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Summary 

The two· dimensional differential equation 

- cr- +- cr- +,=0 o ( ocp) 0 ( ocp) 
ox ox oy oy .•........•.....•.. (1)· 

describes the current flow in a sheet of conductivity cr loaded by a transverse current 
density (-1:), cp being the electrical potential. It is known that equation (1) can be 
solved approximately by a procedure in which the two· dimensional continuum is 
replaced by a net of straight-line bounded meshes, leading to an electrical network of 
conductances. The author shows that meshes bounded by "curvilinear rectangles" 
can be equally well dealt with and, on· the basis of different conformal transformation 
functimls for the individual meshes, derives the formulae required for a solution, if the 
mesh boundaries are circle arcs or circle arcs and straight lines. A good fit of the 
contours of the boundaries and equipotentials and their orthogonal trajectories can be 
obtained. This reduces the number of meshes without impairing the accuracy. Sharp 
corners at boundaries can be dealt with in a similar way. Formulae for a good accuracy 
computation of potential gradients and a method for changing th.e mesh size abruptly 
are given. Two examples using nets of only four meshes demonstrate the power of 
the method, the maximum errors being of the order of a few per cent. 

I. INTRODUCTION 

The problems dealt with in this paper are those 
dimensional differential equation 

:x( cr~:) +~( cr~:) +~=O, 

governed by the two-

(1) 

in which c:p is an unknown function of position and cr and ~ are known functions 
of positions or functions of c:p and its derivatives, or both. An important problem 
of this type is the electric conduction in a plane sheet. It will be used for all 
explanations in this paper. Then c:p is the electric potential, cr the electric con­
ductivity, and ~ the current density of external currents entering the sheet. 
In electrostatic field problems c:p is the electric potential, cr is given by 1/(47t)­
times the dielectric constant, and ~ is the density of the space charge. Equation 
( 1) covers also three-dimensional axially symmetrical arrangements if the 
distance from the axis (the radius) and the distance in the direction of the axis 
(the height) are dealt with as if they were Cartesian coordinates and the quantities 
substituted. in equation (1) for cr and ~ are the products of the radius and the 
actual values of cr and ~. 
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The approximate numerical solution of (1) by a system of simultaneous 
linear equations that can be considered the network equations of a system of 
conductances (and are amenable to relaxation methods) can be described in the 
following way: 

Step I.-Select a sufficient number of points within and on the boundaries 
for which the values of ([) are to be found. Let these points be called nodes. 

Step 2.-Find a linear relation 

. . . . . . . . .. (2) 

between the value ([)N of ([) at a node N and the values ([)m ([)s, ([)n ... at neighbour­
ing nodes R, S, T, ... which when complied with for RN=O secures that ([) is 
an approximate solution of equation (1). Equation (2) takes the form of 
Kirchhoff's first rule with ([)N' ([)m etc. denoting potentials. For an arrangement 
of the nodes as the corners of regular triangles, squares, and hexagons all con­
ductances involved are equal, as Southwell (1946) has shown. The values of 
the conductances for an arrangement in which the nodes are the corners of 
irregular triangles can be found by formulae derived by the author (1949) and 
MacNeal (1953). 

Step 3.-Solve the system of linear equations resulting from applying 
equation (2) to all nodes. A very convenient way of finding an approximate 
solution is Southwell's relaxation method (Motz and Worthy 1945; Southwell 
1946; Tasny-Tschiassny 1949). The so-called residuals RN are computed for 
an arbitrarily selected set of values ([). A significant residual Rm usually the 
largest residual, is either liquidated or adjusted to a suitable value by changing 
the value of ([)N by a certain amount. By this the residuals Rm Rs, Rn ~ .. 
at the neighbouring nodes are altered too, but, in general, the changes are 
smaller than the change of the residual RN • Then another important residual is 
dealt with in the same way. The procedures converge fairly quickly and are 
continued unti~ negligible values of all residuals are obtained. Instead of 
solving the system of linear equations numerically, analogues representing 
actual networks of conductances can be employed. 

The boundaries require special artifices in the case of regular nets, because 
nodes need not necessarily lie on boundaries everywhere. If irregular nets are 
used, nodes can always be placed on the boundaries and no special problems arise. 
The errors in the values of ([), i.e. the differences between the values of ([), that 
comply with the system of linear equations (2) for RN=O and the values of ([) that 
comply with the differential equation (1), are greater for irregular than for 
regular nets. For this reason and because the number of straight lines simulating 
a sharply curved part of the boundary must be large, the number of nodes must 
also be large. This increases the labour in solving the simultaneous equations. 

In the present paper we introduce the use of those curvilinear nets in which 
the mesh contours are parts of circles or parts of circles and straight lines. 
Basing our derivations on the conformal transformation of a curvilinear into a 
rectilinear mesh, in Section II methods are developed by which the interior 
of a "curvilinear rectangle" can be approximated by lumped conductances 
connected between its corners. This approximation permits the use of different 
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transformation functions for the different meshes of a curvilinear net as long as 
these functions supply the same curve for the common boundary of adjacent 
meshes. If a suitable net is laid out and the interior of all meshes replaced by 
the conductances mentioned, an electrical network results in which the statement 
of Kirchhoff's first rule supplies the required equation (2). 

