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Summary

In a recent paper Stiefel presented a method designed for a high speed computer,
for solving simultaneous linear algebraic equations of the type

n
k§1aik“k+li=0’ +=1,2,3,... n.

The method proposed here arose from that paper. Moreover, since Stiefel fully
examined the symmetric case, a,, =a,,, it seemed natural to develop the present theory
for non-symmetric matrices also. Actually, Stiefel and Hestenes also touched on
the non-symmetric problem but did not pursue the subject very far. A comparison
between their method and that proposed here is given. As in Stiefel’s theory the
iteration ends at step n, which actually represents the exact solution provided no
rounding-off errors have been committed. However, a different type of orthogonality
and conjugate relation is used here as both D (i.e. the matrix [@;;]) and its transpose
D* are operated with simultaneously. Formulae have been found for the characteristic
polynomial of D and for its inverse.

I. INTRODUCTION
The problem is to solve a set of linear non-singular simultaneous algebraic
equations

n
k§1ai"uk+li=0’ (t=1,2,3,. . ,m). .......... (1)

For values of n up to 10 this is probably best done by well-known methods
such as Crout’s. For n greater than 10, and especially when automatic equipment
is available, iteration methods with accelerated convergence are superior.
These methods have the advantage that inevitable rounding-off errors are kept
in check and at the same time iteration methods are more suitable for digital
computers. ‘

The method outlined here is based essentially on the method of * minimal
iterations ”’ as described by C. Lanczos (1950). The problem dealt with here
has been recently discussed by Hestenes and Stiefel (1952). When the matrix
[a;x] is non-symmetric it appeared advantageous to depart from his suggested
procedure and an alternative method is investigated.

t Aeronautical Research Laboratories, Department of Supply, Melbourne.
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II. THE DEFINITIONS OF THE FUNDAMENTAL VECTORS AND PARAMETERS

The following six vectors and two parameters are introduced to start
with :

Pr =—Tpter—1Pk-1, k=1, po=—r,,

Vp+1= Vr+M P, ... (2)
Tr+1= Tr+A Dpg,

p}: :—7';+€k—1p]:_1’ k>1, p(‘):_r:)’

V= O tMN P L . (3)

® * *) %
M= TN Dpg

(7% D‘p]:_l) (7‘;7 Dpg—1)

= L L Bt 4

R - D*pr_) Py Dpi—1) )
: (7'1:7 i) (T p;:)

A =— Y =R L. ... (5

R T ) @5, Dpy)’ (5)

where p, is called the kth direction vector, v, is called the kth solution vector,
and 7, is called the kth residue vector. The above three vectors operate on D
alone whilst p*, v*, and 7* operate only on D" and carry the same names. Finally,
g, and A, are, as will be shown shortly, suitable orthogonality parameters.

. With the above definitions it is now possible to develop an algorism to solve
a system of n equations in n unknowns.

ITIT. TEHE SOLUTION OF LINEAR EQUATIONS
It is required to solve (1) or, in matrix notation,
Du+41=0, ........... ... (6)
where D is the square matrix with elements a,,
U=(Uyy Ugy Ugy . . . U,),
=y, 1y I3 .. H1,).
In order to solve (6) it appears desirable to treat simultaneously
D H0I"=0, ... (7)
where D" is the transposed matrix of D,

u* is a different solution vector (i.e. the one associated with D*) and
usually of no interest,

I" is a conveniently chosen vector.

The first step in the analysis is to make a guess for w. This first approxi-
mation to the solution vector w is denoted by v,; whilst successive approxi-
mations will be denoted by v,. It then follows that

Do+l=r, ... . (8)
where 7 is called the residue vector. Likewise for (7) it follows that
D"+l =r*. (9)
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Using the definitions of v;.1 and v . of (2) and (3) it follows, using (8),

k41
that
r,=Dv; 1,
and also
Tpt1=Dvps1+1l, ... i (10)

whence on subtraction
Tp+1—", =DWpr1—0;)
=NDp, by equation (2), .... (11)
which shows that, once v, and p, are defined, relation (11) is a direct conse--
quence, that is, of the six defining vectors only four are independent.

Likewise, therefore, :
Yo =T MDD o (12)

The A, are to be chosen in such a manner that successive residuals 7441 will
be orthogonal to p;. forj=0,1,2,. . .,k It will be shown that this can actually
be achieved by orthogonalizing 71 merely against pj.

To fix A, it follows therefore that

(Tk+1, p;,) =0,
(e 419 PE)=0.

Using (11) and (12) this gives the first orthogonality parameter

(s Pr) (T, Py)

ke (Dky D*P;)“ (p]’:, Dpk)’

provided (pz, D*p;) is non-vanishing. If the denominator vanishes then either
7y, is orthogonal to p; or it is required to start with a new vector v;. It should be
remembered, however, that it is only for very exceptional v; that the above-
inner product would actually vanish. Of course it is still undesirable for this.
product to be very small. To be on the safe side in the choice of v one should
try to choose a vector which is a linear combination of all the eigenvectors of’
D*; therefore it is usually best to choose for v; a vector like

vi={1, 1, 1,. . ., 1}.

