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Summary 

Distributions in two dimensions as measured are always blurred or smoothed 
by limitations in the observing technique. Recovery of the true distribution involves 
the solution of an integral equation of the form 

g(x', y') = J: aJ: 00 h(x, y)f(x' -x, y' -y)dx dy, 

where the functions g, h are known from observation. 

In this paper the uniqueness and stability of the solution are discussed, and the 
validity and usefulness of several methods of solution are examined. A new technique 
for the application of polynomial solutions is presented. It is suggested that in some 
cases the use of Fourier transforms or Fourier-Bessel transforms may be practicable, 
and tables of selected transforms are supplied. Finally, conditions for convergence 
of certain sequences of approximate solutions are given. The effect of random errors 
in the observational data is taken into account wherever possible. 

1. INTRODUCTION 

Astronomical observations are sometimes concerned with distributions 
of surface intensity or statistical frequency distributions in two dimensions. 
Since it is not possible to measure a surface intensity or a frequency at a mathe­
matical point, the limitations of the observational method always produce a 
smoothing or averaging effect on the true distribution, lowering and broadening 
the peaks, and reducing the amplitude of the fluctuations. The problem of 
recovering the true distribution from the smoothed distribution which we observe 
may be called" sharpening" of the observational data, and involves the solution 
of a linear integral equation. 

The corresponding problem in one dimension has been frequently discussed, 
and it is recognized that the methods of solving this problem can in principle 
be extended to two dimensions, but this has rarely been done in practice. A 
solution in the form of a double series has been given by Coutrez (1949), but 
this does not appear to have been used. Kapteyn (1920) has found a special 
solution for use in the statistics of stellar total proper motions. Kreisel (1949) 
has described a method of partial sharpening which has been applied to a problem 
in gravity survey. Bolton and Westfold (1950) have solved a problem in radio 
astronomy with the aid of an iterative method described in one dimension by 
Burger and van Cittert (1932, 1933). A formal solution in terms of Fourier 
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transforms can be written down, but does not appear to have been used. Solutions 
by "trial and error" lead to uncertain results because of the indeterminacy 
caused by random errors of observation. 

The object of this paper is to examine some of the methods of solving the 
integral equation in two dimensions, and devise means of applying them to 
numerical problems with the minimum of computational labour. The effect of 
random errors in the data is taken into account wherever possible. 

II. THE INTEGRAL EQUATION 

We denote the true distribution by f(x, y) where (x, y) are rectangUlar 
Cartesian coordinates. The observed value at any point (x', y') is a weighted 
mean of the values of f(x, y) in some neighbourhood of (x', y'), and we denote 
it by g(x', y'). Now suppose that, when the true distribution consists only of a 
point concentration of unit strength at (xo, Yo), the observed distribution is 
h(x' -xo, y' -Yo)' Then the functions f, g, h are connected by the integral 
equation 

g(x', y')= f:"J:ooh(X' -x, y' -y)f(x, y)dxdy, 

or 

g(x', y')= J:oof:ooh(X, y)f(x' -x, y' -y)dxdy. .. .. (2.1) 

We shall call h(x, y) the kernel, but in various contexts it may also be called 
the instrumental function, distribution of errors, or polar diagram. Equation 
(2.1) may be expressed in words by saying that g(x, y) is the convolution, 
resultant, Faltung, obliteration, or smooth of f(x, y) and h(x, y). The process 
of recovering f(x, y) from a knowledge of g(x, y) and h(x, y) may be called 
sharpening, restoration, or correction of the observed distribution g(x, y). 

We say that a function is L, or belongs to the class L, when its (Lebesgue) 
integral over the infinite plane converges absolutely. It is assumed throughout 
this paper that the kernel h(x, y) is L. Then iff(x, y) is bounded, and integrable 
in every finite region, the integral in (2.1) converges absolutely and uniformly, 
and g(x', y') is bounded and continuous. 

It is usual to normalize the kernel by multiplying it by a constant factor 
in order to make its total surface integral equal to unity. When this has been 
done, the total surface integrals of f and g are equal, provided that either of 
these functions is L. Loosely speaking, the two distributions f, g then differ 
in shape, but not in scale. 

Equation (2.1) has the useful property that it is invariant under a homo­
geneous linear transformation of unit modulus. That is, if we write 

x=aX +bY, 

x'=aX'+bY', 

y=cX +dY, 

y' =cX' +dY', 

ad-bc=l, 

f(x, Y)~f(aX+bY, cX+dY)~J(X, Y), 

g(x, y) ~g(X, Y), 

h(x, y) ~(I-(X, Y), 
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then equation (2.1) reduces to 

g(X', Y')= f:cxJ:}(X, Y)!(X'-X,Y'-Y)dXdY. 

This property enables particular solutions to be generalized, and certain problems 
to be simplified. For example, a problem in which one of the functions is a 
function of (x2/a2+y2/b2) only can be reduced to a problem in which this function 
has circular symmetry. 

In astronomical applications, kernels of several different types occur in 
the following ways. 

(i) In photoelectric photometry, an extended source of ligb,t may be scanned 
by a photocell behind a circular aperture of radius a. in the focal plane of a 
telescope. I, g are the true and observed distributions of surface brightness, 
and the normalized kernel is 

h(x, y) =1/7ta2, 

=0, 

X2+y2.<a2, } 
x2+y2>a2, 

(2.2) 

provided that a is large compared with the effective resolving power of the 
telescope. 

(ti) In photographic photometry, I is as in (i), and g is deduced from micro­
photometric tracings of a photograph of the source. The kernel is obtained 
from a stellar image by the same process. Many factors contribute to the 
smoothing process, the three most important being atmospheric turbulence, 
imperfect guiding of the telescope, and the finite size of the scanning" spot" in 
the microphotometer. .As an example, measurements by de Vaucouleurs 
(1948) at the Cassegrain focus of a 32-in. reflector gave a kernel which is reason­
ably well represented by 

h(x, y) =Ae-i(z'la'+y'lb')", Ae -!r'lc', 

=5'2A/r4, 

r<2 '5, 1 
r>2·5, . 

.... (2.3) 

where r2=x2+y2, the unit of measurement is 1 sec of arc, a=1'15, b=1·35, 
c =1· 25, and A =0 ,0904. Equation (2.1) is strictly applicable only when stars 
in different parts of the field lead to the same kernel. 

(iii) In radio astronomy, I, g are the true and observed Q.istributions of 
surface intensity of an extended radio source. The kernel may be found by 
scanning a point source with the radio telescope, but this is often not practicable, 
and the theoretical diffraction pattern (polar diagram) of the telescope is then 
used. For example, for a circular aperture of diameter fl, the diffraction 
pattern is 

A2[ 2 ]2 h(x, y) = 47t ArJ l(Ar) , A = 7t~, ........ (2.4) 

where A is the wavelength of the radiation, r 2 =X2+y2, and r is measured in 
radians. (This formula is only accurate for r<1.) This kernel, in common 
with all diffraction patterns due to apertures of finite dimensions, has the 
important property that its Fourier transform vanishes outside a finite region. 
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(iv) In statistics, we take as a typical example the statistics of stellar 
proper motions. The number of stars in a given region whose true components 
of annual proper motion lie in the range (x, x+dx; y, y+dy) is f(x, y)dxdy. 
The measures of (x, y) for individual stars are supject to random errors whose 
frequency distribution may be taken as 

h1(x, y) = (21ta2)-le- iT'/al • • ••••••••••••• (2.5) 

The observed frequency distribution is smoothed by (2.5) and also by the 
necessity for taking samples over finite regions of the (x, y) plane. If g(x', y') 
is taken as the number of stars with observed proper motions (x, y) in the range 
I x-x' I <b, I y-y' I <0, then g(x', y') is given by (2.1) with a kernel obtained 
from the convolution of (2.5) with 

h2(x, y)=(4bo)-1, I x I <b, I y I <OJ ....... (2.6) 
=0, elsewhere. 