The error occurring when using the described nets appropriately is much 
smaller than the error involved in nets with straight contours. The additional 
labour spent in laying out a curvilinear net may be often compensated. for by 
the smaller number of nodes required for the same accuracy. Since it can 
always be arranged that nodes are on the boundaries, as in a net formed of 
irregular triangles, no special artifices are required for the boundaries. Contours 
used in engineering are often composed of parts of circles and straight lines; 
hence the shape of the boundary can generally be exactly adhered to. In certain 
types of problems, for instance, the problem of finding the maximum value of 
the voltage gradient occurring in a material, this is an advantage, because 
the maximum voltage gradient occurs usually at the boundaries. 

II. THE REPLACEMENT OF THE INTERIOR OF A " CURVILINEAR RECTANGLE" 

BY LUMPED CONDUCTANCES 
Let 

w=u+jv=w(z)=w(x+jy) ( 3) 

be an analytical function. Then u and v comply with the Cauchy-Riemann 
differential equations 

U2 

u, d U 
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c 

Fig. l.-Rectilinear rectangle in the w.plane. Fig. 2.-Curvilinear rectangle in the z-plane. 

A rectangle A'B'O'D' in the w-plane (Fig. 1) with the mid points E', P', G', H' 
of its sides, its centre J', and the mid points K', L', M', and N' between J' 
and E', P', G', and H' respectively isthe result of a transformation by w(z) of a 
"curvilinear rectangle" ABOD in the z-plane (Fig. 2) marked correspondingly 
without primes. Let x and y be the variables appearing in equation (1) and let 
the curvilinear rectangle ABOD (Fig. 2) be a mesh of a curvilinear net with the 
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nodes A, B, 0, and D. To replace the interior of this mesh by a network of 
conductances we proceed in the following way. First we express the difference 
in potential (tpA -tpB) between the points A and B as an integral taken along the 
contour BEA, i.e. along the contour defined by u=u1• 

fA otp 
tpA-tpB= B ovdv. (5) 

If otp/ov is expressed by Taylor's expansion about the pointE and the integration 
carried out we obtain 

tpA-tpB=(~:t . ~V+O(~V3), ............ (6) 

where the subscript E denotes the value at the point E and ~v is given by 

(7) 

The term O(~V3) contains (03tp/OV3)E and higher derivatives of tp. 

In the approximation by lumped conductances the current passing within 
the conducting sheet through the line EKJLF is to be made equal to the current 
collected at the point B. The current I E~ through the line EKJ is given by 

. . . . . . . . . . .. (8) 

If otp/om and otp/oy are expressed in terms of otp/ou, otp/ov, ou/om, ov/om, 
ou/oy, and ov loy, and equations (4) are used, expressions for the total differentials 
du and dv result. The formula 

. . . . . . . . . . . . .. (9) 

is obtained. For the contour EKJ dv is zero and the second term in the bracket 
vanishes. With the aid of various expansions according to Taylor's theorem 
this integral can be approximated on the basis of aK , (otp/ov)m and (02tp/OUOV)J, 
where the subscripts denote the values at the appropriate points. If, further, 
(02tp/OUOV)J is approximated by . 

( 02tp) tpB+tpD-tpA-tpC+O(~V2)+O(~U2) 
ouov J ~u~v ' 

. . . . .. (10) 
• 

and the resulting expression for I EJ divided by equation (6) we obtain 

~ =aK ~u [1+1 tpB+tpD-tpA-tpC+O(~U2)+O(~V2)]. (11) 
tpA-tpB 2~v tpA-tpB 

The terms O(~U2) and O(~V2) contain expressions in a and tp obtained 
by at least three differentiations, with respect to u or v. Th~ term 
i(tpB+tpD-tpA-tpd/(tpA-tpB) is O(~u), as can be seen from equations (6) 
and (10). 
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For O'=constant the error vanishes if the lines of constant cp in the w-plane 
are straight, because then all derivatives ofcp with respect to u and v higher 
than the first vanish and these higher derivatives are multiplying factors in the 
terms O(~U2) and O(~V2) of equations (10) and (11). In particular this is the 
case if two opposite sides of the curvilinear rectangle .ABOD coincide with lines 
of constant potential. 

The method described requires that a loading of the curvilinear rectangle 
BFJE by external currents is lumped as an external current applied at the node B. 
Similarly the loadings of the rectangles FOGJ, JGDH, and EJHA are con­
centrated at the nodes 0, D, and A respectively. The magnitudes of the 
concentrated currents can be computed approximately as the products of the 
areas of the rectangles concerned and.mean values of the specific loading (--r). 

. . 
III. NETS IN WHICH THE MESH CONTOURS ARE PARTS OF CIRCLES AND 

STRAIGHT LINES 

The results of Section II show that there is no objection to employing 
different analytical functions for different meshes of the net as long as adjacent 
contours coincide. In this section it will be shown how curvilinear rectangles 
bounded by parts of circles or straight lines can be conveniently dealt with. 

\~, 
o 

Po (Xo. Yo) 

m=JM 

b, 

Fig. 5.-Curvilinear rectangle composed of arcs of circles. 

