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Summary 

Certain routines, using the fixed index programming methods established for use 
in the C.S.I.R.O. Mark I computer, are described. These facilitate the use of the 
machine for performing elaborate arithmetical operations required for extended accuracy, 
floating index and complex variable arithmetic. Programming for such operations is 
greatly simplified by the use of an " interpretive" code, especially chosen by the pro­
grammer. The "interpretive" method of programme design is potentially very 
powerful, and relieves the programmer of the work associated with the details of store 
positioning, index control, scale changes, etc. The various operations called into use 
by the specially chosen codes are closely analogous to the operations existing in the 
normal machine code, although some are specially chosen to facilitate the use of variable 
commands and in tr ansfers of control by linkage and in control of repetitions of routines 
which are stored in the machine in the special code. 

I. INTRODUCTION 
The O.S.I.R.O. Mark I computer is of the high speed fully automatic type 

which is organized and sequenced by a suitable programme of commands. The 
machine is capable of performing a number of elementary functions, multiplica­
tion with fixed index point, and certain logical functions. Each command 
corresponds to one ·of these elementary functions. Normally programmes 
use the system of library routines and sub-routines, which themselves consist 
of sequences of commands for organizing such operations as division, square 
rooting, evaluation of functions, and so on. 

In Parts I and II (Pearcey and Hill 1953a, 1953b) the authors described the 
conventions used in programme design and showed how a programme is compiled 
and recorded in a manner suitable for use by the computer. The discussion 
was restricted to cases of single word numbers, i.e. numbers occupying only one 
storage location, and to cases of fixed index point. 

This part discusses the extension of the library routine system to more 
elaborate arithmetical systems; to floating point, multiple precision, and 
complex arithmetic, and certain combinations of these. The use of routines 
providing arithmetical operations of these kinds is greatly facilitated by use of 
a very flexible method of programme organization termed "interpretive" 
(Wilkes, Wheeler, and Gill 1951), and a full description~of the application of this 
method to the O.S.I.R.O. Mark I computer will be given. 

* Division of Radiophysics, C.S.I.R.O., University Grounds, Sydney. 
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The overall effect of use of interpretive methods for performing elaborate 
arithmetical operations is to provide the machine with a number of additional 
useful functions each of which may be called into use individually by single 
special commands. The code system used for recording commands in such 
programmes differs from that used for normal commands used by the machine, 
and can be chosen at will to suit the system of routines in use. 

II. ARITHMETICAL SYSTEMS 
Most automatic computers like the C.S.I.R.O. Mark I operate in the fixed 

index convention, that is, the location of the binary point is fixed in relation to 
the digits of numbers which are restricted to a definite range of values, usually 
between +1 and -1. In such a scheme it is often difficult to keep the range of 
magnitude of variables within the storage capacity of registers. Variables 
may require to be scaled down initially, thus losing significant digits. Alter­
natively, suitable changes in the position of the index point may be 
"programmed"; that is, routines are inserted where needed which cause 
variables to be scaled up or down during the course of the calculation. Both 
these expedients are inconvenient and call for considerable effort from the 
programmer. 

Additional difficulty may arise in programming for calculations involving 
large sequences of arithmetical operations and those involving complex numbers. 
In the latter case the number of problem variables is at least doubled and 
organization of the calculation correspondingly increased. 

In some types of calculation it is impracticable to predict the range of 
variables at any particular stage of the calculation. This occurs in evaluation 
of large determinants, transformation of matrices, and evaluation of roots of 
algebraic, logarithmic, and transcendental functions. In such calculations a 
semi-logarithmic form of recording data is most useful. Each datum is recorded 
in two parts; a fractional component, X say, and an integral component, p. 
Two scale conventions are commonly in use, the decimal and binary index 
scales. In the first of these the components are related by a convention which 
represents the number X ·10P (0 ·1<1 X 1 <1; -N <p <N).* In automatic 
computers decimal index scale is commonly used but binary index scale is 
sometimes more convenient when the greatest precision from a given number of 
binary digits is required. In the latter case, the number represented would be 
X·2P (0·5<IXI<1; -M<p<M).* 

The semi-logarithmic or " floating index" method of storage is quite suitable 
when the number of multiplications, divisions, square rooting, etc. is comparable 
with, or greater than, the number of additions and subtractions. The method 
fails in subtraction of nearly equal quantities, as also occurs in fixed index scales. 
Significant figures are lost, and can be retained only by holding additional 
figures in the fractional components throughout the calculation. Conditions 
can arise in which the result is dependent upon the order in which operations 
are performed. Such conditions occur in matrix operations, particularly with 

* Nand M are some integers determined by the maximum capacity of the register storing p. 
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sets of ill-conditioned coefficients. The floating index method fails also in 
summation of a large number of items of the same order of magnitude. In 
numerical integration a stage in the summation may occur at which the partial 
sum is so great that following increments lie outside the precision of the fractional 
component, and further increments will not affect the total. The alternative 
is to perform the addition by a fixed index method and allow the accumulator 
to " over-carry", account being taken of the digits carried over. This amounts 
to retaining additional figures. 

Floating index arithmetic is therefore not a cure-all for arithmetical 
difficulties, but must be used with care. Where suitable, it can save much work 
in programme design and avoids nearly all preliminary scaling adjustments. 
In case of inadequate accuracy, additional figures must be retained. This 
can be done in a computer only by allowing the digits of a number to extend 
beyond one storage location into one or more other locations. Such methods 
are known as " multiple precision" methods; the commonest being the" double 
precision" method, in which just two storage locations are used to hold each 
number. In many cases double precision is sufficient to overcome most of the 
difficulties mentioned and also to reduce considerably the effort required in 
programming and in scale adjustments. 

In certain cases both the multiple precision and floating index methods 
may be used together; part of "the calculation being carried out by one method 
and part by the other, or even by using the floating index method together with 
double or extended precision for fractional components. 

These methods may be extended to deal with complex variables. The 
additional complication is that of organizing the relationships between the two 
parts of each variable. Arithmetical systems which it may be necessary to use 
may be listed as follows. 

