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Summary 

In narrow channels (,....,10--4 em) the observed heat transport is considerably larger 
than calculated by the internal convection theory. It is suggested that, because of 
the anisotropy of the distribution cf phonons in the channel walls resulting from the 
temperature gradient, the normal fluid in the immediate vicinity of the walls is not at 
rest but flows towards the colder region. The magnitude of the resulting heat transport 
is in reasonable agreement with the observed discrepancy. 

r. INTRODUCTION 

Heat transport in liquid helium II is considered to be an internal convection 
process (London and Zilsel 1948; Gorter and Mellink 1949). A temperature 
gradient gives rise to a fountain pressure gradient 

grad p =pS grad T, ( 1) 

where p is the total density of the fluid and S its entropy per unit mass. The 
fountain pressure drives the normal fluid towards the cold region, and there is 
an equal return flow of superfluid. In narrow channels and for small temper­
ature gradients this flow is limited by the viscous friction of the normal fluid. 
We shall not consider here cases of wide channels and large temperature gradients, 
where the mutual friction between the normal fluid and the superfluid becomes 
important, leading to a non-linear dependence of flow on grad T (Gorter and 
Mellink 1949). The flow (volume per unit time) through a slit of unit breadth 
and width d due to the fountain pressure is 

d3 

V =-12'1) grad p, ................. (2) 

where '1) is the coefficient of viscosity of the normal fluid. Since the returning 
superfluid has no entropy, this circulation mechanism gives rise to a heat current 

p2S2Td3 

Q=pSTV=- 12'1) grad T .............. (3) 

leading to an apparent thermal conductivity x=-Q/(d grad T), which varies 
with temperature and is proportional to d2• 

When comparing the heat flow measured by Keesom and Duyckaerts 
(1947) and by Meyer and Mellink (1947) against (3), as was done by London 
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and Zilsel (1948), it is found that the observed heat flow exceeds the values 
calculated from (3) for slit widths of order'10-4 cm or less, the relative dis­
crepancy becoming larger for small slit widths and low temperatures (see Table 1,. 
column 5). 

Gorter and Mellink (1949) have suggested that this discrepancy arises 
because the slit width d is less than the mean free path lo of those excitations in 
the fluid which determine the bulk viscosity, and the heat flow is increased by a 
factor of order lo/d. However, the observed thermal conductivities do not· 
seem to vary as d, as required by this explanation. 

An alternative explanation of this discrepancy is suggested here. In the 
derivation of (2) the assumption has been made that the normal fluid in the 
immediate vicinity of the channel walls is at rest. This will, only be so if the 
walls are isothermal, for, if the normal fluid exchanges momentum with the 
phonon gas at the walls, an anisotropic phonon distribution will tend to induce 
in the normal fluid a bulk flow tangential to the walls in the opposite direction 
to the temperature gradient which causes the phonon anisotropy. This additional 
flow is again compensatea by a return flow of superfluid, and the additional 
heat transport can account for the discrepancies between the observed flow and 
equation (3). 

II. QUASI-EQUILIBRIUM BETWEEN THE FLUID AND THE PHONONS OF 

THE WALL 

It can be shown (Klemens 1951) that the distribution of phonons in a 
temperature gradient is of the form 

N k= [ectW - A. k_1]-1~[ectW _1]-1 +A.kec=[ectW -1]-2, . . .. (4) 

where N is the average occupation of the normal mode of frequency (U and 
wave-vector k, and oc=h/21tKT. The vector A characterizes the anisotropy 
of the distribution, and is given by 

l he 
A = -grad T if' 21tKT' (5) 

where l is the phonon mean free path and e the velocity of sound. 
The distribution function of the bosons which describe the fluid is of the 

form 
Nk==[e(E-E,)/KT-A'. k-1]-I, .............. (6) 

where E is the energy and k the wave-vector of the boson state considered,. 
and Eo is a parameter. If the fluid is at rest relative to the observer, A' =0, 
leading to the normal Planck distribution. In general, (6) is the 'distribution 
of a fluid moving relative to the frame of reference with a bulk velocity' v given 
by 

A' =hv/21tKT . . . .. .. .. . . .. .. . . . .. (7) 
(e.g. Dingle 1952, p. 137). 

If in a system of interacting bosons energy is conserved for each inter­
action process, it is easily seen that equation (6), with A' =0, describes a stationary 
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state; if two subsystems interact so as to conserve energy, they will tend to a 
mutual equilibrium with a common value of T in their distribution functions. 
Similarly, if both energy and momentum (that is, k) are conserved in individual 
interactions, (6) will be a stationary distribution for any set of parameters T 
and )..', and two subsystems, conserving energy and momentum in each inter­
action process, will tend to a quasi-equilibrium with common values of T and )..' 
in their distribution functions. 

If the interactions of the bosons of the fluid with the phonons of the wall 
conserve the tangential component of k, then these will be in mutual equilibrium 
if ).. =)..' in their distribution functions (6) and (4) and if the component of ).. 
normal to the wall vanishes. Under isothermal conditions )..=0, hence )..' =0 
for the normal fluid in the immediate vicinity of the walls, and it is therefore 
at rest. But in the presence of a temperature gradient ).. *0, and, to satisfy 
)..=)..', the bulk velocity of the normal fluid near the wall will, from (5) and (7), 
be given by 

cl 
v= -1' grad T. . . . •. . . . . . . . . . . . . .. (8) 

With (8) as boundary condition instead of v=O, there will be an additional 
flow through the slit given by 

V' = -4 grad T, .. . . . . . . . . . . . . . . .. (9) 

and thus an additional heat flow given by 

Q'=pSTV'==-cldpSgradT, .......... (10) 

which corresponds to an additional thermal conductivity 

x' =Spcl, ( 11) 

which is independent of the cross section of the channel. 