(a) The Field Produced by One Source and One Sink 
In a system of Cartesian· coordinates ~, 'Y) (Fig. 5) that does not usually 

coincide With the system of coordinates x, y used in equation (1), let the point 
M 1(m,O) be a sink and the point M 2( -m, 0), not shown in the diagram, be a 
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source of current, both of the same intensity. The ~-axis will be called the 
source axis, the YJ-axis the sourceless axis, and the origin Po the geometric centre. 
If the intensity of source and sink is appropriately chosen, the analytical function 

~-m 
w=ln ~+m ........................... (12) 

of ~ = ~ + j'Yj supplies in its real part 

_1 (~-m)2+YJ2 
u- 2 ln (~+m)2+YJ2 .................... (13) 

the family of equipotentials (u is the parameter of the family), and in its imaginary 
part 

v=tan-l -~-tan-l _YJ_ (14) 
~-m ~+m"""""" 

the family of flow functions (v is the parameter of the family) peculiar to this 
arrangement. By appropriate manipulations on equations (13) and (14) or 
by straight-out verification it can be shown that a circle with centre (bI) 0) and 
radius r l where 

( 15) 

is an equipotential for a value of the potential 

ul=sinh-l (~) .................. (16) 

(and similarly for other subscripts) and that a circle with centre (0, B l ) and radius 
Rl where 

( 17) 

is a flow line for the value of the flow function 

. . . . . . . . . . . . . . . . .. (18) 

(and similarly for other subscripts). If the quantity m, henceforth called the 
parameter, is given and two pairs of values ul, U 2 and VI) V2 are selected, four 
circles result from equations (15)-( 18) and determine a curvilinear rectangle 
ABOD (Fig. 5). This rectangle can be replaced by a network of conductances 
(see Figs. 3 and 4). The quantities Llu and Llv are the absolute values of the 
differences (ul -u2 ) and (VI -v2 ) respectively. 

Equations (15) and (17) on the one hand and equations (16) and (18) 
on the other become identical, if fictitious quantities 

U=jv, 
M=jm 

( 19) 

are introduced and in writing down the equations either capital letters or small 
letters are used. This symmetry with small letters referring to the u-circles 
and capital letters referring to the v-circles is useful. 
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(b) Basic Relations for a Curvilinear Rectangle 

In Figure 5 besides the axes of coordinates ~ and YJ with the origin (the 
geometric centre) Po the axes of coordinates x and y, referring to equation (1) 
are shown. The coordinates added in parentheses to the individual points 
refer to the frame (x, y). In the curvilinear rectangle ABCD PI) P2 are the 
centres of the u-circles u =u1, u =u2, and P l' P2the centres of the v-circles 
v=vI) v=v2. The points n 12 and N12 are the mid points between the respective 
circle centres. From Pythagoras's theorem applied to the triangles P 2P,;D 
and P2P2PO we obtain 

P D2_p P2+( +d12)' 2 2 
2. - 2 0 q12 2 -r 2' ............... (20) 

where d12 is the distance between the centres of the two u-circles and q12 the 
distance between n 12 and Po. Similarly we obtain 
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Since P 2D=P2A we obtain from equations (20) and (21) 

(22) 

It follows from the triangle M1PoP2 that 
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Since P 2D=P2A=P2M 1 and 

} . . . . . . . . . . . . . . . . . . .. (24) 

we obtain from equations (20), (21), and (23) the conditions for orthogonality 
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. . . . . . . . . . . . . . . . . . . . .. (25) 

and 

.............. (26) 

Equations (22), (24), (25), and (26) refer to the u-circles. It can be easily 
shown that these equations hold good for the v-circles, if the quantities rI) r2, 

Q12' d12, bI) b2, and m are replaced by the corresponding capital letter quantities 
(see Fig. 5 and equation (19)). 
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In Section IV it will be discussed in detail how these relations can be utilized 
to solve the problems connected with the layout of a curvilinear net. At present 
it should be pointed out only that the frame (~, YJ) and the value of m are unequi­
vocally determined if two u-circles or two v-circles are given. 

(0) General Points Regarding the Layout of a Net 
It is advisable to work with the same frame (x, y) for the whole net. Figure 6 

shows a convenient way of recording in a single figure for the whole net: the 
centres (xl) Yl)' (X2' Y2)' (X3' Y3)' (X4' Y4) of four contour circles, their radii r 1, r 2, 
r 3, r 4' the geometric centre (xo, Yo), and the parameter m of a mesh ABOn and, 
with the aid of the arrowed lines starting at the value of m, which circles are the 
v-circles. If a circle degenerates into a straight line (e.g., the line AF, Fig. 6), 
the direction tangent a6 of the line and a point (X6' Y6) through which it passes 
are indicated, instead of the position of the centre and the length of the radius 
which are infinite. 

Fig. 6.-Method of recording the characteristic data in a diagram. 

If a net consisting entirely of curvilinear rectangles is to be laid out, one 
tries to follow approximately the direction of the equipotentials and their 
orthogonal trajectories. If curvilinear meshes are to be employed near the 
boundaries only, one tries to avoid too abrupt changes of the angle between the 
directions of the equipotentials and the mesh boundaries. These procedures 
ensure that the lines of constant cp in the w-plane are only' slightly curved (see 
end of Section II). After forming an idea of the mesh sizes in the individual 
parts of the field one starts at a boundary and proceeds from mesh to mesh. 
Thereby problems 1, 2, and 3, to be dealt with in Section IV (a), are to be solved 
in succession. Meshes in which simultaneously two v-circles degenerate into 

. straight lines are dealt with in Section IV (b). If the mesh size is to be changed, 
the method described in Section VI is used. Sharp coruers occurring at the 
boundaries or at the surfaces between dielectrics of different dielectric constants 
can be included by a procedure described-in Section V. 

