
Except in the special case where E is everywhere perpendicular to grad no, 

div E*O, the density no longer remains constant and we lose any such distinction 
as between types of oscillation (i) and (ti) above. The Langmuir frequency 
varies from point to point and has no special meaning. 

The quasi-static treatment is again applicable to find resonant frequencies 
but there is no body of standard electrostatic results for non-uniform media to 
draw upon. 
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Since div D =0, D =KE, continuous lin~s of electric displacement may be 
drawn through such a plasma, their spacing giving the magnitude of D. It is 
now D."ecessary to suppose the fields sinoidal and to give K the complex form 
K1-jKIl, the imaginary term arising from energy losses due to processes such as 
collisions, cf. Section V. We suppose K" very small, consequently unimportant 
except near where Kl =0. Near a surface where Kl goes through zero,E changes 
suddenly from large positive to large negative values and a phase shift is intro
duced, while n becomes very large according to equations (1)-(4). There is an 
oscillatory piling up of charge towards and away from this surface, with smaller 
piling up throughout the plasma. The restoring forces governing the frequency 
of a particular resonant mode arise from the free charges appearing at the 
boundaries as well as from such piling up. 

III. DIPOLE MODES OF NON -UNIFORM CIROULAR CYLINDER 

If the cylinder has axial symmetry and the vanishingly small applied 
uniform electric field is transverse, putting E= -grad V, V -R(r) cos 6 in 
cylindrical coordinates, R must satisfy (Kaiser and Closs 1952) 

R,,+(KI+~)R'_ R=O 
K r r 2 ' 

(5) 

with the boundary condition for resonance (in the case where K-'.>-l as r-'.>-oo) 
R(O) =0, real part of R""'const./r for large R. If we put K =l-)..f(r) -jK. 
so that f( (0) =0, only for certain eigenvalues of ).. can the boundary conditions 
be satisfied. We now show that there can be no eigenvalues (and hence no 
plasma resonance) unless K is negative for some range of R. 

From (5) and the condition R(O)=O, if R is, say, positive at r=O, R can 
never turn downward if K is everywhere positive, since at such turning point 
we would require R" negative which is contrary to (5). Thus R increases 
monotonically and is proportional to r, not r-t, for large r. If, however, Kl 
passes through zero, R turns down again at that point in such a way that it may 
for some values of ).. behave at infinity like r-l. 

It is apparent from (5) that if K(r) is replaced by K(mr), R(r) by R(mr), 
where m is any multiplier, the eigenvalues will be unchanged. Thus the plasma 
resonances depend on the shape of the distribution, not at all on its scale (pro
vided its extent is much less than a wavelength). 

The question now is how many eigenvalues there are and what is their 
distribution for forms of no(r) of interest. We approach an answer to these 
questions by considering stepped distributions approximating to (i) that inside 
a long discharge tube (Killiam 1930; Howe 1953), (ti) that in a meteor trail. 

It is necessary first to show that resonant frequencies obtained from a 
stepped distribution approximating to a given smooth distribution will not 
differ significantly from those appropriate to the latter if the number of steps is 
large enough. 



DIPOLE RESONANT MODES OF AN IONIZED GAS COLUMN 271 

If K were everywhere > 1, as in ordinary dielectric materials, the internal 
field would certainly not be grossly affected by a transition from finely-stepped 
to smooth distribution. Thus one would only expect such effects (if any) in 
the present case where the mathematical features differ, namely, for eigenvalues 
crowded near A =1 (see Section IV and Fig. 2) or arising from the behaviour 
of the solution near KI =0, which latter we now consider. 

If R in (5) is supposed integrated out from the origin from a zero value 
and arbitrary real slope at the origin, at r=a where KI =0 an imaginary part RI 
is introduced into R proportional to I/K'(a) (Kaiser and Closs 1952, equation 
(46)) but the real part RR is the same at points A, B on either-side of a such that 
K1(A)=-KI(B) and both are near zero. 