(i) Fixed Index Methods.-These may be of single or multiple precision, for 
real or complex variables or both. Some scale change and progressive adjust­
ments during calculation sometimes cannot be avoided, and changes of index 
must be specially programmed. 

(ii) Floating Index Methods.-These may be of single or multiple precision 
and for real or complex variables or both. No scale changes or index variations 
are needed nor require to be specially programmed, but the method must be 
used with care under certain circumstances to avoid loss of significant digits. 

III. FUNCTION BLOCKS 

For each arithmetical method a set of routines may be constructed for 
organizing arithmetical and other functions peculiar to the methods adopted. 
Such a set of routines, known as a "function block ", consists of two parts; 
the " arithmetical block", which provides for addition, subtraction, multiplica­
tion, square rooting, and so on, and the" organizational block ", which contains 
routines for organization of programmes using the function block. 
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(a) Arithmetical Function Blocks 
Frequently the basic function of any arithmetical block is that of addition. 

Around this function all the others may be built. Thus, subtraction uses 
addition; multiplication, particularly in complex and multiple precision 
methods, uses addition; division uses both multiplication and addition; and 
so on. Consequently an arithmetical function block consists of a number of 
interrelated routines of various orders, linkage being made via registers Du , 

Dwetc. 
A number of function blocks have been constructed and are used in pro­

grammes on the C.S.I.R.O. Mark I computer. Each system is designed according 
to certain conventions which define their manner of use. These are: 

(i) Floating Index Arithmetic.-In this system numbers are stored in two 
parts, a fractional part, X say, and an integral part, p. X occupies one store 
location, i.e. 19 binary digits and one sign digit, while p occupies only 10 digits, 
including its sign digit, of a second storage location; usually the next higher to 
that holding X. Negative numbers are represented by the complement of the 
fractional part. There are two scales used, the decimal and binary. 

(1) In the decimal system X is stored in binary form and is restricted to the 
range 1· 0> I X I ;;>0 '1, whilst p, in Pn units, is restricted to the range 
512>p;;> -512. The number pair X,p thus represents X ·10P. 

(2) In the binary system X is stored in binary form and is restricted to the 
range 1· 0> I X 1;;>0·5, whilst p, in Pn units, is restricted to the range 
512>p;;> -512. The number pair X,p thus represents X ·2P. 

Values of X satisfying the appropriate conditions are said to be 
" normalized". 

In the addition of two numbers, say X·10P and Y'10q, the lower index, 
say q, is raised to equal the greater, the fractional part being correspondingly 
reduced to Y ·10q-p. The sum X +Y ·10Q-p is formed. If this exceeds unity 
in modulus it is multiplied by 10-1 and the index of the sum is changed to P +1. 
The sum is stored as one or other of the pairs 

X +Y '10q - p , p, 

(X +Y '10Q- P)10-1, P +1. 
Multiplication is performed by forming the product XY and the sum p +q. 

The fractional part may lie between 0·1 and 0 . 01, in the decimal case, and, if so, 
is multiplied by 10 and the index of the product changed to p+q-1. In the 
case of floating binary indices, multiplications by 10 or 10-1 are replaced by 
multiplications by 2 and 2-1 respectively to keep the fractional part of the 
product between 1 and 0·5 in modulus. 

Iterative processes are used for division, square rooting, etc.; the results 
always being provided . in the normalized condition in accordance with 
conventions of storage. 

From a purely arithmetical point of view the floating binary method is the 
better since changes of the index correspond to multiplication by 2 or 2-1, as 
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against 10 or 10-1 in the decimal method; the smaller factor assists in main­
taining greatest possible accuracy from a given number of digits in the fractional 
part. 

Simpler organization of left and right shifts rather than multiplications by 
. 10 and 10-1 leads to a saving of about 10 per cent. of commands in arithmetical 

routines for floating binary compared with those for floating decimal scales. 
The binary index scale also provides somewhat faster operation. However, 
users find visual interpretation easier for floating decimal numbers than for 
floating binary numbers. It is therefore preferable to have data punched and 
printed in floating decimal form. Oonversion to and from floating decimal form 
in input and output requires additional routines in the floating binary function 
block; which more than compensates for the 10 per cent. saving in the arith­
metical routines. 

The function block for single word floating-index real-variable arithmetic 
is relatively simple, involving little interconnection between component routines 
performing the various operations. Thus the routine for subtraction uses 
addition, but that for multiplication does not, and the division routine is self­
contained. The square root routine uses multiplication. All but division also 
use a " normalization routine" which converts results to the conventional form 
for storage. 

In calculations which involve many separate groups of data, such as 
coefficients of matrices which cannot be inspected easily, a special floating decimal 
function block is used. In this a tally is kept of changes in the number of 
figures which are significant in the associated number. Thus, if a sum or 
difference is multiplied by 108 (s> 0) to bring it to the normalized form, the 
number of significant figures· is reduced by s, and so on for other operations. 
The tally of such changes is held as an integer in PI units in the PCPI0 digit 
group of the word holding the index. Results can then be given a degree of 
significance automatically. 

(ii) Multiple Precision Arithmetic.-In this system a number is divided 
into groups of 19 binary digits. The number of such groups may be made as 
great as desired, and a number occupying" n " groups is called an "n-fold " 
number, and the arithmetical system used with such numbers is called n-fold 
arithmetic. The most frequently used is the" double precision" case, for which 
n=2. The storage conventions adopted are that an n-fold number is stored 
in groups of 19 digits in adjacent successive storage locations, the most significant 
digit position in each location being zero, except in that holding the most 
significant group, in which it plays the role of a sign digit. A negative n-fold 
number is stored as a complement of the corresponding n-fold positive number. 

Arithmetical blocks are designed in accordance with the convention that 
n-fold numbers are of unit magnitude or less, the index point being immediately 
to the right of the most significant P20 digit stored. 

Two function blocks have been constructed, one for double precision and 
one for n-fold arithmetic, where n may be specified by the programmer. The 
latter system finds application in number theory computations. 
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(1) Double Precision. In this method numbers are stored modulo 2 in 
integral multiples of 2-38, providing an equivalent accuracy of about 12 decimal 
digits. When addition is performed, digit groups of corresponding significance 
are added together starting with those of lower significance. .Any over-carry 
arising from summation of the less significant components is detected and 
added as a unit to the sum of the more significant components. The sum is 
finally stored in the standard form. 