IV. DETAILED PROCEDURES FOR THE LAYOUT OF A NET 

If the accuracy requirements are not very stringent it will suffice for most 
of the meshes to rely on the drawing and to measure the required dimensions. 
For some meshes, or if greater accuracy is required, for a considerable number of 
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them computations must replace measurements. It is recommended that 
computations be carried out in Cartesian coordinates common to all meshes, 
as mentioned before. The procedures most suitable for use with Cartesian 
coordinates are de~cribed below. 

(a) At least One of the u-Circles and One of the v-Circles do not degenerate into a 
Straight Line 

Problem I.-Two u-circles or two v-circles are given. It is not necessarily 
known whether they are u- or. v-circles. Find the geometric centre and the 
value of the parameter. 

Solution.-Refer to Figure 5. Since it is not known whether the circles 
are u- or v-circles, small letters will be used for the symbols, but the procedure 
js similar for capital letter symbols. 

(1) Find the mid point nl2 between the two centres of the circles. 
(2) Using equation (22) find the length Ql2' 
(3) On the line joining the centres of the two circles transfer the length Ql2 

from nl2 to that side on which the centre of the smaller circle lies. This 
determines the geometric centre Po. 

(4) Using equation (24) compute bl or bi! and using equation (25) compute m . 
.Alternatively, m can be found directly from equation (26). If m is' 
real, the two given circles are u-circles, if m is imaginary, they are 
v-circles. 

If one of the given circles degenerates into a straight line, the geometric 
centre is found as the intersection of this line with the perpendicular to it through 
the centre of the non-degenerate circle. The value of the parameter is given 
by one of the two equations (25). 

Problem 2.-The geometric centre, the source and sourceless axes, the value 
of the parameter, and a point are given. Find the u-circle and the v-circle 
passing through the given point. 

Solution.-Refer to Figure 5. Let D be the given point. If either P2' 
the centre of the u-circle through D, or P 2, the centre of the v-circle through D 
are given, draw'a perpendicular to the line P~ (or P 2D) through D and intersect 
with the axis on which P2(P2) does not lie. The point of intersection is the 
centre of the circle not given. If neither circle through D is given, find the 
centre of the v-circle through, D as the intersection of the bisector of DMI (or 
DM2 ) and the sourceless axis. 

Problem ~3.-0ne u- and one v-circle, the geometric centre, the two axes, 
and the value of the parameter are given. Find the two points of intersection, 
one of which. will be used. 

Solution.-Refer to Figure 5. Let the given circles be the u2- and v2-circle 
with the centres P2 and P 2 respectively. The graphical solution is straight­
forward. Analytically the point D can, often with less labour, be found as the 
point of intersection of the straight lines P~ and P2D. If a is the direction 
tangent of the line P~2' the direction tangents of the lines P~ and P 2D equal 
tan [tau-l a±tau-l (R2/r2 )] and tan [tau-I a=ftau-1 (r2/R2 )] respectively. 

B 
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If one of the two circles degenerates into a straight line, let it be called the 
circle 1. Then the distance from the geometric centre Po of the points of inter­
section between the other circle 2 and this straight line is equal to (b2 ±r2 ) or 
(B2 ±R2), as the case may be, positive values being on the side of Po on which 
P2 or P 2 lies. 

b2 or B2 is to be computed from equation (25). 

(b) Both v-Circles Degenerate into Straight Lines 
In this case the bundle of v-circles degenerates into a pencil of straight 

lines and the u-circles are concentric circles with their centre in the point of 
intersection of the v-lines. If the direction tangents of two v-lines are a l and a2 

and the radii of two u-circles RI and R 2, we obtain 

!1U=U2 -UI =In ~:=2 ·30259log10 (~:), (27) 

!1v=v -v =tan-I a -tan-I a =tan-I a2 -al • (28) 
2 I 2 I 1 +aI a2 

(c) Notes Regarding the Computation of !1u and !1v 
When using equations (16) and (18) for the computation of Uu u2, VI' v2 

care must be exercised-because both sinh-I and sin-I are multivalued functions. 
The following rules eliminate any possibility of an error in the computation 
of I !1u/!1v I and I !1v/!1u I, that is, the quantities required for the computation 
of the conductances in Figures 3 and 4. 

Rule for the Computation of !1u 
To find I !1u I take the difference of I U I I and I U2 I if the sourceless line is 

outside the curvilinear square, and add I U I I and I U 2 I if it passes through it. 

Rules for the Computation of !1 v 
(1) Definition of " small" and" great" arcs.-Let that part of the v-circle 

that lies between the sources MI and M2 and contains the arc considered 
be drawn (or thought to be drawn). If this part of the circle is greater 
than a half-circle, viz. if the centre of the circle is within the area defined 
by the part of the v-circle drawn and the straight line connecting the 
sources MI and M 2, the arc shall be called a " great" arc. If this is 
not the case the arc shall be called a " small" arc. 

(2) If Siu-I (m/R I ) is the value of sin-I (m/R) that is between 0 and tn, 
then 

VI = sin-I (~J =Siu-I (~J' for "small" arcs, 

VI =siu-I (~J =n-Siu-I (~} for "great" arcs. 