We may also mention a problem in gravity survey (Kreisel 1949) in which 
the kernel is the normal gravitational field over a horizontal plane due to unit 
mass at depth a below the origin, which is 

h(x, y) =Ga(a2+r2)-3J2. . ......•....•... (2.7) 

In all these applications the distributions are, strictly speaking, over a 
sphere, not a plane. But in nearly every case the angular diameter of the region 
with which we have to deal is so small that the region may be regarded as plane 
without sensible error. 

III. THE FORMAL SOLUTION 

.Any function f(x, y) of L has a double Fourier transform (Bochner 1932) 

F(u, v) =(21t)-lf:aJ:j(X, y)ei(ux+VY)dxdy, ...... (3.1) 

which is bounded and continuous and tends to zero as U2+V2-+00. The inverse 
relation 

f(x, y) =(21t)-lf:,xJ:ooF(U, v)e-i(ux+VY)dudv .... (3.2) 

bolds wherever f(x, y) is continuous; provided that, if the "integral in (3.2) 
does not converge absolutely, we interpret it as the limit as p, q-+oo of the 
integral over I u I <p, I v I <q; If two functions belonging to L have the saroe 
Fourier transform, they are equal almost everywhere," so that, if they represent 
distributions of a physical quantity, these distributions are identical. 

Now letf(x, y), h(x, y) be L; then g(x, y) of equation (2.1) is also L, and, 
if we denote Fourier transforms by capital letters, the Faltung theorem (Bochner 
1932, §43.6) gives 

G(u, v) =21tH(u, v)F(u, v) . .............. (3.3) 

This leads at once to a formal solution in the form (3.2), in which 

c 

G(u, v) 
F(u, v)=21tH(u, v)" (3.4) 
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N ow suppose that g, h are known from observation, and belong to L. 
Then we can (in principle at least) compute their Fourier transforms and form 
the quotient (3.4). If I H(u, v) I is everywhere positive, as is the case with kernels 
such as (2.5) and (2.7), then (~.4) is defined everywhere, and, if this function 
has a Fourier transform belonging to L, the solution exists and is unique. But if 
H(u, v) vanishes at certain real points, then G(u, v) ought also to vanish at these 
points and (3.4) is undefined at such points. (Note that we are concerned 
only with real values of (u, v), although F, G, Hare:tn general complex functions 
of these variables.) Denote by R the region or point set in which H(u, v) =0. 
We may arbitrarily set F(u, v) =0 in R, and, if F(u, v) then has a Fourier 
transform, this transform is a possible solution of the integral equation, which 
Bracewell and Roberts (1954) call the principal solution. Other solutions may 
be obtained by adding to the principal solution functions of the form 

f fR rp(u, 'O)e-i(ux+VY)dud'O, ••.•.••....•.. (3.5) 

where rp(u, v) is an arbitrary function. If R is a set of zero measure, as is the 
case .with kernels such as (2.2) and (2.6), then (3.5) vanishes unless rp(u, v) is an 
improper function, and in many applications the indeterminacy is then somewhat 
trivial. But if R has· positive measure the indeterminacy is much more serious. 
This occurs with kernels like (2.4) which are of special importance in radio 
astronomy, and the problems raised by this indeterminacy have been fully 
discussed in the one-dimensional case by Bracewell and Roberts (1954). Their 
discussion can easily be generalized to two dimensions. 

Fourier transforms may be expressed in polar coordinates by setting 

i1J=r cos 8, 
y=r sin 8, 

Then (3.1), (3.2) take the form 

u=s cos rp, 
'O=s sin rp. 

F(s, rp) =(27t)-1 f: f:/(r, 8)eis• cos (6-cp) rdrdS, 

f(r,8)=(27t)-lf: f:1tF(S, rp)e-isrcos(6-cp)sdsdrp. 
} . (3.6) 

In particular, whenf(r, 8) is independent of 8, it is clear that F(s, rp) is independent 
of rp, and these functions may be written asf(r), F(s). Using Parseval's integral 
for the Bessel function (Watson 1944), the relations (3.6) then become 

F(s) = f: f(r)Jo(sr)rdr, 

f(r) = f: F(s)Jo(sr)sds. 

(3.7) 

(3.8) 

The functions f(r), F(s) are called Fourier-Bessel transforms of one another. 
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If the functions f, g, h of equation (2.1) all have circular symmetry, they 
may be written f(r), g(r), h(r), and (3.3) becomes 

G(s) =2rr:H(s)F(s), 

so that the formal solution has the form (3.8), in which 

G(s) 
F(s) =2rr:H(s)" 

IV. INSTABILITY OF THE SOLUTION 

If g, h are specified exactly, as in a theoretical problem, there may be a 
unique and exact solution. But if the values of g(x, y) are uncertain due to 
observational errors, however small these errors may be, the solution is always 
completely indeterminate even with the restriction that f(x, y) ---+0 as x2 +y2---+ 00. 

For let any solution be given an (additive) increment of the form 

where 

t1f(x, y) =Ae-i(ux+vy)w(x, y), 

w(x, y)=(l-1 x Ija)(l-1 y lib), 
=0 elsewhere, 

I x I <a, I y I <b, 

and A, a, b are arbitrary. Then it may be shown that the corresponding 
increment of g can be made arbitrarily small by taking U 2+V2 sufficiently large. 
This property may be expressed by saying that f(x, y) is not continuously 
determined by g(x, y). (Compare Kreisel 1949.) 

In other words, oscillating increments of arbitrarily large amplitude in 
f(x, y) correspond to unobservably small increm(lnts in g(x, y) provided that the 
wavelength of the oscillations is sufficiently small. Such oscillations appear 
when the computer tries to determine f(x, y) with greater precision than is 
warranted by the accuracy of the observations. 

The solution must therefore be stabilized by excluding functions which 
have oscillations of large amplitude and short wavelength. This means that 
complete sharpening can never be achieved except in theoretical problems. 
Following a suggestion by Fellgett and Schmeidler (1952), if we are given the 
autocorrelation function of the errors in g(x, y), we can use the Wiener-Kol­
mogaroff smoothing theory (Bode and Shannon 1950) to determine a solution 
giving the best possible compromise between errors due to magnification of the 
errors in g(x, y) and errors due to incomplete sharpening. But the difficulty of 
measuring the autocorrelation function would seem to make this method of 
little practical value. It is therefore necessary to use more arbitrary methods of 
stabilization. Unfortunately this means that the solution adopted is to some 
extent subjective, that is, depending on the computer's judgment. But, if the 
statement of the solution is accompanied by a statement as to which method 
of sharpening was used, the result so expressed is purely objective, and is 
therefore to be preferred to a solution reached by " trial and error". 