The function block provides the functions of addition, subtraction, multi­
plication, division, and square rooting. Each function routine uses the routine 
for addition, and the last two use also multiplication, which itself uses addition. 
A. product is always provided in the standard form as a group of four 19-digit 
words, the two least significant words being retained in case of need in the 
calculation. This allows double precision numbers to be treated, by suitable 
programming, as integers instead of fractions. 

The organization of this arithmetical block is more complicated than that 
for the floating index method since there is a larger proportion of high order 
routines. 

(2) n-Fold Arithmetic. In this case n may be specified by the user, but only 
the functions of addition, subtraction, and multiplication are provided. The 
organization is correspondingly more complicated than that for the double 
preCISIOn case. Its manner of use differs from that of other systems and will 
be discussed later. 

(iii) Complex Variable Arithmetic.-The complications caused in the con­
struction of programmes to deal with the arithmetic of the complex variable 
justify the use of a function block even in the case of single-fold or one-word 
arithmetic. This has been done for use on the Mark I computer in a special 
case which was found to be most frequently used. This case adopts the con­
vention that the real and imaginary parts of a complex number are stored in 
two adjacent storage locations. The index points are considered fixed and to 
lie between the Plo and Pn digit positions in both components and not between 
the P19 and P20 digit positions. Negative components are represented by the 
complement of the corresponding positive number. Each component of a 
number may take values equal to all integral multiples of 2-10 from -512 to 
512 _2-10 and all the routines of the function block preserve this convention. 

Routines contained in the function block include addition, subtraction, 
multiplication, division, and square rooting of complex numbers, together with 
other functions which apply only in the case of the complex variable, such as the 
evaluation of the modulus and the conjugate of a complex number. 

Function blocks are also available for use of the complex variable in : 

(1) floating index arithmetic, 
(2) double precision arithmetic. 

In each case the same conventions apply to both components as apply 
also to the corresponding case of the real variable. One exception is the floating 
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index system where only three adjacent storage locations are used instead of 
four. The first and third hold the real and imaginary fractions, respectively, 
the second or centre location holds the indices of both components, that of the 
real in the Pn-Poo positions and that of the imaginary in the PCPIO positions. 
Whenever such a number is taken from store the indices are" unpacked" before 
the arithmetical operation is performed. When placed into store the indices 
are "repacked". 

In all cases routines for the complex variable are based upon routines in 
the corresponding function block for the real variable. Thus complex floating 
addition uses the routine for real floating addition, complex floating multiplication 
uses real floating multiplication and real addition, and so on, and all routines 
for complex operations are of higher order than the routines for real operations. 

Further, since it frequently happens in calculations involving the complex 
variable that operations with real variables are also needed, the" real" opera­
tions are also provided in addition to the additional functions of modulus and 
conjugate, etc. which are peculiar to the complex variable. 

The principles of the construction of a block for n-fold complex arithmetic 
would be similar to those already constructed. 

(iv) Other Systems.-The most likely useful system in addition to those 
described above is the floating double precision system and its counterpart for 
use with the complex variable. In this the conventions of both the floating 
index and double precision methods are combined. Each number occupies 
two adjacent storage locations for its fractional part and its index lies in the 
Pll-POO positions in the following location. A complex number occupies five 
locations, the first two for the real and the last two for the imaginary fractions, 
the indices being packed into the third location. The function blocks for 
these systems are built in direct analogy to those for the other systems. Both 
function blocks are necessarily large and occupy much storage space, and also 
are slower in operation since in effect all the operations of both the floating index 
and double precision systems must be performed. 

(b) Organizational Function Blocks 
Into the organizational part of the various function blocks are placed 

routines for taking fresh data from punched tape, page printing, or punching 
results on to tape; and for withdrawing numbers from and placing numbers 
into store in standard form appropriate to the system used. For purposes of 
organizing the problem programme certain other operations are also included. 
These are analogous to the control shifts and counts which occur in normal 
routines and will be illustrated in more detail later. Of these operations only 
the input and output functions use the arithmetical block. Input tape for 
floating index arithmetic is punched with the fraction preceding the index. 
A designation follows each component to denote its sign. Decimal digits are 
received from tape and converted by the input routine of the function block 
and assembled into the equivalent binary form and the result is stored. For 
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printing, the fractional part of a number is printed as six decimal digits with 
sign followed by the index printed as a three-digit decimal integer with sign. 
The input or output operations read or print data in standard form appropriate 
to the function block used. In the case of the complex variable, the real part 
always precedes the imaginary part. 

The manner of placing into and taking from store is standardized according 
to the system's conventions. Thus, routines take and place the various parts 
of a number from and into successive storage locations in the correct standard 
order, doing the packing or unpacking of parts as required. 

IV. USE OF FUNCTION BLOCKS 

The most straightforward way of using a function block is to call the various 
function routines into use by the standard link and cue method described in 
Part II (Pearcey and Hill 1953b). A problem programme would then consist 
largely of " control commands", those which affect the sequence register and 
cause control to- be stored or shifted, together with relatively few commands 
for operations which may not be provided by the function block and by other 
routines included into the programme. 

This method suffers from the disadvantage that the link number must 
frequently be restored as routines of fresh orders are called into use, and that the 
withdrawal and placing into store of numbers in standard form must be made 
with reference to an address which must, each time, be previously placed into a 
special location. These factors are confusing for the programmer; they make 
it more difficult to trace through the sequence of operations in a programme and 
draw his attention away from the fact 'that the function block really supplies 
the machine with what in effect is a new set of " wired-in" operations. 

One way of helping the programmer is to provide a " directory" with the 
functions blocks. This consists essentially of· a list of numbered addresses 
pl!jJced in sequence in the store; each address corresponds to the place in the 
function block, to which control must be transferred in order to obtain the 
operation which the particular directory number corresponds to. 

The use of directory numbers for calling functions in the block implies the 
use of special operation codes, not identical with the machine code. 