(3) To find I !1v I, take the difference of I VI I and I v2 1 if the source line is 
outside the curvilinear square, and add I VI I and I v2 I if it passes through 
it. 

18 L. TASNY -TSCHIASSNY 

If one of the two circles degenerates into a straight line, let it be called the 
circle 1. Then the distance from the geometric centre Po of the points of inter­
section between the other circle 2 and this straight line is equal to (b2 ±r2 ) or 
(B2 ±R2), as the case may be, positive values being on the side of Po on which 
P2 or P 2 lies. 

b2 or B2 is to be computed from equation (25). 

(b) Both v-Circles Degenerate into Straight Lines 
In this case the bundle of v-circles degenerates into a pencil of straight 

lines and the u-circles are concentric circles with their centre in the point of 
intersection of the v-lines. If the direction tangents of two v-lines are a l and a2 

and the radii of two u-circles RI and R 2, we obtain 

!1U=U2 -UI =In ~:=2 ·30259log10 (~:), (27) 

!1v=v -v =tan-I a -tan-I a =tan-I a2 -al • (28) 
2 I 2 I 1 +aI a2 

(c) Notes Regarding the Computation of !1u and !1v 
When using equations (16) and (18) for the computation of Uu u2, VI' v2 

care must be exercised-because both sinh-I and sin-I are multivalued functions. 
The following rules eliminate any possibility of an error in the computation 
of I !1u/!1v I and I !1v/!1u I, that is, the quantities required for the computation 
of the conductances in Figures 3 and 4. 

Rule for the Computation of !1u 
To find I !1u I take the difference of I U I I and I U2 I if the sourceless line is 

outside the curvilinear square, and add I U I I and I U 2 I if it passes through it. 

Rules for the Computation of !1 v 
(1) Definition of " small" and" great" arcs.-Let that part of the v-circle 

that lies between the sources MI and M2 and contains the arc considered 
be drawn (or thought to be drawn). If this part of the circle is greater 
than a half-circle, viz. if the centre of the circle is within the area defined 
by the part of the v-circle drawn and the straight line connecting the 
sources MI and M 2, the arc shall be called a " great" arc. If this is 
not the case the arc shall be called a " small" arc. 

(2) If Siu-I (m/R I ) is the value of sin-I (m/R) that is between 0 and tn, 
then 

VI = sin-I (~J =Siu-I (~J' for "small" arcs, 

VI =siu-I (~J =n-Siu-I (~} for "great" arcs. 

(3) To find I !1v I, take the difference of I VI I and I v2 1 if the source line is 
outside the curvilinear square, and add I VI I and I v2 I if it passes through 
it. 



NETS OF PARTS OF CIRCLES FOR FIELD PROBLEMS 19 

V. SHARP CORNERS 

Sharp corners may occur at the electrodes and at the border lines of different 
dielectrics. Usually a sharp corner is formed by two straight lines. If this is 
not the case it can for a certain distance be approximated by a corner of this 
type to make the following treatment possible. 

In Figure 7 let aOe be the sharp corner of the .aperture 

rx=prr., (29) 

and let Ob be the bisector of rx. Let the distance OA=OB=OC=t be con­
veniently chosen. Let three circles of equal radius R with their centres on the 
lines Oa, Ob, and Oe be drawn in such a way that they intersect at right angles. 

d" 

" " 
,<O_:~ __ i" 

" G vt 8' 

7 --:;r; F' , / , / , / , / , / , / , / 

d 

Fig. 7.-Sharp corner in the ~-pla.ne. Fig. S.-Sha.rp corner in the w-pla.ne. 

at the points D and E that lie on the bisectors Od and Oe of the angles aOb and 
bOe respectively. The analysis of the triangle ODM shows that the radii R 
of these circles and the distances s of the points D and E from the corner 0 
are given by 

R- t. sin (prr./4) 
-1/V2-sin (prr./4)' 

................ (30) 

t. sin [(I-p)rr./4] 
s= . 
. I/V2 -sin (prr./4) 

(31) 

The ratios (R/t) and (s/t) for a few typical angles rx are contained in Table 1. 
If a system of Cartesian coordinates (~, 'Y) with the origin 0 and the direction of 
the ~-axis coinciding with the direction Oa is chosen (Fig. 7), the configuration 
of Figure 7 can be conformally transformed into the configuration of Figure 8 
(Schwarz-Christoffel transformation) and the transforming function is 

. (W)P (U+jV)P ~=~+J'Y)=t t =t ,~t- . .. .......... (32) 

The curvilinear square O'A'D'B' deviates only slightly from the rectilinear 
square O'A'F'B'. This is evident from Table 1, in which the ratios 

O'D'=(~)l/P 1 
O'F' t V2 .. ·.. .... .... ... (33) 

are tabulated for various angles rx. 
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TABLE 1 
RATIOS (Rlt), (Sit), and (O'D'IO'F') FOR TYPICAL ANGLES 0( 

45° I 90° 
I 

1350 1800 225° 270° 315° 

0·250 0·500 0·750 1·000 1·250 1·500 1·750 
0·381 1·180 3·667 

I 

00 -6·684 -4·262 -3·597 
1·085 1·178 1·288 1·414 1·570 1·762 2·035 
0·980 

I 
0·982 0·991 1·000 

I 
1·014 

I 
1·031 1·061 

i 

An argument based on the subdivision of the figures OADB and OBEC 
into (n2-1) parts which are nearly curvilinear squares (n is an integer) and one 
figure which is geomet:rj.cally similar to the original figure, shows that the figures 
OADB and OBEC can in very good approximation be replaced by the networks 
of conductances shown in Figures 3 and 4, as if they were curvilinear squares 
(~u=~v=t) with the corners at 0, A, D, Band 0, B, E, C respectively. 

o 

A 

Fig. 9.-Curvilinear rectangle with a sharp corner, t1>t. 