Thus the only effect of a finite K'(a), as compared with the infinite K'(a) 
with a stepped distribution, is on RI. However, the condition of resonance is 
that RR,....,const/r and RR in r>a is quite independent of RI if K2 is negligible, 
since (5) is linear. 

We may therefore calculate values of A corresponding to resonance without 
considering 1P ·at all and for sufficiently many steps the stepped distribution 
should give the same answers as the smooth distribution to which it approximates. 

IV. STEPPED DISTRIBUTIONS 

In the regions 0, 1, 2, ... n (Fig. 1), Vp = (Bpr +Apr- l ) cos 6, say, where 
Bo =0, An =0, and from the joining conditions at r p' 

. Bp_Irp+Ap_Ir;1=Bprp+Apr;1, 

Kp_I(Bp_I-Ap_lr;2)=Kp(Bp-Apr;2). 

The condition for a non-zero solution is then 

-1 -1 
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-KI 
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-2 o K n -1 -Kn-iTn -Kn 
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.................... (6) 

Putting K =1-Alr, this is an equation of degree n to determine A. This will 
have n roots, but only real roots and their distribution are here of interest, these 
giving the dipole mode frequencies. The case of two steps was considered by 
Kaiser and Closs (1952). 
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(a) Discharge Tube Distribution 
The measured distribution of electron density across a discharge tube of 

cylindrical section given by Killian (1930) for a temperature of 18·6 °0 can be 
fitted approximately by the parabolic curve 

no=No{1-0'6(~r}, (7) 

where No is the density at the centre and r1 the radius of the tube. 

We have taken stepped distributions approximating to this curve with 
successive values 2, 3, . . . 7 of n, the number of steps. The steps are at equal 
radial intervals and, except in the case n=6, the height of each is proportional 
to the value of (7) at its mid point, with f=l at r=O. The values of A for 
resonance and the corresponding values of Kp are shown in Table 1.* 

It will be noticed that at least one of the Kp is negative (as required from 
Section III and as can be generally shown from the form of the determinant). 

TABLE 1 

VALUES OF A FOR RESONANCE AND THE CORRESPONDING DIELECTRIC CONSTANTS Kp IN THE ANNULI 

BETWEEN STEPS, FOR VARIOUS NUMBERS n OF STEPS IN THE APPROXIMATING DISTRIBUTION AT 

RADII rp. 

110 ). Dielectric Constant, Kp 
-

rp 1 1/2 

Ip 0·6883 1·0 

I 

2 1·226 

I 
0·1560 -0·2262 

2·684 -0·8477 -1·6844 
i 

rp 1 2/3 1/3 

Ip 0·5932 0·8644 1·0 

1·0888 0·3541 0·0588 -0·0888 
3 1·4442 0·1433 -0·2484 -0·4442 

2·8846 -0·7111 -1·4934 -1·8846 

rp 1 3/4 1/2 1/4 

Ip 0·5457 0·7729 0·9243 1·0 

1·048 0·4280 0·1900 0·0313 -0·0481 
4 1·2001 0·3451 0·0725 -0·1092 -0·2001 

1·5973 0·1283 -0·2345 -0·4764 -0·5973 
2·9745 -0·6233 -1·2989 -1·749 -1·974 

I 

* General expressions for the coefficients of the powers of A in (6) were found, but for six 
or more steps it was found necessary for accurate determination of the smaller eigenvalues to 
evaluate the determinant (using Crout's method) for neighbouring values of A and interpolate 
to the eigenvalues. 
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TABLE 1 (Oontinued) 

n A I Dielectric Constant, Kp 
- ---

'l'p 1 4/5 
I 

3/5 2/5 1/5 

jp 0·5171 0·7103 0·8551 0·9517 1·0 

1·0321 0·4663 0·2670 0·n74 0·01777 -0·03211 
1·1202 0·3472 0·1034 -0·0795 -0·2014 -0·2624 