This development leads directly to the "interpretive system" of pro­
gramming, a method which greatly reduces effort needed to compile programmes. 

V. THE INTERPRETIVE SYSTEM 

Each function called via the directory may be coded into a programme in 
terms of the serial number of the dire<{tory position which causes control to be 
transferred to the required function routine, and a special routine is needed for 
interpreting those parts of a programme which are recorded in the special code. 

The particular code adopted for interpretation is at the choice of the pro­
grammer; and is not necessarily restricted to any particular address system. 
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Each coded word or partitioned group of digits may be regarded as a command 
of a special kind, the meaning of which may change from problem to problem 
and is not directly connected with the actual mode of operation of the machine. 
The special decoding or "interpretation routine" may be designed at the will 
of the programmer in accordance with his chosen code system. 

The simplest way of using a list of coded data in a programme is to arrange 
the interpretation routine so as to select and interpret 'them one by one in order' 
of storage location. The list of coded data may thus be considered as a routine 
in its own right. Many of the techniques used in the design of normal routines 
may be taken over into the design of routines to be interpreted and a strong 
parallelism can be drawn between normal techniques and interpretation tech­
niques. Terms which are used in normal programming are frequently adopted 
with similar meaning in the interpretive metho"d and are prefixed by the term 
" hyper- ". Thus the list of programme data for interpretation is known as a 
hyper-routine or hyper-programme and the code adopted is called the hyper­
code; the function corresponding to . any hyper-code number is a hyper­
function. A single datum of a hyper-programme is called a hyper-command. 
If the datum to be currently interpreted is stored in location n, then hyper­
control is said to be at n. 

Similarly, some of the registers existing in the computer, particularly the 
accumulator A, have their equivalent in the interpretive system. These are 
known as hyper-registers, for example, hyper-accumulator, hyper-sequence 
register, hyper-interpreter, etc. They must not be confused with the accumu­
lator, sequence register, or interpreter proper. Thus the physical location of 
the hyper-accumulator depends upon the function block used, and may in fact 
be one or more of the registers of D or some locations of the store. 

VI. THE HYPER-CODE 

Many hyper-code systems are possible and the programmer may design 
whichever suits his purpose. In most interpretive systems it is convenient 
to code a single hyper-command into a single location of the store, although if 
additional digits are needed two or more adjacent locations in the store may be 
used to hold a single hyper-command; or more than one hyper-command, if 
requiring few digits each, may be packed two or more together into single 
locations. The digits of each hyper-command are partitioned into groups each 
possessing a meaning depending upon the structure of the interpretation routine. 
The parallelism between normal, or routine, commands and hyper-commands is 
extended to the address conventions of the hyper-code, which may be of the 
one-address or three-address type and so on. A one-address hyper-code is that 
most commonly used with the C.S.I.R.O. Mark I computer. 

A typical one-address hyper-command of one word consists essentially of a 
numerical address of 10 digits occupying the digit positions Pn-P20 and a function 
address of five digits in the positions PS-PlO" The digit group PCP5 in hyper­
commands corresponds to the machine code for destination Z, or number 20, 
a destination which in the machine code has been left unused. Any machine 
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-command possessing this destination has no effect except in the case of the 
.c(A) source, when register A becomes cleared to zero. 

The destination Z, or 20, distinguishes those hyper-commands which call 
hyper-functions from the function block from those which do not. It is not 
.always convenient to construct hyper-routines using only the operations available 
in the function block; occasionally quite simple operations are required for 
'which it is not economical to provide store space for a short routine in the function 
block. Hyper-commands not terminated with the Z code letter are coded as 
machine commands and the interpretation routine deals with them as though 
they were machine commands. In this way, what are in effect machine com­
mands may be entered into hyper-routines. Such commands are true hyper­
-commands but do not call the function block into use. 

The numerical address of ~ Z-terminated hyper-command in the PICP20 

·digit group, possesses the same significance as it does in a machine command. 
The function address in Z-terminated hyper-commands is a serial number, 
from 0 to 31, providing space for 32 possible functions, some of which are 
.essentially arithmetical and others organizational. This code number is selected 
from the hyper-command by the interpretation routine and used as a reference 
number to the directory, which is contained in the interpretation routine and 
which in turn directs control to the required position in the function block. 

VII. p-WORD NUMBERS 

In the conventions of many function blocks a datum occupies more than 
,one word of the store. Data may occupy different numbers of locations in 
the store for the same function block. Thus for complex arithmetic complex 
nunibers require more words than real numbers in the same problem. For 
·convenience the multi-word locations n, n+1, n+2, ... , n+p-1 are referred 
to as "p-Iength location n" and symbolized as np-

For programmes using real and complex variables, two word lengths will 
.occur; p-Iength words for real numbers and q-Iength words for complex numbers. 
However, by incorporation of special features into the function blocks the 
programmer is relieved of any detailed concern with such "mixed" word 
lengths. 

VIII. HYPER-REGISTERS 

By analogy with the registers used in normal programming the hyper­
registers serve equivalent purposes in hyper-programmes. The hyper-address 
·code is of the one-address type, there is only one arithmetical hyper-register 
known as the hyper-accumulator. It is denoted by A. The hyper-sequence 
register holds the store address of the next hyper-command to be adopted and 
is denoted by H, and the hyper-interpreter, denoted by K, holds the numerical 
address of the current hyper-command. A further hyper-register known as the 
~'transfer register ", denoted by X, is used for transfers of numbers between 
.store and the accumulator. A further hyper-register, which, like X, has no 
:parallel in normal programming, is the hyper-link register, written L. The 
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physical position of these registers varies with the function block used. As an 
example, those for the floating decimal index system are listed below: 

Hyper-accumulator 
Transfer register 
Hyper-sequence register 
Hyper-interpreter 
Hyper-link register 
Normal link -stores 

Stores for constant para­
meters in function 
blocks 

Stores for count para­
meters in hyper-pro-

A =DIoDn for fraction and index respectively 
X =A, B for fraction and index respectively 
S=DI3 

it.=D12 
L =three spaces in the function block 

=Dw Dw used for links into and bf\tween 
function block routines 

=D 8' D9, etc. 

grammes =Do, DB ... , D7 

The advantage gained by placing hyper-registers into D whenever possible 
is the ease with which the operator may see, at a glance at the monitor tube 
faces, at which stage the machine is in the hyper-programme. With the more 
complicated function blocks it is necessary to extend the space occupied by 
hyper-registers into the function block itself. 