It is sometimes convenient to make the lengths OA and OB slightly different. 
In this case Figures 3 and 4 can still be used, if the following specifications 
referring to Figure 9 for tl > t are adhered to, in which the directions of ~u and 
..6.v are indicated. 

R is given by equation (30). 

(t-t1 )[(t-t1 )/V2+(t+t1 ) sin (pn/4)] +2V2 t tl sin2 (pn/4) 

E 1 = 2[1/V.2-sin(pn/4)]. [t. V2. sin (pn/4)+(t-t1 )] " 

, . . . . . . . . . . . . . . . . .. (34) 

~ ~t = (£!) lip 

~v t ' 
I 

f 
. . . . . . . . . . . . .. (35) 

:Equation (34) is derived from the condition that for given values of t and tl 
and for R given by equation (30), the circles of radii Rand Rl intersect at right 
angles. Equations (35) are the consequence of the transformation equation 
(32). 
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VI. CHANGE OF THE MESH SIZE 

In parts of the field in which the field gradient is smaller and does not change 
rapidly an increase of the mesh size reduces the labour considerably without 
affecting the degree of accuracy. If in Figure 10 the circle which passes through 
the points A, B, andC forms the boundary AC in the curvilinear rectangle 
ACDE and the boundary CB in the curvilinear rectangle CBFD-which can be 
arranged for in the layout of the net-the node C can be eliminated in the 

A 
B 

Fig. lO.-Part of a net with a node 0 not yet eliminated. 

following way. Prerequisites are that, in the neighbourhood of C, cr does not 
vary very much and the equipotentials and field lines in the w-plane are nearly 
straight. Then we can assume that approximately 

where 
'Pc=ka'Pa+kb'PM .................... (36) 

k Y a "1 
a=Ya+Yb' J~ 

Y b 

kb=y +Y' 
a b 

.................... (37) 

and where Y a and Y b are the conductances connecting the nodes CA and CB 
respectively. Let us split each of the conductances Y E , Y m and Yp that connect 
the nodes E, D, and F respectively and C (Fig. 10) into two parallel conductances 
(kaY E)' (kaY D)' (kaY p) leading to node A, and (kbY E)' (kbY D)' (kbY p) leading to 
node B respectively (Fig. 11). Let us, further, connect the nodes A and B 
by a conductance equal to the series combination of Y a and Y b• The brokeri 
lines in Figures 10 and 11 are the conductances that are affected by this procedure 
and the full lines are those that are not. If the potentials 'PA' 'Pm 'Pm 'PE' 'PP of 
the nodes A, B, D, E, and F, and the external node currents lA' 1m 1m IE) and IF 
at these nodes (Figs. 10 and 11) respectively are assumed to be equal in pairs, 
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the analyses of Figures 10 and 11 show that the current Ic appearing in Figure 10 
is split into two parts (kaId and (kbId loading additionally the nodes A and B 
as shown in Figure 11. Since this way of accounting for the current Ic is reason­
able, the given method for the elimination of the node C is sound. 

A B 

Fig. ll.-Part of the net of Figure 10 with the node 0 eliminated. 

VII. THE COMPUTATION OF THE POTENTIAL .GRADIENTS 

(a) Curvilinear Squares 
If the values CPA' CPB' CPc, and CPD of the potentials at the four corners of a 

curvilinear rectangle ABCD (Fig. 2) are given, the potential gradient at any 
point that is not outside this rectangle can be computed with the aid of the 
formulae 

. . . . . . . .. . . .. . .. (38) 

In equations (38) gu and g" are the potential gradients in the directions of the 
orthogonal lines v=constant and u=constant respectively, so that the magnitude 
g of the gradient is given by 

g2=g~+g~. . ...... " ..••.•....• (39) 

If the field· produced by cP in the w-plane is nearly uniform, the value 
ocpjou can be interpolated from the values (OcpjOU)AD and (OcpjOU)BC where 
(OcpjOU)AD can be approximated by 

( OCP) = CPD-CPA, ....••.••....•.. (40) 
OU AD ~u 

and similarly for (ocpjouhc and ocpjov. For I dwjd1;; I we find by differentiation 
of (12) after some manipulations 

I dd~ I 2m ~ V{ (p2 _m2)2 +4m21)2}' . . . . . . . . . . .. (41) 

where p = I c: I is the distance of the point considered from the geometric centre, 
1) its distance from the source line, and m the parameter. 
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The use of equation (40) leads to errors, if the field of cP in the w-plane is 
considerably curved. For practical work the case of importance is that one for 
which one of the two lines of constant cP, say the line CP=CPm is a straight line of 
constant u or v in the w-plane, corresponding to a boundary equipotential in 
the z-plane, and the other line of constant cP, that is, the line CP=CPA' can be 
approximated by a circle. This is shown in Figures 12 (a) and (b) with the 
notations that correspond to the boundary equipotential in the z-plane being 
a line of constant v. 