When the highest possible accuracy is required, it appears that the best 
procedure is to find a sequence of approximate solutions of (theoretically) 
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increasing accuracy, taking the observational data at their face value; and then 
to terminate the sequence just before physically improbable undulations begin 
to appear. 

v. POLYNOMIAL SOLUTIONS 

If f(x, y) is the polynomial 

A B 
f(x, y)= ~ ~fmnxmynjm!n!, ............ (5.1) 

m~O n~O 

then the integral in (2.1) converges if h(x, y) possesses moments of all requisite 
orders. We define these moments by 

fOO "00 xPyq 
M pq = J -,-,h(x, y)dxdy . .......... (5.2) 

-00 - oop·q· 

The integral in (2.1) can then be evaluated either by term-by-term binomial 
expansion of f(x' -x, y' -y), or by Taylor expansion of this function in powers 
of x and y. Thus g(x', y') may be expressed in either of the two forms 

A B m n 
g(x',y')= ~ ~frnn ~ ~ (-l)m+n-p-qMm_p,n_qX'Py'qjp!q! .. (.5.3) 

m~O n~O P~O q~O 

Similarly, if g(x, y) is the polynomial 

A B 
g(X, y) = ~ ~ gmnxmynjm!n!, 

m~O n~O 

it may be verified by substitution that (2.1) is satisfied by 

A B m n 

(5.4) 

(5.5) 

f(x, y)= ~ ~ grnn ~ ~ (-l)m+n-p- qi-Lm_p, n-qxPyqjp!q! (5.6) 
m~O n~O p~O q~O 

A B (Jm+n 
=m~o n~o (-l)m+ni-Lmnaxmayng(x, y), ................ (5.7) 

where the inverse moments i-Lpq are defined by 

m n . .•.....• (5.8) 
i-LooMoo=l, } 

p~o q~O i-Lm-p, n-qMpq =0, ~m+n> 0). 

Thus the solution (5.6) is valid provided that Moo *0, and it is easy to show that 
it is the only polynomial solution. A. result equivalent to (5.7) has been obtained 
by Ooutrez (1949), and the one-dimensional form of (5.6) has been given 
by van de Hulst (1946). (The moments as defined by these authors correspond 
to p!q!Mpq in our notation.) 

If the integrals (5.2) converge absolutely for all non-negative integers p, q, 
then the integral defining 21tH(u, v) may be differentiated any number of times 
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under the integral sign. We then find that 21tH(u, v) and all its derivatives are 
bounded and continuous for all (u, v), so that the Maclaurin expansion 

00 00 

21tH(u, v)= ~ ~ Mmn(iu)m(iv)n (5.9) 
m=O n=O 

converges. From (5.8) and (5.9), 

00 00 

1j21tH(u, v)= ~ ~ lLmn(iu)m(iv)n . ........ (5.10) 
m=O n=O 

The rel~tions (5.9) and (5.10) facilitate computation of the moments and inverse 
moments when H(u, v) is expressible in terms of elementary functions. Note 
that, for a normalized kernel, 21tH(0,0)=Moo=[Loo=1. 

The results (5.3)-( 5.7) remain true when the polynomials are extended 
to infinite series provided that the series for h(x, y)f(x' -x, y' -y) converges 
for all (x, y) and may be integrated term by term over the infinite (ai, y) plane. 
However, we are here concerned primarily with distributions given by observa­
tional data, and the need for infinite series does not arise. 

The results (5.4) and (5.7) may be formally applied to functions which are 
not polynomials. In (5.4) it is usually possible to write down a remainder 
term setting an upper limit to the error caused by neglecting higher derivatives, 
but in (5.7) there is no simple way of estimating this error. However, if f(x, y) 
and all its moments exist, it may be shown that the moments of the right-hand 
member of (5.7) are the same as the moments of the true solution f(x, y) up 
to and including moments of order (A, B), so that in this narrow sense every 
term of (5.7) effects an improvement in the approximation to f(x, y) as a whole. 
(Compare Eddington's treatment (1940) of the one-dimensional problem with 
Gaussian kernel.) But it does not necessarily follow that the series converges 
at any partic~lar point (x, y). 

VI. POLYNOMIAL SOLUTIONS WITH CIRCULAR SYMMETRY 

If f, g, h are functions of r only, where r2=x2+y2, we may write them as 
f(r), g(r), h(r) and the integral equation (2.1) becomes 

g(r')= f~ f:1t h(r)fh/(r'2+r2-2rr' cos 6)]rdrd6 ... ... (6.1) 

If f(r) is a polynomial of degree A in r2, 

(6.2) 

then the integral in (6.1) converges if h(r) possesses circular moments of orders 
up to A. We define these circular moments by 

foo r2p 
Mp=21t 0 p!2h (r)rdr • ........•................. (6.3) 
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Observe that, by multiplying the binomial expansions of (r' -reifJ)njn! and 
(1" -re-ifJ)njn!, we obtain 

(r'2+r2-2rr' cos 8)n n n r,p+q (_r)2n- p- q 
'2 = ~ ~ -,~, ( _ )'( _ ),cos (q-p)8, n. p=O q=O p.q. n p. n q. 

so that 

fIT (r'2+r2 -21'1" cos 8)n n r,2p r 2n - 2p 
-'------;-;,2c----d8=2n ~ '2 ( _ )'2' .............. (6.4) 

-IT n. p=o p. n p. 

Then on substituting from (6.2) in (6.1) and carrying out the integrations with 
the aid of (6.4) and (6.3), we obtain 

A n 
g(r')= ~fn ~ M n_pr,2P jp!2 . .............. (6.5) 

n=O p=o 

Similarly, if g(r) is the polynomial 

A 
g(r) = ~ gnr2njn !2, ( 6.6) 

n=O 

it may be verified by substitution that (6.1) is satisfied by 

A n 
f(r) = ~ gn ~ [Ln_ pr2p jp!2, ................ (6.7) 

n=O p=o 

where the inverse circular moments [Lp are defined by 

n>O. 
} .•.......... (6.8) 

Thus the solution (6.7) is valid provided that Mo *0, and it is easy to show that 
it is the only polynomial solution. 