IX. HYPER-CONTROL AND HYPER-ROUTINE LINKAGES 

Most of the techniques used in normal programme design are applied also 
to the design of hyper-programmes. However, some special functions are 
provided in the function blocks which simplify somewhat the design of hyper­
programmes, and have no direct equivalent in normal programming methods. 

Such is the case of those hyper-commands devoted to control of the hyper­
sequence and linkage to and from hyper-routines. The hyper-registers involved 
in sequence control are known as: the hyper-interpreter It, the hyper-sequence 
register S, and the hyper-link register L. The last of these comprises a group of 
,consecutive storage locations and may be called LI , L2, La, etc. 

When control enters the interpretation routine hyper-control advances 
serially from the address held in S at the stage of entry. During each cycle of 
the interpretation routine a Pn unit is added to S, e.g. to DI3. 

A change of hyper-control to " n " is called by a hyper-command written as 

n--rS 
coded as 

n;m.Z, 

where m is the address in the directory which calls the appropriate function in 
the function block. This function places the content of K (or Du) into S (or 
DI3)· 

In this sense if and S are respectively analogous to real interpreter and 
sequence registers. Addition into S is not provided. 

Transfer of hyper-control from one hyper-routine to another and back 
uses the hyper-link register L. The hyper-command n---,.-L at location m, causes 
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hyper-control to be transferred to n, and the number (m +l)Pn is stored in LI 
whilst the previous content of Ll is placed in L2, and that of '£2 goes to L 3, and 
so on. Such a hyper-command corresponds to the sequence 

in normal programming. 

(S)~D15' 
n~S 

A return of hyper-control, to m+1, that following the place from which 
hyper-control was transferred, is obtained by a hyper-command written as, 
(L)~S. 

This causes (£1) to be placed in S, (£2) to be transferred to L1) (L3) to go to 
L 2, and so on. This is analogous to the sequence 

Pn:!;..D15 , 

(D15)~S 
in normal programming. 

RETURN TO INTERPRETATION 

ROUTINE 

INTERPRETATION 
ROUTINE 

CALLS 
HYPER·CQNTRQl ----. 

MASTER PROGRAMME 

1ST HYPER-ROUTtNE 

n-21(SJ~'Dl3l r.,jp 
n- I m--:;>"s TO "P"I n {p ---;:00' 1.1 _____ .J 

2ND HYPER-ROUTINE , , 
r+l q 

! 
RETURN TO (+ tl!(D13)----'-S) 

REAL CONTROL • n+ 2 

-, 
I 
I 
I , 

, 

q~LI ____ J I " P' I - ~TO "q I 

Z-TERMINATED 
HYPER~COMMANDS 

I , , , 
p'+l -., 

! , , , , 
L LINK i ,BACK Il(C)----:;O-SII 

I , 
I I 
r-9J_+~: {(ll--::>"sl 

Fig. i.-Transfers of real control and hyper-control. 
Passage of hyper-control -----»­

Passage of real control ----+ 

Hyper-control is called into use by transferring control direct to the inter­
pretation routine in the usual way, that is, by direct transfer of real control to 
the head of the interpretation routine. To cease hyper-control and achieve 
return of real control to the main programme a link datum must have been 
stored in D 13 ; return to real control is attained by a command (D13)~S in the 
hyper-routine; a hyper-command not terminated by Z and therefore possessing 
the significance of a machine command. 

For example, consider the case of transfer from real control at n to hyper­
control at p, which in turn calls a second hyper-routine at q. Let the inter­
pretation routine be entered at m. The scheme achieving this is illustrated in 
Figure 1, where transfers of real control are shown by full lines, and those of 
hyper-control by broken lines. 

In the figure hyper-commands are distinguished from real commands by 
surrounding all the former by braces thus: { ... }. Hyper-commands not 
terminated in Z are also distinguished in this manner. 
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X. HYPER-ROUTINE LOQPS 

As in normal programme techniques, so also in hyper-programmes full 
use is made of the method of controlling repetitions of groups of hyper-commands 
by a counting and sign-testing process. 

Two functions provided in the organizational part of the function block are 
used for this purpose. The first is written thus 

np-,..D,., 

the numerical part of which consists of the partitioned number Sn+r, where 
O<;r<S and O<;n<64; the second function is represented by 

np~Dr' 

where nand r are coded in the same manner. 
The first function places the number np.Pll units into the upper half of 

register Dr' whilst the second subtracts np.Pll from (Dr)' tests the difference 
resulting and, if negative, increases S by an additional unit Pm otherwise not. 

The first of these hyper-commands is used to set the number of repetitions 
of the programme loop to which it refers, the latter combines the functions of 
counting repetitions and causing a conditional shift of hyper-control. 

XI. VARIABLE HYPER-COMMANDS 

A special function is provided which simplifies the use of variable commands. 
Such a requirement is frequently associated with the loop control functions just 
described. This function causes a parameter to be transferred to K, and to be 
held there so that the numerical part of next hyper-command which follows 
is added into it. This function is denoted by the symbol 

+-(Dr)-,..K, where O<;r<S. 

If (Dr) is equal to np.Pm the numerical address of the following hyper­
command is effectively increased by np.Pll. 

When an operation in a loop of a hyper-routine has its numerical address 
progressively changed, e.g. an address referring to serial hyper-locations in 
the store, the address is frequently used also as a counter for loop control. Thus 
the loop control commands also serve the purpose of assisting in the use of 
variable commands. In this case it is normally required to vary the address by 
multiples of P for p-Iength words and by multiples of q for q-Iength words in 
complex operations. Thus two sets of loop control operations are provided for 
complex variable hyper-programmes 

np~Dr' 

nq-rDr' 

np~Dr' 

nq~Dr' 

having the effects previously described; the second set being used for loops 
involving addresses for complex operations. For both P and q systems, the 
same operation (Dr)~K can be used where required. . 