If coordinates ~ and 'IJ are introduced equalling u and v (Fig. 12 (a)) or 
. (-v) and u (Fig. 12 (b)) respectively, the field in the w-plane corresponding to 
Figure 12 (a) or 12 (b) can be assumed to be produced by a source and sink of 
equal intensities as was explained in Section III (a). If the intensity of the 
source and sink is 0, then cP is given for Figure 12 (a) by the right-hand side of 
equation (13) multiplied by 0, and for Figure 12 (b) by the right-hand side of 

<Po 

(a) (b) 

Fig. 12.-Equipotentials in the w-plane. (a) Case 1; (b) case 2. 

equation (14) multiplied by O. A pair of these O-multiplied equations (13) 
or (14) written down for two pairs of values 0, m and 0', m' and equated for 
~=~u, 'IJ=O (Fig. 12 (a)) or ~=O, 'IJ=~u (Fig. 12 (b)) gives a relation between 
0, m, 0', and m' for a fixed distance ~u and a fixed potential CPA' but the equi­
potential lines CPA are of different curvatures. If the O-multiplied right-hand 
side of equation (13) is differentiated with respect to ~ and ~ made equal to zero, 
and the O-multiplied right-hand side of equation (14) differentiated with respect 
to 'IJ and 'IJ made equal to zero, expressions for ocp lou along the equipotential 
CPD result. The ratio c of ocp lou for a given value of m, to (ocp lou), for m' --+ 00 

can be computed and determines the increase or decrease of ocp lou compared 
with the case of a uniform field. If 0 is eliminated by using the relation between 
0, m, 0', and m', 0' cancels out and we obtain, after expressing m in terms of 
the radius of curvature r or R with the aid of equation (15) or (17) and an obvious 
relation eliminating b or B with the aid of ~u : 

For Figure 12 (a) 

(42) 

(43) 

(44) 
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For Figure 12 (b) 

(45) 

(46) 

~u J( ~u ) m= 2R-~u' (47) 

Co is the ratio (ocp/ou)/(ocp/ou)' at the line of symmetry of Figures 12 (a) and 
12 (b) and is the value sought. (ocp/ou)' is the value given by equation (40). 

Fig. I3.-Example VIII (a). Field between two concentric 
circles. Coordinates of points : 

A (3'9265, -1·6264) 
B (4·2205, 0'50026) 
G (3' 9265, 1· 6264) 
D (5,5433, -2·2961) 
1U (6,6713, 0) 

F (6'8532, 2'8387) 
G (9·2388, -3·8268) 
II (9'9437, -1·0609) 
1 (9·2388, 3·8268) 

(b) Squares with a Sharp Corner 
For rx.> 7t the voltage gradient at the corner itself is infinite, but, as Oohn 

and Vogel (1953) have emphasized, its value.at a short distance from the corner 
has significance in high voltage engineering. The voltage gradient at the corner 
for rx. <7t is zero and its value in the neighbourhood of the corner is of little 
interest. 
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To compute the voltage gradient for a point at the distance p from the 
corner equations (38) and (39) are applied again, but I dw/d~ I is given by 

I dw I =! (~)(P-l)!P i d~ p' p .. ............... (48) 

Equation (48) is obtained from equation (32) by differentiation. For flu and 
flv the values tl and t respectively are taken (Fig. 9). The maximum gradient 
at the distance p from a corner of conducting material occurs for C'I. > 'IT on the 
bisector of the angle C'I. and is directed from the corner. Since this is the only 
value of interest, no additional work regarding the directions of the lines u=con­
stant and v=constant arises in this case. 

VIII. EXAMPLES 

Two simple examples without current loading (,,=0) will demonstrate the 
power of the use of curvilinear nets. For the conductivity a the value a=1 
is assumed. All numerical values given were computed with a computational 
accuracy to five digits. This accuracy is unnecessary, unless wanted for the 
purpose of comparison. 

(a) Field between Two Ooncentric Oircles 
Figure 13 shows a portion of a sector of 45° aperture bounded by two 

concentric circle arcs ABO and ,GHI of radii 4·25 and 10 respectively as equi­
potentials and by two radii AG and 01 as flow lines. This arrangement can 
easily be analysed by well-known formulae. We start arbitrarily at the point 
D at a distance-l·75 from the point A and, to simulate unfavourable conditions, 
select as the mesh boundary DE a circle arc of radius 20 with its centre on the 
line AD produced beyond the point D. The point E where the mesh boundary 
ends is the point of its intersection with the bisector of the sector. These 
assumptions determine a net of four meshes unequivocally. The computed 
characteristic data of the net are tlontained in Figure 13, the origin of the 
Cartesian frame used being the centre of the sector and the x-axis its bisector 
through E. 

The values of u1 , u 2, ~u, vl1 v2 , flv, flujflv, and flvjflu resulting for the 
individual meshes are shown in Table 2. 

