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EIGEN OSCILLATIONS OF COMPRESSIBLE, IONIZED FLUIDS*
By R. E. LOUGHHEADY}

The frequencies of eigen oscillations of regions of uniform magnetic field
may be derived very simply from the hydromagnetic equations for a compressible
fluid of infinite electrical conductivity in the cases where the regions are bounded
by cylindrical and plane-parallel surfaces:

For small oscillations these equations may be written in the forms :
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where h is the perturbation in the steady magnetic field H, v the corresponding
change in the fluid velocity, p the variation in the steady mass density y, p the
variation in the gas pressure, and ¢ the velocity of sound in the fluid.

* Manuscript received June 1, 1955.
T Division of Physics, C.S.I.R.O., University Grounds, Sydney.
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Suppose a uniform magnetic field H, is confined within a circular cylinder
of radius R whose central line coincides with the z-axis. In cylindrical co-
ordinates the equations for radial oscillations may be written in the forms :
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in which the variables are taken to be proportional to eiot. The boundary
conditions across the surface r=R follow from equations (5). . . (7), namely,

A(v,H,) =0,
AH h,+47q%0) =0, t ...ovviiriiinnn. (8)
A(uw,) =0.

Inside the cylinder, where the magnetic field has the constant value

H,=Hy i, (9)
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the variation of v, is found to be governed by the equation
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where
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is the velocity of hydromagnetic disturbances propagated at right angles to the
field H,, p, being the fluid density inside the cylinder. The solution of (10),
finite on the axis r=0, is

v,:AJ1<(%r), .................. (12)

where J,(x) is Bessel’s function of the first kind of order unity and A is an
arbitrary constant. Outside the magnetic region v, obeys the equation
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whose solution, finite at infinity, takes the form
@,=BJ1(%”) +0Y1(%r). .............. (14)

In this equation Y,(y) is Bessel’s function of the second kind of order unity and
B and C are arbitrary constants.
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The boundary conditions (8) impose three linear relations on the constants
A, B, and C and the condition for the existence of non-trivial solutions reduces
to the equation
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However, by a standard result in the theory of Bessel functions (cf. Watson
1944)*

YT Yoy) —To() Y1 (y)} =2/m,

and hence equation (15) is satisfied if

Jl(‘%ﬁ) 00 e, (16)

Equation (16) has an infinity of real roots corresponding to the zeros of the Bessel
function of the first kind of order unity. Let j, (n=1, 2, 3, . . .) denote the
infinity of real roots of the equation

Jl(x) =0,

then the eigen-frequencies of the various modes of radial oscillation of
the magnetic cylinder are given by
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where n=1, 2, 3,. . .

Tn the second case consider a uniform magnetic field H, confined within a
pair of parallel planes 2= 4-a, referred to Cartesian axes Oz, 9, 2. Then, by a
similar analysis, the eigen-frequencies of unidimensional oscillations in the
x-direction at right angles to the magnetic field are found to be given by
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where n=1, 2, 3,. . .

The analysis may be generalized to cover the situation in which the magnetic
field takes the values H.=H, for r<R or —a<wx<a, and H,=H, for r>R
or | # | >a, respectively. It is found that the eigen-frequencies given by (17)
and (18) remain unchanged provided, of course, that H,#H,.

* Warson, G. N. (1944).— Theory of Bessel Functions.” p. 77. (Cambridge Univ. Press.)