We may express (6.5) and (6.7) in terms of the derivatives of f, g, by 
using the differential operator D defined by 

D r)- ~[r2 dcp ] -~ i(rdCP) _~ 2 cp( - d(r2) d(r2) - 4r dr dr -4 V cpo 

Equations (6.5) and (6.7) then become 

A 
g(r')= ~ MnDnf(r'), ................ (6.9) 

n=O 
A 

f(r) = ~ [LnDng(r). . ............... (6.10) 
n=O 

If the integrals (6.3) converge absolutely for all p, then the integral defining 
2nH(s) may be differentiated any number of times under the integral sign, and 
we find that 

co 

2nH(s) = ~ Mn( -s2j4)n, (6.11 ) 
n=O 

co 

Ij2nH(s) = ~ [Ln( -s2j4)n. ( 6.12) 
n=O 
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In this case the kernel also possesses all Oartesian moments M mn' and these 
can be expressed in terms of the circular moments M n' For if in (6.11) we 
write s2n=(u2 +v2 )n, expand each term binomially, and identify the result 
with (5.9), we obtain 

M 2m +1,n=Mm,2n+l=0, 1 
M _(m+n)!Mm+n i 

2m,2n- m!n!4m+n . ) 

Similarly from (6.12) and (5.10) we obtain 

[.L2m+l,n=[.Lm,2n+l=0, 1 
(m+n) ![.Lm+n I 

[.L2m,2n= m!n!4m+n . ) 

.......... (6.13) 

....... '" (6.14) 

VII. ApPLICATION OF POLYNOMIAL SOLUTIONS 

Let h(x, y) be given and possess moments of at least the first few orders, 
which are computed from (5.2). The inverse moments are then found from 
(5.8). Let g(x, y) be given by a table of its values at an array of points (pa, qb) 
where p, q are any integers and a, b are constants. To compute an approximate 
value of 1 at anyone of these points, we may temporarily regard this point as 
the origin of coordinates without loss of generality, so that, from (5.6), 

1(0, O)=~~( -l)m+ngmn[.Lmn' ............ (7.1) 

where the coefficients gmn are determined so that the polynomial ~~gmnxmynlm!n! 
coincides with the tabulated g-values at a set of points (pa, qb) in the neighbour­
hood of the (temporary) origin. The number of points in this set equals the 
number of coefficients gmn' and it is clear that this point set should extend over 
a region at least as large as the region in which h(x, y) differs appreciably from 
zero. Then it is found that (7.1) is a homogeneous linear function of the g-values 
at these points, whose coefficients depend only on the inverse moments and on 
the geometry of the set of points. For a particular kernel and point set, these 
coefficients constitute a set of weights which need be numerically evaluated 
only once and can be used repeatedly to correct different observed distributions 
or different parts of the same observed distribution. 

To illustrate the method, we consider in more· detail kernels which have 
two orthogonal axes of symmetry. Taking these as coordinate axes, we find 
that Mmn=O, [.Lmn=O whenever m or n is odd. Then (7.1) becomes 

1(0, 0) =~~g2m, 2n[.L2m, 2n. 

Evidently those terms of the polynomial which contain an odd power of x or of y 
contribute nothing to 1(0, 0), so that the correction of g(x, y) is equivalent to 
the correction of the function 

g(x, y)=![g(x, y)+g( -x, y)+g(x, -y)+g( -x, -y)]. 

Now g(x, y) is fully determined by its values in the first quadrant of the (x, y) 
plane, so that if the point set is symmetrical with respect to both axes, then the 
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number" of points within or bordering the first quadrant must be equal to the 
number of terms in the polynomial for i(x, y). We take this polynomial to be 
complete and of degree N in (X2, y2), that is, it contains all terms of the form 
g2m,2nx2my2n for 0 <m+n <N. The number of terms in this polynomial is. 
I(N +l)(N +2). 

We take for our point set all points (pa, qb) for which 1 pI +1 q 1 <,N ; 
that is, the points within or bordering a rhombus whose vertices are 
(±Na, 0), (0, ±Nb). There are 2N2+2N +1 such points, of which 
I(N +l)(N +2) are within or bordering the first quadrant, as required. By 
generalizing Lagrange's interpolation formula, the polynomial for U(x, y) may 
be written 

_ N N-p_ 

g(x, y)= ~ ~ g(pa, qb)rppq(x, y)jrppq(pa, qb), ............ (7.2) 
p~O q~O 

where 
N N-m 

rppq(x, y) =(x2 .,.-p2a2)-1(y2 _q2b2)-1 II " II (X2 -m2a2)(y2 -n2b2). 
m~O ,,~O 

To complete the computation of the weights for a particular N, we have now 
only to expand (7.2) in polynomial form and then replace x2my2nj(2m)!(2n)! 
by [L2m,2n' Writing the inverse moments in the dimensionless form 

the result for N =1, involving five points, is 

and for N =2, involving 13 points, 

61(0,0) =g(O, 0)(6moo-15m20+36m40+24m22+36m04) 

+g(a, 0)(16m20 -48m40 -24m22 )+g(O, b)(16mo2 -48mo4 -24m22) 

+g(2a, 0)( -m20 +12m40 )+g(O, 2b)( -m02 + 12mo4) +g(a, b)24m22 

.................... (7.4) 

The formula for N =3, involving 25 points, is so unwieldy that it is not likely 
to be of much practical value. 

Expressions for g(O, 0) in terms of the values of I at a rhomboidal array of 
points can also be derived in the same way. They may be obtained immediately 
from (7.3) and (7.4) by interchanging the symbols I and g, and substituting 
M 2P,2q for [L2p,2q' 

When the kernel has circular symmetry and a =b, the formulae may be 
simplified by expressing the moments in terms of the circular moments according 
to (6.14). Writing m p=[Lpja2P, the formulae (7.3) and (7.4) then become 

1(0, O)=g(O, 0)(mO-m1)+g(a, O)tml+i(o, a)lmH .............. (7.5) 

241(0, 0) =g(O, 0)(24mo -30m1 +30m2) + [uta, 0) +g(O, a)](16ml -24m2) 

+ [g(2a, O)+g(O, 2a)]( -m1+3m2)+g(a; a)12m2' ........ (7.6) 
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The formulae (7.3), (7.5) are exact if g(x, y) is a polynomial of degree 3 
in (x, y) and (7.4), (7.6) are exact if g(x, y) is a polynomial of degree 5 in (x, y). 
If the observed data g(pa, qb) contain random (additive) errors of mean zero and 
mean square ::;2, then the weighted sums will contain errors of mean zero and 
mean square ,,2::;2, where ,,2 is the sum of the squares of the (2N2+2N +1) weights 
in the expression for j(O, 0). If we increase N withollt limit, keeping aN, bN 
constant, we find that ,,2 increases without limit. This is a manifestation of the 
instability discussed in Section IV. In practice we implicitly exclude rapidly 
undulating functions by approximating to j, g by polynomials of low degree, 
that is, by keeping N small. Thus we obtain stable solutions, but the sharpening 
is incomplete when g(x, y) is not a polynomial, or is a polynomial whose degree 
exceeds 2N +1 in (x, y). 

For the Gaussian kernel 

h(r) = (2rcc2)-le- tr'lc', ................ (7.7) 

the circular moments are Mn=(2c2)n/n!, fLn=( -2c2 )n/n!, and weights for the 
correction j-g, computed from (7.5) and (7.6), are given in Table 1. The 
meaning of the weights for N =1, written in full, is 

j(x, y) -g(x, y) = (c2 /2a2)[4g(x, y) -g(x+a, y) -g(x-a, y) -g(x, y+a) 
-g(x, y-a)], 

from which the meaning of the other weights should be clear. 
For the kernel representing a circular aperture 

(r<c) 1 
(r> c). ) 

(7.8) 

the circular moments are M n=c2n/n!(n+1)!, fLo =1, fLl=-ic2, fL2=c4/6, 
fL3=-7c 6/144, fL4=13c 8/960, ... , and sets of weights for the correction j-g 
are given in the lower half of Table 1. 