Functions of the type (Dr)~K may not be placed adjacent to one another 
in a hyper-routine. 
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XII. TR..(\.NSFERS TO AND FROM STORE 

One hyper-function transfers data to the hyper-accumulator and another 
transfers from the hyper-accumulator to the store. The former of these is 
written as 

(np)-rA, 

where np is the store location referred to; and similarly the second is written 

(A)-rnp. 

Closely associated with these are the two most elementary arithmetical 
functions involving transfer from the store to the hyper-accumulator. These 
are 

(np)J;;.A, 

which adds the content of '~hyper-Iocation n" into the hyper-accumulator and 

(np)~A, 

which subtracts the content of hyper-location n into the hyper-accumulator 
and so on. 

In cases of complex arithmetic equivalent q-Iength operations are supplied 
for transfers of q-word complex variables etc. Thus the operations provided 
would include 

(nq)~A; (A)-rnq; (nq)J;;.A; (nq)~A. 

Table 1 illustrates use of loop control and command variation operations and of 
braces, { }, to distinguish hyper-commands from machine commands. This 
routine accepts numbers from punched tape and stores them in sequential 
p-word store locations. 

TABLE I 

USE OF LOOP CONTROL, COMMAND VARIATION OPERATIONS, AND BRACES 

Location I Hyper-command 
--------

0 {n-lp~Dr} 

I -+{(Dr} ±"'R'} 
2 {(I) ~m} 

3 {lp ':::;'Dr}-I 
4 -{I ~S} 

5 {(L) ~S}+-

Operation 

Sets (n-I}p.pu in Dr 

Adds (n-s-I)p.pu to next command 

Stores input number in p-word starting at m+p(n-s-l) 

Reduces (Dr) by p.Pu and tests.the sign of (Dr) 

Return hyper-control to I 

Link to superior routine when (Dr) <0. 

This sequence causes the variable hyper-command at 2 to be adopted as 
{(I)-rn-s-l.p+m} on the (s+l)th cycle of the loop of n cycles. 

XIII. ADDITIONAL HYPER-FUNCTIONS 

Additional hyper-functions may be provided simply by placing appropriate 
routines, additional to the function block, into the store. These are performed 
by a special hyper-command coded as n; 15,Z which transfers control to the head 
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location of the additional routine at location n. Since the address digits of 
such .a hyper-command are used in specifying n, additional hyper-functions 
cannot refer to store addresses of data and are frequently of the type written as 

{f(.1)-,...1}, 

where f(.1) may be log (A), exp (A), (.1)1/3, etc. 

Similar hyper-functions are already included in the normal function block1 

e.g. (.1)-,..Ot, (1)-..-.1, etc. 

XIV. THE STANDARD HYPER-CODE 

The hyper-code has been standardized so as to apply to most of the function 
blocks so far designed; the same code calls the same functions whether the 
floating decimal complex or double length complex system is used. Variations 
occur in the additional functions called by the hyper-command described in the 
previous section. 

In the present scheme, the P 5-P1 digits are used to distinguish between 
hyper-commands which use the function block and those which do not. For 
hyper-commands in which this group is not Z, the conventions of normal machine 
operations apply as outlined in Parts I and II (Pearcey and Hill 1953a, 1953b). 

The earliest 16 of the 32 code numbers in Z-terminated hyper-commands 
refer to arithmetical functions and transfers of real variables, and organizational 
hyper-commands, whilst some of the remaining 16 call the hyper-functions 
relating to the complex variable. 

In calculations involving only real variables the latter group of hyper­
functions and its corresponding function block are not used. The first part 
only of the standard code is used. This, and the fact that the code applies 
equally well to a number of systems, means that the programmer only rarely. 
needs to take into account his arithmetical system whilst programming. 

The hyper-code used is shown in Table 2. It includes the hyper-functions for 
the complex variable. The first six hyper-commands 0-5 provide transfer to A 
and arithmetical functions of the real variable, the appropriate word length 
suffix being included (here written as p). These functions include addition 1 

subtraction, multiplication (product of (A) by (np)), and square rooting. The 
next three, 6-8, provide input, output, and transfer from A to store; the 
following three, 9-11, provide sequence control operations; the next three 1 

12-14, refer to loop control. Number 15 calls any additional hyper-functions. 

The arithmetical functions for the complex variable, called by code numbers 
16-21, are similar to those for the real variable called by 0-5. Input and output 
of the complex variable are provided by 22-24, and functions peculiar to the 
complex variable and those involving both real and complex variables together 
are given the highest code numbers. These include such operations as multiplica­
tion and division of a complex by a real quantity, evaluation of the modulus and 
conjugate of a complex number, and so on. 

Each function block can provide different groups of possible additional 
functions without change to the block. These depend upon the nature of the 
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Code 
Hyper-command 

Symbol 

n: 0, Z (np) ~A 
n: 1, Z (np) .:tA 
n: 2, Z (np) .:::;.A 

n: 3, Z (np) ~A 

n: 4, Z (np) ":;:A 

n: 5, Z (np)! -r:! 
n: 6, Z (1}:p) ~O 

n: 7, Z (I) ~np 

n: 8, Z (A) ~np 

n: 9, Z n ~S 

n: 10, Z n ~L 

.n: 11, Z (L) ~S 

n: 12, Z np ~Dr 
n: 13, Z np .:::;.Dr 
n: 14, Z (Dr) i;.f( 

.n: 15, Z Specified as 
desired 

n: 16, Z (nq) ~A 

.n: 17, Z (nq) .:tA 
n: 18, Z (nq) ':::;'A 
.n: 19, Z (nq) ~A 
n: 20, Z (nq) i;.A 

n: 21, Z (nq)! ~A 

.n: 22, Z (nq) ~O 

n: 23, Z (i) ~nq 

.n: 24, Z (A) ~nq 

n: 25, Z .[ (nq)[2~Ap 

n: 26, Z (np) ~Aq 

n: 27, Z (np) ~Aq 

n: 28, Z nq ~Dr 
n: 29, Z nq ':::;'Dr 

T. PEARCEY AND G. W. IDLL 

TABLE 2 

THE STANDARD HYPER-CODE 

Meaning 

Transfers hyper-word (n) to (n+p~l) to A 
Adds content of hyper-word (n) to (n+p~l) to (A) 
Subtracts content of hyper-word (n) to (n+p~l) to (A) 
Replaces (A) by its product with hyper-word (n) to (n+p~l) 