5 1·3205 0·3172 0·06208 -0·1292 -0·2568 -0·3205 
1·7102 0·1157 -0·2147 -0·4624 -0·6276 -0·7102 
3·0217 -0·5625 -1·1462 -1·584 -1·876 -2·022 

'l'p 1 5/6 2/3 1/2 1/3 1/6 

jp 0·5 0·66 0·8 0·9 0·96 1·0 

1·215 0·3925 0·1981 0·0280 -0·0935 -0·1664 -0·2150 
6 1·375 0·3125 0·0925 -0·100 -0·2375 -0·3200 -0·375 

1·75 0·125 -0·155 -0·400 -0·575 -0·680 -0·75 
3·061 -0·5305 -1·0203 -1·449 -1·755 -1·9386 -2·061 

'l'p 1 6/7 5/7 4/7 3/7 2/7 1/7 

jp 0·4841 0·6315 0·7543 0·8526 0·9263 0·9754 1·0 

1·027 

I 
0·5029 0·3515 0·2254 0·1245 0·0488 -0·0016 -0·0268 

1·146 0·4449 0·2760 0·1352 0·0225 -0·0620 :--0·1183 -0·1465 
7 1·321 0·3605 0·1658 0·0035 -0·1262 -0·2236 -0·2885 -0·3209 

1·924 I 0·0685 -0·2151 -0·4514 -0·6405 -0·7823 -0·8768 -0·9241 I 
3·068 I -0'4854 -0·9376 -1,3144 -1·6159 -1·842 -1·993 -2·068 

--

The number of real eigenvalues is, for many steps, less than the number of steps 
and with increasing n the further modes introduced have values of A cro~ding in 
near A =1. For n =7 it was not feasible to determine accurately the eigenvalues 
closest to 1. Figure 2 shows the eigenvalues for increasing n ; while the dotted 
lines have no significance in detail (since the.approximating stepped distributions 
are to a certain extent arbitrary) they do show a general trend. 

In Figure 1 the lines of electric displacement D corresponding to two values 
of A are sketched and it is seen that in the mode with highest A (i.e. highest 
frequency when the distribution is fixed, or highest density when the frequency 
is fixed and the density generally increased by raising the discharge current) the 
lines reach out furthest. This feature has been found generally in the modes 
studied and it shows that the highest A mode will be that most strongly coupled 
to an external exciting field, hence that most strongly excited if losses are not 
greatly different for the neighbouring modes. However, the damping arising 
from energy loss near KI =0 is least for the modes with largest Ki there. 

The experiments of Romell (1951) may be explained qualitatively by the 
foregoing. He found a number of resonant peaks in the reflection of transversely 
polarized waves from a cylindrical discharge tube as the discharge current was 
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varied and showed that their angular dependence was that of dipole, not multi
pole, modes. The highest peak was that with the greatest discharge current, 
corresponding to our greatest eigenvalue of)... Quantitative comparison is not 
possible because the electron distribution across the tube was not measured by 
Romell . 

. Stepped electron distributions approximating to other shapes, e.g. spherical, 
may be similarly discussed with the same conclusion that there is in general a 
multiplicity of dipole modes, as there is also of multipole modes. 

r4 

r3 

A=3·02 
A=29·S 

(a) 
(b) 

Fig. I.-Lines of electric displacement in resonant modes for stepped 
distributions approximating to (a) that found in a discharge tube by Killian, 
(b) a Gaussian distribution. The left and right sides of each diagram 

correspond to the particular eigenvalues indicated. 