When j, g, h all have circular symmetry, a similar method. may be used to 
find formulae involving only g-values at suitably spaced points along a diameter. 
We choose 2N +1 equally spaced points extending from r=(n-N)a to 
r=(n+N)a, n>N, and fit a polynomial of degree 2N in r2 at these points. 
Lagrange's interpolation formula then gives 

N 
g(r)= ~ g(na+pa)tpp(r)/tpp(na+pa), .......... (7.9) 

p~-N 

where 

We now expand (7.9) in polynomial form and then replace r2m/m!2 by 
m ' 
~ fLm_ir2i/i!2 to obtain j(r). To obtain j(na), n>N, we set r=na in the result. 
i~O 

The expression for j(r) derived from the points 0, a, 2a, . .. , 2N a may be taken 
as the best approximation to j(r) for all r <N a. Thus we obtain sets of weights 
for j(0),j(a),j(2a),. .. Unfortunately these sets are all different, because the 
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N=I 

-I 

-I 4-1 

'-I 

Multiply by c"/2a" 
If a=2c, A=I·52 

-I 

-I 4-1 

-I 

Multiply by c"/8a" 
If a=c, A=I_52 

E.J. BURR 

TABLE I 
WEIGHTS FOR COMPUTING f(x, y)-g(X, y) 

Weights with the kernel (7.7) 

N=2, a=2c 

7 

6 -88 6 

7 -88 300 -88 7 

6 -88 6 

7 

Multiply by 1/384 
A=I·84 

Weights with the kernel (7.8) 

N=2, a=c 

1 

I -12 

1 -12 40 -12 1 

1 -12 I 

I 

Multiply by 1/48 
A=I·90 

N=2, a=cv'2 

5 

6 -56 6 

5 -56 180 -56 5 

6 -56 6 

5 

Multiply by 1/96 
A=3·11 

N=2, a=c/v'2 

3 

4 -32 4 

3 -32 100 -32 3 

4 -32 4 

3 

Multiply by 1/48 
A=3·29 

origin can no longer be chosen arbitrarily. For N =1, involving three points, 
the general formula is 

4n(4n2 -l)[f(r) -mog(r)] =(2n+1)g(n -la)(4m2 -m1 (2n2+2n+ 1-4r2ja2)] 

-4n g(na)[4m2-ml(2n2+2-4r2ja2)] 

+(2n-1)g(n+1a)[4m2-ml(2n2-2n+1-4r2ja2)], 

wheremp =!J-pja2P• For the particular kernel (7.8), with a=c, the first few 
formulae for N =1 are: 

J(O)-g(O) =+0'792g(0) -0'889g(a) +0'097g(2a), 
J(a)-g(a) =+0'292g(0) -0'222g(a) -0·069g(2a), 
J(2a) -g(2a)= -0 ·035g(a) +0 '156g(2a)-0 '121g(3a), 
J(3a) -g(3a) = -0 . 081g(2a) +0· 210g(3a) -0 . 129g( 4a), 
J(4a) -g(4a) = -0 '097g(3a) +0, 228g(4a) -0 '131g(5a), 
J(5a) -g(5a)= -0 '105g(4a) +0 '236g(5a) -0 . 131g(6a), 
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where the coefficients are correct to three decimal places. For the same kernel 
with a =c and N =2, we find: 

f(O) -g(O) = +1·132g(0) -1·414g(a) +0 ·331g(2a) -0 ·053g(3a) +0 ·004g(4a), 
f(a) -g(a) =+0 ·086g(0)+0 ·095g(a) -0 ·210g(2a)+0 ·031g(3a) -0 ·002g(4a), 
f(2a) -g(2a) = -0 ·576g(0)+0 ·808g(a) -0 . 147g(2a) -0 ·091g(3a) +0 ·006g(4a), 
f(3a)-g(3a) = -0 ·084g(a)+0 ·058g(2a)+0 . 169g(3a) -0 . 155g(4a) +0 ·013g(5a). 

For comparison, we give three formulae for correction of one-dimensional 
distributions when the kernel represents a slit of width 2c, that is, 

h(x)=lj2c 
=0 

The three-point formula is then 

(I x 1 <c) 
(I x I>c). 

f(x) -g(x) = (c2j6a2)[ -g(x-a)+2g(x) -g(x+a)]. 

When a=c, the five-point formula is 

30 [f(x) -g(x)] =g(x-2a) -9g(x-a) +16g(x) -9g(x +a)+g(x+2a), 

and when a =cj y2, 
180 [f(x) -g(x)] =19g(x-2a) -136g(x-a) +234g(x) -136g(x+a)+19g(x+2a). 

It should be stressed that the formulae of this section usually give accurate 
results only when the corrections are small. This is partly because the obser­
vational data cannot usually be well represented by polynomials of low degree, 
and partly because we have characterized the kernel by only a few parameters. 

VIII. THE USE OF FOURIER TRANSFORMS 

The formal solution by Fourier transforms, given in Section III, is hardly 
suitable for direct numerical computations. But when g(x, y) and h(x, y) can be 
closely approximated by elementary functions whose transforms are known, 
this form of solution may be useful. Also, in radio astronomy, measurements 
with a variable-spacing interferometer give 1 F(u, v) 12 directly over a finite 
region, from which hypotheses concerning f(x, y) may be tested. 

Some Fourier transforms likely to prove useful for these purposes are listed 
in Table 2. The two columns of this table may be interchanged by interchanging 
(u, v) with (x, y) and writing -i for i. In lines (1) and (5), Fl! F2 are the Fourier 
transforms of fl!f2. Lines (1)-(7) give rules for extending known transforms. 
Lines (8)-(11) enable us to find the transforms of peak functions and of periodic 
functions. All the results in Table 2 are well known or have obvious proofs, 
possibly excepting line (14). By using the relations 

(djdx)Hn(x) =nHn-1(x) =xHn(x) -Hn+l(X) 

we can prove by induction'that the (simple) Fourier transform of Hn(a1x)e-!x' 
is (ioc)nHn(a1ujoc)e-!u', where oc2 =ai-1; from which line (14) follows. We 
give here the first few of the Hermite polynomials : 

Ho(x)=l, H1(x)=x, H2(x)=x2-1, H3(X)=X3_3x, 
H,(x)=x4 -6x2+3, H s(x)=x5 -10x3+15x, 
H6(X) =x6-15x4+45x2-15, Hn(x) =n!~( -1)Pxn- 2p j2Pp !(n-2p)! 