(fixed index systems hold less significant part of product 
in register B) 

Replaces (A) by its quotient with regard to (n), (n+l), . 
(n+p~l) 

Places square root of hyper-word (n) to (n+p~l) in A 
Print hyper-word in (n) to (n+p~l) in standard form 
Read one standard hyper-word from tape and place in (n) 

to (n+p-l) 
Transfers (A) to hyper-register (n) to (n+p-l) in standard 

form 
Transfer hyper-control to n 
Transfer hyper-control to n and store present hyper-control 

number plus one in L 
Transfer hyper-control to last location stored in L 
Place hyper-count number np in Dr 
Subtract np hyper-count units from Dr 
Form the numerical address of the next hyper-command by 

adding (Dr) to it 
Transfer control to n but return to interpretation routine 

Transfer (n) to (n+q-l) to A as a complex number 
Add (n) to (n+q-l) to A as a complex number 
Subtract (n) to (n+q-l) from A as a complex number 
Replace (A) by the complex product with (n) to (n+q-l) 
Replace (A) by the quotient with regard to the complex 

number (n) to (n+q-l) 
Replace (A) by the square root of the complex number (n) 

to (n+q-l) 
Print the complex number in (n) to (n+q-l) in standard 

form 
Read one standard complex number from tape and place into 

location (n) to (n+q-l) 
Transfer (A) to (n) to (n+q-l) as a standard complex 

number 
Replace (A) by the squared modulus of the complex number 

(n) to (n+q-l) 
Replace the complex number in (A) by its product with the 

real number in (n) to (n+p-l) 
Replace the complex number in (A) by its quotient with 

regard to the real number in (n) to (n+p-l) 
Place hyper-count number nq in Dr 
Subtract nq.Pn units ,from Dr' 
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routines within the blocks and frequently provide additional input and output 
facilities; operations upon (A) and on (X) and so on. These vary with the 
function block and are not listed in Table 2. 

xv. USE OF THE HYPER-CODE 

Diverse code systems for hyper-commands and machine commands may 
seem a disadvantage. It is, however, uneconomical to construct an interpretive 
routine whose hyper-code corresponds directly to the machine code and, more~ 
over, such a system would involve fre,quent transfers from hyper-control to 
machine control and back in order to perform machine commands. 

The apparent disadvantage of use of symbols for written hyper-commands 
differing from the code as it appears on tape is more than outweighed by the 
convenience of largely mnemonic symbols applied to all hyper-routines in the 
design stages. 

It should be noted that {n-,.-S}, which transfers hyper-control to n, is 
different from {n-,.-S} or {(D13)-"-S} which transfers real control without preparing 
to link back to the interpretation routine. In fact (D13)-"-S swi.tches back to 
normal machine operation; the subsequent commands being performed normally, 
not interpretively. Also, provision is normally made for transforming single 
counts to S into single counts to S. Thus {s(A)5,..S} becomes in effect a function 
which may be written as s(A)5,..S, which causes hyper-control to advance by an 
additional unit if (A) is negative. 

When coding hyper-routines on to tape full use is made of a special" input 
control routine H " (of 20 commands) which performs all the control operations of 
control D (listed in Pearcey and Hill 1953b ) and two additional operations" P " 
and" Q". The punch configurations, P=31, 3Y and Q=31, 15Y are placed 
immediately after the commands to which they refer. The effect of such control 
designations is to multiply the written address by p or q respectively, and then 
include the effect of any A type designation, punched immediately before that 
hyper-command, before inserting it into store. Thus with mpn stored in the 1A 
location: lA{(n)-,.-A} P, punched as 0,1:7Y:n:O,Z:31,3Y:, is stored as 
{(m+np)-,.-A}, and 1A{(A)-,..n}Q, punched as 0,1:7Y:n:8,Z:31,15Y, is stored as 
{(A)-,.-m+nq}. These special control designations, which automatically trans­
form hyper-commands into the required form, together with the p-word and 
q-word loop control operations, virtually free programmers from concern with 
word lengths during design of programmes. 

Insertion of the function block is usually performed in the order: primary B 
routine (from stepping switches); control H routine (from tape); spaces left 
for insertion parameters; first order function routines: second order function 
routines (which use first order ones); . . .; highest order function routines ; 
sequence and loop control routines; interpretation routine; directory; 
additional hyper-function routines. 

XVI. EXAMPLE OF A HYPER-ROUTINE 

.As an example of a typical hyper-routine consider the routine required for 
the evaluation of a polynomial, of degree n, of the complex variable together 
with its derivative. The coefficients will be assumed to be complex numbers. 

J 
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The method of computation by recurrence relation is adopted. Thus, if 
the independent variable be z and the coefficients be denoted by ar, then P r 
and p'r+1 are defined by: 

and 

f(z) =z1I +a1zn-1 +a1P-2 + ... +an, 

Po=l, Pr Pr-lz+ar, (r=O, 1, 2, ... , n-l) 
P n --'f(z) , 

p'o=o, p'r+1 =p',z+Pr, (r=O, 1, 2, ... , n-l) 
p' n f'(z), 

where f(z) is the function and l' (z) its derivative with regard to z. 