In order to fix e;—1, use the defining equations of p; and p; and postulate:

that
("t Py_y) =0=(r}, DPr—2).

Post-multiplying (11) by p;, it follows that
0=(re+1, Py_1)=(rry Dy,_;) +Xel —(Dray p}_;)+ex—1(Dpr—1, P;)}-
Using (13) it follows that

(7767 D*p]:_l) . (/"]:7 Dpk—l)
pr-1, D'py_y)  (Pp_yy Dpre-1)

slc—1:(
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and therefore also
Py D'py_y) =0, ..ol (16)
provided
: (Pr-1, D*p_,)#0.
The remarks made above on the vanishing of this product are still applicable
here.
It is now possible to prove two fundamental theorems.

Theorem I
The system of residue vectors

{7'0’ T19 T2y« « o "'n—l}
is mutually orthogonal to
*
{res 715 Tas e « o 7o _1}s
‘that is,
*

(”'ia "';) =0=(7'.;’ 7;')7

“where 4, j=0, 1, 2,. . ., n—1 and i#j.

‘Theorem IT
The system of direction vectors

{pm D1 Py - - -apn—l}
is mutually conjugate to ,

Py P3 Do+« o Py ih
that is, . .

(i 'Dpj)z():(pj7 Dpi);

where i, j=0, 1; 2,...,n—1 and i=j. ;
These theorems will be proved by induction. Let it be assumed that Theorem IT
be true for n=Fk, that is,

(Pry D*pp) =0, oo (17)
(Pry D*py_5)=0, ool (18)
Py DDi_g) =0y oo, (19)

(P D'Pg) =0.
It is required to prove it to be true for n=~k-41. First, it is useful to
establish the following

Lemma
Prove that
) (7‘;, Te41)=0, ... i (20)
(i) (Prs 7+1)=0, <ot (21)
(iii) (’I';;, Fp4+1)=0. ... i, (22)

(ii) follows from the definition of ez—1.
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Also, taking the defining equation of p; and forming the scalar product
with 7541 gives '

("1 1) =—(k41, D) +er—10k+1, Pr_1)

using (13) and (11).
Finally, form the scalar product with »;_, in (11):

(Tkt1y Th_y) =08y 75_y) MDD r,‘c_li) .......... (23A)

=7\k(Dplcy 7']:_1),
using (23).
But, by definition,
| Teo1="Pp_ytek—2D;_o
which, upon substitution in (23A), gives

(T&+1, 75_1) = —We(Dpr, Py_;) +hecr—2(Dpry Py _y)

using (17) and (18), which proves (22).
Now, form the scalar product with D*p; , in

Prk+1=—Tk+11EkDs
that is,
(Pr+1, D'py_ ) =—(rx+1, D*py_,) +eu(pr, D*pp_,)

=—(rx+1, Dp;_,)-

But
MDpy_ =111
whence
Me—1(Pr+1, D'py_))=—+1, 73) +(Tht1y T5_y)

0, e (25)
using (23) and (24).
Now

(pr+1, D*pp)=0 Dby (16),

and

(Pr+1, D*p;)=0 by (25).

Likewise, it can be proved that pz+1 and p;_, are mutually conjugate,
and it can be shown at the same time that 77+1 and 7} _, are mutually orthogonal
and so on until it is shown that pz.1 and p; are mutually conjugate and 7541
and 7§ are mutually orthogonal. So, if the theorems be true for n=k, they will
also be true for n=k-1. But the theorems are true for k=1, for

(r1, ;)=0 by the choice of p, and (13)
and also
~(p1, D'py)=0 by (16).

‘Hence the theorems are true for all n.
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Theorem II1

Asterisks can always be interchanged from one side of an inner product
to the other.

Using the definition of p; and p; it follows immediately by using (13) that

(Pry 1) =(Pps 78)-
It follows by induction that the stars are interchangeable in the product
(Pr, r;‘.) for j>k and it will be proved presently that this product vanishes for
Jj<k in either case. The orthogonality relations of Theorem I ensure that
(rey 13)=(ry, 75). That (pg, p}):(p,’;, pj) can be shown by induction by using

the definitions of p; and pj and the fact that py=—r, and pj=—r;.