P 
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For brevity, we write 
rp(a2 , b2 )=(21tab)-le-t(X'/a'+Y'/b'). . ....•..•. (8.1) 

Then, if h(x, y)=rp(a2 , b 2), the solution of the integral equation (2.1) can be 
written down whenever g(x, y) is expressible as one of the functions on lines 

. (12)-(15) of Table 2, or as a sum of such functions. For example, if 

(8.2) 

TABLE 2 
FOURIER TRANSFORMS 

The functions in the right-hand column are Fourier transforms of those in the left-hand column. 
The Hermite polynomials are defined by (d/dx)ne-tx'=(-I)nHn(x)e-tx' 

(I) aiI(x, y)+bJ.(x, y) 
(2) J(x-a, y-1J) 
(3) J(x/a, y/b) 
(4) J(ax+by, cx+dy), ad-bc=oA 

(5) 2rrjl(x, y)J.(x, y) 

(6) (%x)m(%y)nJ(x, y) 
(7) xmynJ(x, y) 

(S) 2rr3(x, y) 
(9) 2rr3(x-a, y-b) 

(10) rr3(x-a, y-b)+rr3(x+a, y+b) 
(II) rr3(x-a, y-b)-rr3(x+a, y+b) 

(12) e -i(x'/a'+y'/b') 
(13) (x/a)m(Y/b)ne-t(x'/a'+Y'/b') 

(14) (oc/a)m(~/b)nHm(alx/oca)Hn(bly/~b) 
X e -!(x'/a' +y'/b') 

(15) e -l[(ocx+~Y)'/a'+(yx+3Y)'/b'l, 

(16) (I +x'/a2 +y'/b2)-3J' 

(17) I, 1 x 1 <a, 1 yl <b 

0, elsewhere 

where oc3-~y = I 

(IS) (1-1 x 1/2a)(1-/ y 1 /2b), 1 x 1 <2a 

1 y 1<2b 
0, elsewhere 

then 

Again, if 

then 

aF1(u, v)+bF.(u, v) 
. F(u, v)ei(au+bv) 

abF(au, bv) 
A-IF{(du--{)v)/A, (-bu+av)/A} 

f:oof:,/l(U, V)F2(U-U, v~V)dUdV 
(-iu)m(-iv)nF(u, v) 
(_i)m+n(%u)m(%v)nF(u, v) 

I 
ei(au+bv) 

cos (au+bv) 
i sin (au+bv) 

·abe -t(a'u'+b'v') 
im+nHm(au)Hn(bv)abe -t(a'u'+b'v') 
im+nHm(alu)Hn(blv)abe -!(a'u' +o'v') 

where ar=a'+oc', br=b'+~2_ 
abe -Ha'(3u-yv)'+b'( -~u+ocv)'l 

abe -I (a'u'+b'v,)i l 

4ab sin au sin bv 

2rr au bv 

4ab [Sin au sin bV] 2 

2rr au bv 

(8.3) 
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where a~=ai-a2,b~=bi-b2, Al =a2ja 1a, BI =b2jb 1b, A 2=a1 ja2a, B 2=b1 jb2b. 
The last result can also be verified by direct integration of equation (2.1) ; 
variants of it have been discussed by Malmquist (1943), van de Hulst (1946), 
and Lyttkens (1949). Finally, if 

then 

g(x, y)=(ab)-le-t(x"lai+Y"lbi), ............ (8.4) 

x' =X cos 6+y sin 6, 
y' = -x sin 6+y cos 6, 

f(x, y)=(AB)-le-t(X"IA'+Y"IB'), 

X' =X cos 0+y sin 0, 
Y' = -x sin 0+y cos 0, 

where A, B, 0 are given by 

cot 20 =cot 26 -cosec 26(a2 -b2)j(ai -bi), 

2A2=ai+bi-a2-b2+(ai-bV sin 26 cosec 20, 

2B2=ai+bi-a2-b2+(bi-ai) sin 26 cosec 20. 

We take the value of 0 which lies in the same quadrant as 6, and this value is 
always real and uniquely determined. But if the expression for A 2 or B2 is 
negative, there is no solution. 

When g(x, y) is not expressible with sufficient accuracy in one of the forms 
(8.2), (8.3), (8.4), it may still be possible to express it as a sum of one of these 
functions and a residual, and the two components can be sharpened separately. 
If the residual and its gradient are numerically small, the sharpening of the 
residual by approximate methods is a much simpler task than the sharpening 
of the distribution g(x, y). 

Reverting to an arbitrary kernel, if g(x, y) is a doubly periodic function 
whose Fourier series is 

g(x, y)='2:. '2:. [gmn cos (max-f-nby)+g'mn sin (max+nby)], 
m n 

it is found by using Table 2 that 

f(x, y) =~ '2:.[jmn cos (max+nby) +f'mn sin (max+nby)], 
m n . 

where 

When f, g, h all have circular symmetry, their Fourier transforms become 
Fourier-Bessel transforms, by the use of which several particular solutions of 
equation (2.1) may be obtained. Some Fourier-Bessel transforms which will be 
found useful for this purpose are listed in Table 3. The two columns of this 
table may be inter(lhanged by interchanging rand 8. Some of these transforms 
were taken from Watson (1944) and others were derived from them by using the 
rules on lines (1)-(6) of the table. The polynomials Qn(x) may be defined by 

Qn(x)e-x=[(djdx)(xdjdx)]ne- X , 
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TABLE 3 
FOURIER-BESSEL TRANSFORMS 

J O' J" K o, Kl denote Bessel functions in the notation of Watson (1944)_ V2 is the Laplacian 
operator s-l(d/ds)(sd/ds), and Qn' Rn are the polynomials 

n 
Qn(x) =n!2 :E (_l)n-pxP/p !2(n-p)!, 

p~o 

n 
Rn(x) =2-n :E (2n-p)!(2x)P/p !(n-p)! 

p=o 

(1) af,(r)+bf2(r) 
(2) f(r/a) 

(3) 2rr:ft(r)J2(r) 

(4) rX
) xf(x)dx 

(5) (d/dr){rf(r)} 
(6) r2nf(r) 

(7) 2rr:a(r) 
(8) 2rr:a(r-a) 

(9) e -tr'/a' 
(10) (!r2/a2 )ne -ir'/a' 
(11) (rx/a)2nQn( !arr2/rx2a2)e -ir'/a' 

(12) (a2 +r·)-t 
(13) (a2+r2)~aJ' 

(14) 1-3_5 ___ (2n+l)(a2+r2)-t(2n+3) 

(15) (a2 +r')-1 
(16) 2a2(a2+r2)-' 
(17) 4a"{a2 +r2 )-a 

(18) (rr:a2)-1, r <a 
0, r>a 

(19) 2rr:-2a-2{arc cos (r/2a) 

-(r/2a)Vl-(;T2a)2}, r<2a 
0, r>20. 

and the first five of them are 

where S2=S2+ S"-2ss' cos {) 

-s-lF'(s) 

-(d/ds){sF(s)} 
I (_I)nV2nF(s) 

Qo(X) =1, Ql(x)=x-1, Q2(X)=x2 -4x+2, 
Q3(x)=x3-9x2+18x-6, Q4(x)=x4-16x3+72x2-96x+24. 

The first five of the polynomials Rn(x) are 

Ro(x) =1, R 1(x)=x+1, R 2(x)=x2+3x+3, 
R3(X) =x3+6x2+15x+15, R4\X) =x4+10x3+45x2+105x+105. 
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For brevity, we write 

cp(a2) = (2na2)-le -!r'ja', 

~(a) =(aj2n)(a2+r2)-312. 