TABLE 3 
A HYPER-ROUTINE FOR COMPUTING A POLYNOMIAL OF A COMPLEX VARIABLE AND ITS DERIVATIVE 

Location 
I 

Symbol Code Action Tape Code 

o IS 3A, {(A) ~O }Q Causes z to be sent to 3S+0, 1, 2, 3 3A; 0; 22, Z:, Q 
1 2A, {O ~Do} Places order n in Do in form 8n 2A; 0; 12, Z 
2 3A, {(3) ~A}Q Clears (A) 3A; 3; 16, Z; Q 
3 3A, {(A) ~I }Q Clears Pr store 3A; 1; 22, Z; Q 
4 3A, {(A) ~2 }Q Clears p~ store 3A; 2; 22, Z; Q 
5 3A, {(I) ~A}Q Sets Pr-l to A 3A; 1; 16, Z; Q 
6 3A, {(OJ ':;'A:}Q Forms Pr-lz 3A; 0; 19, Z; Q 
7 {(Do).:i;..j{ } 0; 14, Z 
8 3A, {(4) .::I;.A}Q Adds aT to (A) 3A; 4; 17, Z; Q 
9 {I ~Do} 8; 13, Z 

10 lA, {12 ~§} lA; 12; 9, Z 
11 {(i) ~§ } (A),=p=f(z) 0; 11, Z 
12 3A, {(A) ~I }Q I Substitutes Pr in place of Pr-l 3A; 1; 22, Z; Q 
13 3A, {(2) ~A}Q Sets p~ to A 3A; 2; 16, Z; Q 
14 3A, {(OJ '!;'A}Q Forms p~z 3A; 0; 19, Z; Q 
15 3A, {(I) .:i;..A}Q Adds P; 3A; 1; 17, Z; Q 
16 3A, {(A) ~2 }Q Replaces p~ by p~ + 1 3A; 2; 22, Z; Q 

17 lA, {5 ~S} Returns hyper-control to 5 lA; 5; 9, Z 

._--

Notes 

1. The four-word hyper-locations of the data block; 3A, 0-3, 4-7, 8-11, 12-15, hold z, 
Pr-l' p~,and zero respectively. 

2. The coefficients ar occupy hyper-locations 3A 16-19, 20-23, etc. 
3. During insertion of this hyper-routine, 32 holds the head location of this hyper-routine 

(IS) and location 33 holds 8npw where n is the degree of the polynomial, while location 34 holds 
the head location of the 3S-data block. 

The hyper-routine designed to compute f(z) and 1'(z) is shown in Table 3. 
It is assumed that upon entry of hyper-control into this hyper-routine (A) =z. 
Storage space is provided in a data block for the variable z, for the partial 
polynomial Pr-l and the derivative p'r' and the number zero used for clearing A 
upon entry into the hyper-routine. Hyper-command number 10 could be 
replaced by {Pl-.!',..S}, since single counts into the sequence register made inter­
pretively advance hyper-control one extra step forward. 
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When used in hyper-programmes, the coefficients would be inserted from 
tape and the make-up of the tape would be: 

(i) Control H (including P and Q facilities for hyper-programme). 
(ii) nT (which changes insertion-command to leave space for control 

parameters) . 
(ill) Interpretive programme (function block, directory, and any additional 

function routines) starting at location n. 
(iv) 38, x'T (which leaves space for data to be inserted subsequently and 

stores the head location of this block). 
(v) Input hyper-routine (outlined in Section XII) starting at x'. 

(vi) 48, input programme; uses input hyper-routine and returns to primary 
E after n +4 items of input. 

(vii) 4A, 0-..-8, D (transfers to input programme to insert data following). 
(viii) Four zeros, clearing working space, and coefficients ar in decimal code. 

(ix) x'T (prepares to over-write hyper-programme just used). 
(c(A)-,..33, D, 8np1l1 U) sets parameter for degree of polynomial. 

(x) Polynomial hyper-routine (reference to 38-ed data block now possible)~ 
(xi) x8 master hyper-programme (varies with problem). 
(xii) xA,0---r8,D (transfer control to hyper-programme and starts com­

putation). 

XVII.-OTHER HYPER-ADDRESS CODES 
The great flexibility of the interpretive method is obtained at the expense of 

time, one hyper-command corresponding in time to a full cycle of the interpretive 
loop and any function selected from the function block. USUl111y, in the systems 
adopted, the time spent in the function block performing essentially difficult 
and involved operations cannot be avoided and is considerably greater than the 
time occupied in one traverse of the interpretation routine. 

However, as the length of a hyper-word becomes greater, more time is spent, 
in transfers to and from the hyper-accumulator. A change of the hyper-code 
to a three-address code avoids much of this extra organizational shifting of data. 
This method is adopted in the n-fold accuracy function block. In this system 
there is no hyper-accumulator. One hyper-command occupies two store 
locations. The first contains a numerical address m n(1), an operation code F, 
say, and the distinguishing Z. The following location contains the second and 
third numerical addresses, m n (2) and m n(3), say, in PCPlO and Pn-P20 groups~. 
Single address words without Z are interpreted as normal machine operations~ 
Thus, for instance, the two-word hyper-command coded as mn(l); F, Z: m n(2) ; 
m n(3) may cause (m n (1») to be added to (m n (2»), each n words long, and placed' 
into the n locations m n (3), and so on according to the code number of F. 

When, as occurs with large matrices, there are relatively few groups of 
data in the store, the address digits of one-word hyper-commands may be 
partitioned into a, b, c; F, Z. Here a, b, c, have values 0-8(3 digits each) and 
refer to two of 16 store locations. Each of these groups of two words may be 
considered as partitioned into N, n, m, 1, where N is the location of the first word 
in an n xm matrix of p-word numbers occupying 1 store locations in all. 
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The associated function block can be designed to provide operations such as 
matrix multiplication, inversion, division, etc. Additional calculations are 
llerformed, for each operation, to adjust the value of N, n, m, l of the result. 
Thus, in the multiplication which we may denote by {(a).(b)--,..c}, nc=ma' mc=nb' 
and lc P xnc xmc are calculated in the course of the operation and Nc may be 
-provided by the programmer. By suitable design of the function block, the 
~omputer can be made to keep a record of usage of store space and adjust N c 

itself. In these ways the programmer may be relieved of concern for lengths of 
data units and may programme in terms of a,.b, conly. 

The interpretive system has so far been applied mostly to various arith­
metical methods as described, but has great potentialities for problems other 
than those that are purely arithmetical, since hyper-commands may be 
partitioned and coupled together in any manner desired so long as a suitable 
interpretation routine can be designed. 
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