III. OOMPARISON WITH OBSERVATIONS 

In Figure 1 are plotted differences between the thermal conductivities 
observed for various slit widths (xo) and the conductivities calculated from (3) 
(X(3»)' According to the above theory this difference should be independent of 
slit width, and a function of temperature only. Oonsidering the uncertainties 
of the observations of Q and d, the observed points could well fall on a single 
curve, though the scatter for high temperatures is considerable. In any case 
the plotted points do not reveal any systematic dependence of x' on slit width, 
so that an equation of the form (11) could account for the discrepancies. 

To calculate the additional heat flow from (11), the velocity and the mean 
free path of the phonons in the walls must be known. In the experiments of 
Keesom and Duyckaerts (1947) and of Meyer and Mellink (1947) the slits were 
formed between two optically flat surfaces of glass. One can take for glass 
.-c,.....,2 X 105 cm/sec. The mean free path for phonons in quartz glass is known from 
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measurements of the thermal conductivity at low temperatures (Berman 19()1) 
and the theory of Klemens (1951). Thus, for longitudinal phonons of wave 
number k, l~3· 6 X 109k-2 cm. The mean free path of transverse phonons is 
probably smaller by a factor of about 50. 

Since A is not a constant, A' must be equated to some average value of A. 
There arises a difficulty because the appropriate averaging procedure depends 
upon the nature of the interactions between the phonons of the wall and the 
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Fig. I.-Difference between the observed conductivities 
and conductivities calculated from equation (3). Full 

line shows x' calculated from equation (11). 

bosons of the normal fluid. If one takes for this average, admittedly somewhat 
arbitrarily, the mean free path for the frequency 27tKT/h, averaged over the 
three polarizations, one obtains l=2·8 X10-3T-2 cm. 

Values of x' calculated from (11), using the above values of land c, and 
values of S taken from Kramers, Wasscher, and Gorter (1952), are plotted as a 
function of temperature in Figure 1. Although the ratio Xo/(X(3)+X'), given 
in Table 1, clearly does not depart from unity to the extent that Xo/X(3) does, 
there is considerable lack of agreement between x' and the experimental points. 
This is of such a form as to indicate that l is not as strongly temperature dependent 
as one would expect. This may be due to a difference between the phonon 
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mean free paths near a polished surface and in the interior, or it may be due 
to the role of the phonons of different polarizations changing with temperature. 
It should also be remembered that the experimental results are uncertain, 
particularly just below the ).-point, and that the mean free paths of phonons 
differ significantly from glass to glass. It is significant that x' appears to be a 

TABLE 1 

APPARENT HEAT CONDUCTIVITY OF HELIUM II THROUGH SLITS OF WIDTH d 

)(0 values observed by Keesom and Duyckaerts (1947)- K.D., and by, Meyer and Mellink (1947)-
M.M.; X(3) theoretical values calculated from equation (3) (London and Zilsel 1948) ; )(' cor~ 

rection calculated from equation (11) 
-------

d l' Xo )(3) Xo ~~. 

. (10:' em) I 
(OK) (cal deg-I cm-1 sec-I) X(3) )(3)+)(' 

----_. 

1·75 1·960 17·2 10·2 1·69 1·18 
(K.D.) 

j 

],705 3·5 1·86 ]·88 0·80 
1·476 0·61 0·32 1·92 0·32 

I 
1·223 0·066 0·032 2·05 0·09 

1·15 I 2·170 24 15·5 1·55 1·18 
(K.D.) 

I 
1·989 17·1 5·28 3·25 1·74 

I ]·799 5·35 1·55 3·45 1·14 

1·0 2·159 31 10·8 2·9 1·75 
(M.M.) 1·948 21·4 3·06 7·0 2·9 

1·802 12·4 1·19 10·4 2·8 
1·411 1·05 0·060 17·5 0·75 

0·75 2·097 30·2 4·3 7·0 2·9 
(K.D.) 1·600 1'85 0·156 11·8 0·82 

]·403 0·39 0·031 12·5 0·27 

0·5 1·659 2·48 0·108 23 0·99 
(M.M.) 1·315 0·354 0·0064 55 0·35 

1·274 0·277 0·0043 64 0·31 
1·086 0·124 0·0006 202 0·28 

0·3 1·652 1·92 0·0365 54 0·82 
(M.M.) 1·558 1·35 0·018 75 0·69 

1·358 0·48 0·0034 140 0·42 
1·226 0·25 0·00097 260 0·33 

I 
--- ----- ... _--

funetion of temperature independent of slit width, and that the present theory 
gives the observed order of magnitude of the heat flow in all cases, while equation 
(3) fails to do so. 

It would be interesting to observe the heat flow through slits formed of 
materials with a different phonon mean free path, sueh as erystalline quartz, 
diamond, or artificial sapphire; the heat transport through these slits should be 
considerably enhanced. 
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