Then, if h(r) =cp(a2 ) and g(r) =~cncp(a~), we find 

f(r) =~cncp(a~ -a2 ). 

This form of solution was known to Kapteyn (1920), who used it to compute 
true frequency distributions of stellar proper motions. With the same kernel, 
if 

then 
f(r) =cp(a~)~cnQn( tA~r2)n, 

where a~=ai-a2, Al =a2jala, A 2=al ja2a. 

If h(r) =~(a) and .g(r) =~cn~(an)' we find 

f(r) =~cn~(an -a). 

The convolution of cp(a2 ) and ~(b) is the analogue of the Voigt function in one 
dimension. 

Other particular solutions may be found from Table 3 when the kernel is 
of the form (2na 2 )-le-rja or of the form (4na 3)-lrKl (rja). 

Fourier-Bessel transforms may also be computed by numerical integration. 
For best results the major variations of the function should be taken out by 
using the functions of Table 3, and the residual function transformed numerically. 
This process is tedious, but has been used successfully to sharpen the observed 
light curves of external galaxies with circular symmetry. Numerical integration 
of Fourier transforms has been used similarly in one dimension by Stokes (1948) 
and by Fellgett and Schmeidler (1952). 

Instability of the kind described in Section IV arises through the uncertainty 
of F(u, v) for large (u, v). In practice, plausible solutions can be obtained by 
extrapolating F(u, v) outside the region in which it is well determined, on the 
assumption that it falls "smoothly" to zero. 

IX. APPROXIMATE INVERSE KERNELS 

In this section, following a method introduced by Kreisel (1949), we 
overcome the instability of the solution by seeking only partially sharpened 
solutions fn(x, y), given by the convolution of the true solution f(x, y) with pre­
assigned smoothing functions jn(x, y) which are, loosely speaking, broad enough 
to smooth out spurious undulations of short wavelength in f(x, y), but not so 
broad as to distort seriously the significant features of f(x, y). 

For brevity, we now write 2nH(u, v) =H(u; v), and similarly for other 
functions of (u, v). The arguments (x, y) and (u, v) following functional symbols 
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will be omitted when there is no risk of confusion, and the convolution of any 
two functions fllf2 will be denoted by fl*f2' Equation (2.1) is thus written 

As always, we assume that 71, is L. If f is L also, then 

We define K(u, v) by KH =1, so that 

F~KG. 

(9.1) 

(In this section, the symbols J, K do not refer to Bessel functions.) If K(u, v) 
were the transform of a function k(x, y) of L, the solution of (9.1) would therefore 
be f=k*g, and k(x, y) could be called the inverse kernel. But if h(x, y) is a 
proper function, we know that K(u, v)--+oo with U 2+V2, so that k(x, y) does not 
exist. 

However, in many cases there exists a sequence of approximate inverse 
. kernels kn(x, y) of L, and associated smoothing functions jn -kn*h, such that 
the approximate solution fn =kn*g is the smooth of f with jn' is stable, and under 
certain conditions the sequence fn(x, y) converges uniformly to f(x, y). Observe 
that, when g(x, y) is specified by its values at a finite set of points together with 
an interpolation formula, there is in general no exact solution f(x, y), and the 
best we can do is to find an approximate solution fn such that gn -h*fn agrees 
with the observational data within acceptable limits of error. It will be shown 
that, whether f(x, y) exists or not, the sequence .gn(x, y) converges uniformly to 
g(x, y); provided that g(x, y) is bounded and of bounded gradient everywhere, 
that is, 

1 g(x', y') -g(x, y) 1 <;mcp(x' -x, y' -y), ........ (9.2) 

cp(x, y)=1 (X2+y2)! I, x2+y2<;M2Jm2, 
=MJm, x2+y2>M2Jm2 ; 

and provided also that, for e:> 0, there exists an integer N such that 

for every n-;;;'N. We suppose also that the jn(x, y) are normalized: 

J:"J:,,/n(X, y)dxdy=l, n=l, 2, 3,. . . (9.4) 

We now give a formal statement and proof of these results. 

Statement.-If 

(i) g is bounded, and integrable in every finite region, 
(ii) g is of bounded gradient everywhere, as in (9.2), 

(iii) functions kn and jn -kn*h can be chosen such that (9.3) and (9.4) 
hold, and 71" kn are L" 

(iv) fn =kn*g ; 
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then 

(v) fn is bounded, and integrable in every finite region, so that gn =h*fn 
exists, 

(vi) in is L, and gn =in*g, 
(vii) fn is continuously determined by g, 

(viii) 1 gn-g 1-+0 everywhere uniformly as n-+oo. 
If also 

then 

(ix) f exists such that g=h*f, and f is. bounded, and integrable in every 
finite region; 

(x) fn =in*f· 

If also 

(xi) f is of bounded gradient everywhere; 

then 

(xii) 1 fn-f 1-+0 everywhere uniformly as n-+oo. 
Proofs 

(v) Since fn =kn*g, and kn is L, (v) follows from (i). 

(vi) Since h, k n are Land in=kn*h, therefore in is L. Also, by (v), (iv), 
and (iii), gn=h*(kn*g)=(h*kn)*g=in*g, the change in order of integration being 
justified by absolute convergence. 

(vii) Let fl.g(x, y) be a variation of g(x, y), such that Ifl.g(x,y) 1 <e for all 
(x, y). Let ·fl.fn(x, y) be the corresponding variation of fn(x, y). Then, since 
kn is L, 

Ifl.fn 1 =1 kn*~g 1 <I kn 1*1 ~g 1 <e J: ooJ:ool kn(x, y) 1 dxdy=eOn , 

where On is a positive number depending only on n. Therefore fn(x, y) is con­
tinuously determined by g(x, y), that is, it is stable. (But note that this con­
tinuity is not uniform with respect to n, for On-+oo with n.) 

(viii) From (vi) and (9.4), 

1 gn(x', y') -g(x', y') 1 =1 f: ooJ: oo.in(X' -x, y' -y)[g(x, y) -g(x', y')]dxdy 1 

<m J:ooJ:ool in(x' -x, y' -y) 1 cp(x' -x, y' -y)dxdy 

<e, for n>N, 
by (9.2) and (9.3). 

j) 

(x) Since h, kn are L, we have from (iv) and (ix), 

fn =kn*(h*f) = (kn*h )*f =.in*f· 

(xii) Proof is similar to the proof of (viii). 
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The treatment above owes much to Kreisel's "Theorem A" (1949). In 
our notation, Kreisel assumes (ti), (iii), (ix), and (x) and deduces (iv) , (vii), and 
in effect (viii), though without explicitly using the idea of a sequence. To 
facilitate comparison of the two treatments, we give a conversion table for 
notation: 

Burr: 
Kreisel: 

g 

k 

h 

L 
H in 
A p. 

The conditions (iii) may be relaxed sufficiently to admit improper functions 
of the form 

kn(x, y)=On~(X' y)+ln(x, y), .•.••••••••••••••• (9.5) 

where In belongs to L; and the theorem remains true, with slight modifications 
in the proofs. 