(b) Gaussian Distribution 
Taking f(r) =exp (-r2 ) and approximating. to this by five steps 

(fo, ... f5=0, 0'0425, 0'1489~ 0·4043,0'7447,1'0; Tu ••• rs=l, 0'8, 0'6, 
o . 4, O' 2) the equation for).. is 

)..5-44'619)..'+515 ·084)..3-2135 ·n2 +3475 ·9)..-1888·7 =0, 

and the five real roots are: 1'17, 1· 81, 3· 44, 8· 73, 29' 5. The corresponding 
lines of induction are sketched in Figure 1 (b). Again the greater reach of the 
lines for the higher eigenvalues indicates stronger coupling to the exciting field. 
However, in considering an actual smooth Gaussian distribution, if the above 
values of ).. are taken to give the resonant conditions, we note that at the radius 
where K =0 the slope of the curve for K(r) is greatest for the eigenvalues 1· 81, 
3 ·44, consequently these modes will suffer least damping (see Section VI). 

Kaiser and Oloss discovered only one dipole mode by numerical integration 
with (in our notation) )..=2·4. This corresponds presumably to our value 1·81. 
Their Figure 7 based on calculations with a smooth Gaussian distribution and 
numerical integration of (5) shows no evidence of more than one resonance, yet 
there is no reason to believe that the stepped distribution manufactures 
resonances with no counterparts for the smooth distribution. We can only 
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suggest that the intervals of A (their f) chosen by those authors were not closely 
spaced enough to make the finer structure of the resonant behaviour apparent 
when the diffuseness damping (Section V) is present to the extent they assume. * 

We would thus expect at least two maxima to be apparent in transversely 
polarized echoes from meteor trails (of diameter small enough for the quasi-static 
approximation) unless other conditions of the problem obscure their separateness. 
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Fig. 2.-The values of A for resonance as the number of 
steps is increased in a stepped distribution approximating 

to (7) A trend is suggested by the dotted lines. 

(0) Nearly Uniform Oylinder 
Some light on the distribution of the eigenvalues in general may be obtained 

as follows. We suppose the electron density distribution perturbed from a 
simple step, puttingfr=1 +egr , e small, r=1, . .. n, so that in (6) K r =1-'A-'Aegr• 

When e=O, Dn('A)=!(-2)n(1-'A)n-l(2-'A)(rl" .rn)-I, so that Dn('A) has an 
(n-1)-fold root at 'A=1, as well as the single root at 'A=2 corresponding to the 

* Note added inProoj.-Dr. Kaiser has informed us that the intervals were quite close (namely, 
A=O, 0'5,1'0,1'5,2'0,2'4,2'5,3'0,4'0,6'0,8'0,18'0, 20'0,1000). This suggests that the 
diffuseness damping was sufficient to prevent resolution of separate resonances. However, in 
the actual physical case the diffuseness damping may well be less than that calculated, see 
Section V. 
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eigenvalue K = -1 for a uniform cylinder. If we now consider terms in e, e2, • 

in succession it is seen by inspection of Dn that it is of the form 

!( -2)n(rt . .. rn)-1(I-A)n-l(2 -A) +bt eA(I-A)n-2+b2e2A2(I-A)n-S 

+ ... +bn_ten-lAn-l+bnenAn, 

where the br do not contain the factor (I-A). Thus in the first order perturba
tion there is an (n-2)-fold root at A=I, one of the coincident roots having 
been split off and lying near 1 while the root near 2 is displaced slightly. Similarly 
each successive order of perturbation splits off a root from the remaining 
coincident roots at 1 and displaces those already split ofi. Not all these roots 

. are necessarily real. 

We thus expect, for a smooth distribution not too far removed from a 
simple step, a distribution of eigenvalues of A in which there is one somewhere 
near 2, the remainder crowding up towards unity and perhaps becoming infinitely 
dense near unity (of course, in experimental observation, the latter would be 
obscured). It is apparent from Figure 2 that this general behaviour is there 
exemplified. 

