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EIGEN OSCILLATIONS OF COMPRESSIBLE, IONIZED FLUIDS* 

By R. E. LOUGHHEADt 

The frequencies of eigen oscillations of regions of uniform magnetic field 
may be derived very simply from the hydromagnetic equations for a compressible 
fluid of infinite electrical conductivity in the cases where the regions are bounded 
by cylindrical and plane-parallel surfaces, 

For small oscillations these equations may be written in the forms: 

ah at =curl (v X H), 

av 
47tfLat =(curl H) xh+(curl h) x H-47t grad p, 

~i = -div (fLv), 

ap _ 2ap 
at -q at' 

(1 ) 

(2) 

(3) 

(4) 

where h is the perturbation in the steady magnetic field H, v the corresponding 
change in the fluid velocity, p the variation in the steady mass density fL, p the 
variation in the gas pressure, and q the velocity of sound in the fluid. 

* Manuscript received June 1, 1955. 
t Division of Physics, C.S.I.R:O., University Grounds, Sydney. 
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Suppose a uniform magnetic field Hz is confined within a circular cylinder 
of radius R whose central line coincides with the z-axis. In cylindrical co
ordinates the equations for radial oscillations may be written in the forms: 

. h 1 
lW =-

z r 

. 1 a ( ) 
lW p= - r ()r rfLvr , 

. . . . . . . . . . . . .. (5) 

. . . . . . . . . . .. (6) 

. . . . . . . . . . . . . . . . .. (7) 

in which the variables are taken to be proportional to eicot • 

conditions across the surface r=R follow from equations (5) . 
The boundary 

. (7), namely, 

. . . . . . . . . . . . . . .. (8) 

Inside the cylinder, where the magnetic field has the constant value 

(9) 

the variation of vr is found to be governed by the equation 

(10) 

where 

v =(. Hi +q2)i 
47tfLl 

. . . . . . . . . . . . . . .. (11) 

is the velocity of hydromagnetic disturbances propagated at right angles to the 
field Hz, fLl being the fluid density inside the cylinder. The solution of (10), 
finite on the axis r =0, is 

Vr=AJl(~} .................. (12) 

where J l(X) is Bessel's function of the first kind of order unity and A is an 
aroitrary constant. Outside the magnetic region Vr obeys the equation 

?2Vr +! ~!!.. +(W2 -~)v =0 or2 r or q2 r2 r , ........... , (13) 

whose solution, finite at infinity, takes the form 

In this equation Y l(Y) is Bessel's function of the second kind of order unity and 
Band 0 are arbitrary constants. 
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The boundary conditions (8) impose three linear relations on the constants 
...4., B, and C and the condition for the existence of non-trivial solutions reduces 
to the equation 

( 15) 

However, by a standard result in the theory of Bessel functions (cf. Watson 
1944)* 

y{J l(y)YO(y) -Jo(Y)Y l(yn = 2/7t, 
and hence equation (15) is satisfied if 

. . . . . . . . . . . . . . . . .. (16) 

Equation (16) has an infinity of real roots corresponding to the zeros of the Bessel 
function of the first kind of order unity. Let jn (n =1, 2, 3, ... ) denote the 
infinity of real roots of the equation 

JI(x) =0, 

then the eigen-frequencies of the various moues of radial oscillation of 
the magnetic cylinder are given by 

................ " (17) 

where n=1, 2, 3, ... 

In the second case consider a uniform magnetic field Hz confined within a 
pair of parallel planes X= ±a, referred to Cartesian axes Ox, y, z. Then, by a 
similar analysis, the eigen-frequencies of unidimensional oscillations in the 
x-direction at right angles to the magnetic field are found to be given by 

.................. (18) 

where n =1, 2, 3,. . . 

The analysis may be generalized to cover the situation in which the magnetic 
field takes the values Hz=H I for r<R or -a<x<a, and H z=H2 for r>R 
or I x I >a, respectively. It is found that the eigen-frequencies given by (17) 
and (18) remain unchanged provided, of course, that HI *H 2' 

'" WATSON, G. N. (1944).-" Theory of Bessel Functions." p. 77. (Cambridge Univ. Press.) 