In another variant, (9.3) is replaced by the condition that 

jn(u, v)~1 uniformly in every, finite region, (9.6) 

and (ti) is replaced by the condition that g is L and continuous, with the remaining 
conditions unchanged. It follows that gn is L and continuous, and Gn=J/i, 
and proposition (viii) is replaced by 

G~Gn=(I-Jn)ij 
~O as n~oo, .............. (9.6a) 

by (9.6). In this variant, the writer has been unable to prove that g-gn~O 
except in the rather restrictive case in which g, G both belong to L. However, 
most computers will accept (9. 6a) as sufficient justification for using the process 
with any observational data. Similar remarks apply to j, F when these functions 
exist. The proofs of (v), (vi), (vii), and (x) are unchanged. 

We now give two forms for the sequence of smoothing functions which 
have been used in numerical problems. 

Kreisel (1949) chooses smoothing functions of the form 

(9.7) 

where an' bn~O, as n~oo, so that (9.3) and (9.4) are satisfied. The approximate 
inverse kernels kn(x, y) have then to be computed through their Fourier 
transforms: 

.......... (9.8) 

The method is applicable only if the kn(x, y) exi~t and belong to L. It is valid 
for algebraic kernels such as (2.7), for which some functions kn(r) have been 
tabulated by Bullard and Cooper (1948). But, if· H(u, v) has zeros or if the 
kernel is Gaussian, the form (9.7) is not applicable. 

The second form for the sequence is given by 

I n=I-(I-H)n, ............................ (9.9.) 

Kn =1 + (l-il) + (I-H)2+ . .. + (I-H)n-l 

(9.10) 
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Since 'jj2, H3, . .. are the Fourier transforms of 21th*h, 21th*h*h, . .. , which 
belong to L, it follows that in is L, and that 

kn(x, y)=ni)(x, y)-ln(x, y), ............ (9.11) 

where In(x, y) is L. Also, from (9.9), since H(u, v) is continuous, we see that 
(9.6) is satisfied provided that 

II-H(u, v) I <1 . . . . . . . . . . . . .. (9.12) 

everywhere. We conclude that when the kernel satisfies (9.12) the method is 
applicable under the conditions discussed under equation (9.6a). Approximate 
solutions of this form have been discussed or applied by several authors, for 
example Burger and van Cittert (1932, 1933) and van de Hulst (1941). 

It is easily verified from (9.9) and (9.10) that the sequence fn satisfies the 
recurrence relations 

fn+1 =g+fn-h*fn, 

fn+1 -fn =(fn -fn-l) -h*(fn -fn-l), 

n=O, 1, 2, . 

n=l, 2, 3, . 

. . , .. (9.13} 

., .. (9.14) 

with fo=O,fl=g. From (9.13) we can compute f2,f3,j4" .. in turn, one 
integration being required at each step. (By one integration we mean one for 
each point (x, y).) Note that an error e(x, y) introduced at any step will be 
reduced after a further m integrations to an error whose Fourier transform is 
[l-H(u, v)rE(u, v), which tends to zero as m-'7oo. Equation (9.13) may 
also be written fn+1-fn=g-gn' so that the process may be stopped when 
fn+1 -fn is smaller than the errors of observation in g. The numerical integration 
is easier if (9.14) is used instead of (9.13), because fn-fn-l is in general 
numerically smaller and of smaller gradient than fn' We have taken for our 
first approximation fl =g, but any function could have been taken. Thus the 
computer can use his judgement in selecting a trial solution for fl' compute f2 
from (9.13) and f3,f4" .. from (9.13) or (9.14). In numerical. examples. 
with circular symmetry, it was found that graphs of the sequence (fn+1--Jn) 
along a diameter formed a " smooth" sequence of curves, and. after plotting­
four or five such curves it was possible to extrapolate the sequence with tolerable 
accuracy and sketch the form of the next two or three curves. The sum of the 
ordinates of all these curves gave the distribution finally adopted for f(x, y). 

Alternatively we may compute the approximate inverse kernel kn in the 
form (9.11) for some particular n, say n=5, and then obtain fn in a single 
integration: 

fn=kn*g-ng-ln*g. . ............... (9.15) 

We then form gn=h*fn, and, if g-gn is not negligible, we can computef2n,f3n' . 
in turn using the recurrence relation 

f(m+1)n-fmn=k n*(g-gmn)' m=O, 1, 2, . " .... (9.16) 

in which we have taken fo=O, although it is possible to choose fo arbitrarily, 
setting go=h*fo' The computation of In(x, y) is tedious, but is worth while if 
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f!everal observed distributions with the same kernel have to be sharpened. It 
can be computed by n -2 integrations, 

.. , 
or by taking two Fourier transforms: 

though this may not be practicable except in cases with circular symmetry. 
if the kernel is expressible as a sum of Gaussian terms or as a sum of terms of 
the form a(b2+r2)-a/2, then In(r) can be expressed in the same form. For example, 
if 

then 

This method has been used to correct light curves of the same external 
galaxies as those mentioned in the preceding section. The function llO(r) corres­
ponding to the kernel (2.3) was computed, and it was found possible to integrate 
llO*g with sufficient accuracy to determine flO(r) within about 2 per cent. The 
agreement of the results obtained by the two methods was very satisfying. 

From (9.15), it appears that random errors in the data g(x, y) will be 
magnified at least ntimes in fn(x, y). Thus the solution becomes increasingly 
unstable as n is increased. Significant errors may also be introduced by repeated 
numerical integrations. But by using 50 or more cells on the transparent grid 
representing h(x, y) or In(x, y),these errors may be kept reasonably small. This 
has been verified by a test in which h(r) = (27t)-le-lr', f(r) =200e-ir ', 

g(r)=100e-r·/4. The approximations f2' fa, fM fs were computed analytically, 
anq. also by four numerical integrations using (9.14) with a grid of 55 cells 
representing >h(r). The errors due to numerical integration in f2' fa, fM f5 were 
found to be not greater than 0·6,1·0,1·2, and 1·5 respectively. fs(r) was also 
computed directly from (9.15) with a grid of 79 cells representing ls(r). The 
errors in this ease were found to be less than 1· O. These errors are regarded 
as reasonably small, because they are not larger than the errors of observation 
to be expected in g(r), which are usually at least 1 or 2 per cent. of g(O)~ 

x. CONCLUSIONS 

It is not possible to lay down fixed rules for deciding which method of 
'Solution is best for a particular problem, but the following may serve as a rough 
guide. 

(a) If the corrections are small and the kernel has the requisite moments, 
use a polynomial solution. 

(b) If the corrections are large, or the moments do not exist, or both, whilst 
1 H(u, v) 1>0 everywhere, then Kreisel's method or the solutions (9.13)-(9.16) 
(or both) may be applicable. 
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(0) If H(u, v) =0 in some region but 11-ii(u, v) 1<1 .elsewhere, relations 
(9.13)-(9.16) will give approximations to the principal solution, provided that 
the unwanted Fourier components are filtered out as described by Bracewell 
and Roberts (1954). 

(d) If (a), (b), and (0) are inapplicable, the solution must be obtained by 
Fourier transforms or by trial and error. In problems with circular symmetry, 
the use of Fourier-Bessel transforms is sometimes preferable to the methods 
in (b) and (0). 
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