TABLE 2 
VALUES OF u I ' U., Au, VI' V.' Av, Au/Av, AND Av/Au FOR THE MESHES OF FIGURE 13 

Mesh ABED BCFE DEHG EFIH 
--. 
u l · . · . · . 0·7923 0 0 1·6353 
u. · . · . · . -0·1855 0·6956 0·7530 0·7296 
Au · . · . · . 0·9778 0·6956 0·7530 0·9057 
VI · . · . · . 0 0·7839 0·3526 0 
v. · . · . · . 1·2121 1· 9463 -0·7626 1·2601 
Av · . · . · . 1·2121 1·1624 1·1152 1·2601 
AU/AV · . · . 0·8067 0·5984 0·6752 0·7188 
Av/Au · . · . 1·240 1·6720 1·4810 1·3912 
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If the scheme of Figure 4 is taken as the basis, and if the individual con­
ductances are computed and all parallel conductances between two nodes are 
lumped, the network of Figure 14 results. The potentials rpm rpE' and rpF of 
the points D, E, and F were taken as unknowns and the potential of the node 
(A-B-O) was set equal to 1 and that of the node (G-H-I) set equal to zero. The 
results of the computations are given below and in the brackets are added the 
theoretically correct values and the per cent. deviations from them. Solving 

F 

ABC Q----""-------<>==-------~--___bGH[ 

o 

Fig. 14.-Values of the final conductances in examples 
VIII (a) and (b). 

Conductance Example Example 
VIII (a) VIII (b) 

Y1 0-6200 0-6036 
Y2 0-9192 1-1036 
Y3 0-2992 0-5000 

Y4 0-6185 0-0550 

Y. 0-6478 0-5000 

Y6 0-3376 1-1004 
Y7 1-0332 1-6004 
Ys 0-6956 0-5000 

three simultaneous linear equations expressing Kirchhoff's first rule leads to 
<PD=0·5781 (0,5970, -3'2%), rpE=0'4707 (0'4730, -0·57%), rpF=0·3678 
(0· 3491, +5· 4 %). It is somewhat misleading to consider the per cent. devia­
tions from the actual values of the potentials, the value 1-rpF=0 ·6322 (0 '6509, 
-2, 9 %) is more important, for instance, than rpF' If the deviations are referred 
to the potential difference between the two outer electrodes the percentages are 
much smaller. The total conductance between the arcs ABO and GHI has the 
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value 0'9373 (0'9179, +2'1%). Hence the error in the computation of the 
capacity would be +2·1 %. With the aid of the formulae (38), (40), and (41) 
the approximate values of the gradients gA at A and 'Yc at C were computed. 
The results are: gA=O ·2696 (0 '2750, -2 '0%) and gc=O ·3097 (0 '2750, 
+12 '6%). Correction factors Co can be computed, for the node A with the 

Fig. 15.-Example VIII (b). Field in a coaxial square 
cable. Coordinates of points: 

A (0,0) 
B (0, 3·4672) 
a (0,5) 
D (3· 2885, 0) 
E (2,5, 3'9645) 

F (1'0839, 6·0839) 
G(5,0) 
H (5, 4·4617) 
I (5, 10) 

aid of equations (46) and (47), and for the node C with the aid of equations 
(43) and (44). The radius R required in equation (47) was ascertained by 
finding by linear interpolation in the w-plane the point of potential IPD on the 
line B'E'. For the radius r required for equation (44) the point of potential 
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CfJE was similarly found on the line OF. We obtain R=3 ·802 and r=1·3733, 

coA =1·0474, coc=O ·9057 and for the corrected values of the gradients 
COA .gA =0·2824 (0'2750, +2'7%) and coc .gc=0·2805 (0'2750, +2'0%). 

Considering that the net consists of four meshes only and that the mesh 
boundaries deviate appreciably from the equipotentials and flow lines, all 
deviations from the correct values are surprisingly small. 

(b) Field in a Square Ooaxial Oable 
A square conductor of side length 10 is surrounded by a square conducting 

sheath of side length 20 in an arrangement in which four axes of symmetry exist. 
This numerical problem has been dealt with by Woods (1953) and others. 
Figure 15 shows an eighth of the arrangement, AO being the considered portion 
of the inner equipotential, GI that of the outer equipotential, and AG and 01 
being flow lines. C is a sharp corner of 270° aperture and lone of 90° aperture. 
A is the origin of the selected Cartesian frame and AG its x-axis. 

The condition that a net of four meshes be used determines the meshes 
unequivocally, the point E being the intersection of the (not drawn) bisectors 
of the angles ACI and CIG. Figure 15 contains the characteristic data of the 
net and Table 3 the values characteristic of the meshes. 

TABLE 3 
VALUES OF U" U2' !1u, VlO V2, !1v, !1uJ!1v AND !1vJ!1u FOR THE MESHES OF FIGURE 15 

. 
Mesh ABED BGFE DEHG EFIH 

--. 
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vl . . · . · . 0 0 0 0 
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!1uJ!1v · . · . 1·2073 1 

I 

0·4544 1 
!1vJ!1u · . · . 0·8283 1 2·2008 

I 
1 

The final resulting network of conductances is shown in Figure 14. The 
result of the analysis together with the figures ascertained by Woods (1953) or 
found from them by interpolation and the deviations from these figures that can 
be considered correct are given in the following: 

CfJD=0'3562 (0,3326, +7'0%), 
CfJE=0'4171 (0,4330, -3'7%), 
CfJF=O ·4724 (0 '4950, -4 '6%). 

The total condu~tance is 1·2957 (1,2791, +1'6%). 

As in example VIII (a) the results are surprisingly good. 
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