(d) Oavity Resonator Behaviour 
If the distribution contains an annulus of finite width between r p and 

rp+t in which Kp=O, no lines of induction can penetrate this region and the 
oscillations (if any) inside the annulus are quite uncoupled with any taking place 
outside. The corresponding property of Dn is that it can then be expressed as 
the product of two determinants, the first containing only terms in rH ••• r p, 

KH ... K p- H the second only terms in rp+t, ... , Kp+H . .. For example, if 
there are two steps inside the annulus with K p =0, the resonant frequency of 
oscillations inside the annulus is given by 

Kp=O" (8) 

Kp+1=_(I+r~+2) . .................. (9) 
Kp+2 rp+1 

Regarded as equations to determine A, (8) and (9) cannot in general both be 
satisfied, but given, say. jp andjp+2' there will be a certain value ofjPH for which 
resonance is possible, namely, 

f p+(1 +r;+2/r;+1)(fp-jp+2)/(I-r;+2/r;+1)' 

Experimentally such a resonance might be sought with two concentric hollow 
cylinders of plasma, the central core having no plasma so that K =1 there. 
The average density of one plasma would need to be adjusted until resonance 
at some frequency near that expected was found. It is interesting to note that 
the dimensions of such a cavity resonator may be as small as we please in relation 
to a free-space wavelength. 
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V. ENERGY Loss NEAR THE REGION WHERE K =0 
It is well known that if one supposes energy losses, due, for example, to 

collisions, by the electrons to be adequately described by assigning a complex 
value K I -jK2 to K there is a finite energy loss ina vanishingly thin region near 
where KI =0 (and E therefore is very large) even though K2 is'vanishingly small 
(e.g. Makinson et al. 1951). If K~(a) is the value of the gradient of KI where it 
vanishes and D is the amplitude of the (sinoidal) electric displacement, the rate 
of energy loss is readily seen to be proportional to 

D2 
-,- ....................... (10) 
Kl(a) 

This loss is responsible for the damping of the resonances as discussed by 
Herlofson (1951) and Kaiser and Closs (1952). 

Herlofson (1952) has pointed out that a more careful discussion of such 
results is needed and that a finite effect from vanishing collision frequency is 
not credible. We indicate below some limitations of the simple formal treatment. 
Any mechanism other than collisions which limits the amplitude of E at KI =0 
will remove or modify the energy loss derived as above. 

Now firstly, one can describe the properties of a region containing free 
electrons by assigning to it a dielectric constant (real or complex) only as an 
approximation. .As shown by Salpeter and Makinson (1949), if the velocities 
of the electrons (due to streaming or thermal motion) are large enough for their 
"transit time" (in travelling a distance over which E varies considerably) 
to· be comparable with a period, such an assignment is not valid except as an 
approximation. In that approximation the values of KI and K2 properly to be 
assigned to a point depend not only on the density and collision frequency at 
that point, but on the variation of E in the neighbourhood, which itself depends 
on the variation of KI and K 2• Electrons may then acquire or lose energy where 
the field is strong and lose it elsewhere, (a) at the walls of a discharge tube, or 
(b) by collisions with gas molecules, or (0) by interaction with the electric field. 
Thus, if collision losses are very small, in the region near where KI vanishes E 
becomes very large and rapidly varying, and the proper value of K2 is non-zero 
even if collision losses are supposed zero. 

Mechanisms (a) and (b) lead to a net loss of energy from the field, while (0) 
does not, energy being merely transported from one part of the field to another 
by the electrons, giving a positive contribution to K2 in some places, negative 
in others. 

The energy loss near where KI =0 will thus depend on the whole configuration 
in a complicated way but calculation might be attempted using the relations 
derived by Salpeter and Makinson (1949) in the special case where walls are 
remote, collisions are negligible, streaming is zero, and the electron temperature is supposed known and not too high. 

One can however say that because at least of mechanism (0) the energy 
loss given by (10) is an overestimate and the "diffuseness" damping of resonances calculated on that basis is in some degree excessive. 
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A second reason for failure of (10) has been indicated by Herlofson (1952), 

namely, the neglect of second order effects arising from the very large values of E 

near Kl =0. For example, the amplitude of an electron motion will take it 

through regions of varying E. However, for sufficiently small applied field it 

would seem that the processes described in the preceding paragraphs must be 

more important. 
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