As regards the interchangeability of the stars in expressions like (r, D*p3),
the definition of p; and induction again easily lead to the results :

(rey D*pl)=(ry, Dpj)=(Dry, p3)=(D"r}, p3),
(Pr, D*p3) =(pys D)y ... (26)
(Tky D*r;.) =(ry, Drj).
Therefore, it is always permissible to interchange asterisks from one side
of an inner product to the other.
An interesting result of lesser importance is the following :

Theorem IV
The residue vector r; , is mutually conjugate to the system {r} with
i=0, 1, 2,. . ., k—1.
This is easily proved with the help of Theorem II.
By definition
1y =—pP;+¢c-1Pi-1-
Forming the scalar product with 7}, 41 in the above and operating with D
gives
(e Dri)=—(ry,qy Dpi)+ei-alry y, Dpi-1),
=—{—pp,1 teu@y Dpi)}+ei-a{—p;  +eu(p}, Dpi-1)}
=0, ;
since p; is mutually conjugate to the system {p,} i=0, 1, 2,.. ., k—1 by
Theorem II. Hence the result.

Theorem V

For a system of » unknowns this iteration method will give the exact
solution in n steps.

Every r, is a linear combination of r,, Dr,, D2, . . ., I)’C“lr0 and similarly
7, 18 a linear combination of rj, D*;, (D*)%y, . . ., (D*)—1r;.

If 7o and 7; have components along all eigenvectors and principal vectors
then these chains of vectors will be linearly independent up to k=n. Since r,
is orthogonal to all elements of the chain 7j, D, (D*)?y,. . ., (D*)*—lry, it
must therefore be zero. Consequently the problem must be solved in n steps.
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IV. THE INVERSE OF A SQUARE MATRIX D
We shall show that the general element of D, i.e. the inverse of D, is

”21‘ DriD Z j
k=0 (px, D*p})’
where p, is the direction vector defined in Section II and p,; its ith component.

This is done by formally solving

Du;=e;

(where ¢; is the unit vector with a 1 in the ith place and zeros elsewhere) for
=1, 2, 3,. . ., n.

The solution

Q5=

Du=—f
can always be expressed as a linear combination of py, Py, Pg, . - -, Pr—1 in the
form
U=0gPo+ %P1+ Po+. o U Pr—1c i (28)

Assume this to be the case, for it will always happen unless the iteration
- procedure terminates before n steps, i.e. very exceptionally. Now find the
«; by using the biconjugate relation of the py and Py, (i.e. Theorem II).

For, by post-multiplying (28) by D‘p;. it follows that -

%(piy D'PY)=(, D'P)=(Duy, p=—(f, P, -..... (29)
whence
(f, p3)
12 e —e-= S 30
" (piy Dp3) (30)
Let now
—f=e,
with ¢=1, 2, 3,. . ., » in turn, and let the corresponding u be u;, i.e. Du,=e,;.

Then the matrix whose columns are w; is really the inverse of D. If the jth
component of pg is pz; then the jth component of u;; is given by
n—1 n—1 (317 ]7 )
=%, G D
](3211;)(61, Dy N=p" oi? which, on substitution, gives the right-hand side of expression

V. THE CHARACTERISTIC EQUATION OF D
Let g,(») be a polynomial of degree k, and let g,,,(#) be related to g.(»)
in the same way as r.,, is related to »,. Thus

I B R e N e (31)
is replaced by
Q1 (@) =L +v, —N2)G(®) — V1G5 (@), oo vennt (32)
where
T (33)

)
M1
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and the ), and ¢, are as defined éa,rlier. Equation (31) follows from the
recurrence relations

....................

iy ="+ MDDy (11 bis)
Pr=—"r+&_1Pr—1s (2 bis)
and the transformed version of the first by replacing k41 by k, that is,

..................

Dpk—l———;\—l_ {re—
on substituting p, of (2 bis) into (11 bis) and by subsequently substituting
Dp,_, as given in (11 ter).

It is seen that r,=0, but also r,=q¢,(D)r,, Where ¢, is a polynomial of
degree n in D. If r, has components in the directions of all the eigenvectors
of D then by the argument of Silberstein (1952) it follows that

@ (D)=0, .o, (34)
and hence, by the Cayley-Hamilton theorem,
Pa®)=0 ... (35)

is the characteristic equation of D. By. definition (32)

9,(®) =9,(®)-
Hence the characteristic equation of D is given by

, 4.(%) =0,
with
%(w) =1y
¢1(2) =1 — Ny,

and the later ¢,(x) are developed by the recurrence relation as given by equation
(32).

VI. AN ILLUSTRATIVE EXAMPLE
Tt is desired to solve the following system :7

22 —14 2 [ v, T [ 1]
-7 15 =5 Vg 1 |=0. (36)
2 —10 6 | vg | | 1 |
The corresponding transpose equation is
22 -7 27[ v W [ 1 W
—14 15 —10 v, 1 |=o0. . (37)
2 —b 6 || % | | 1]

For convenience, start with v,=0 and v;=0. This gives now rise to the
following system of vectors which are recorded in Table 1.

+ This relates to the deflection of a clamped square plate. The finite difference equivalent
of the governing differential equation y*w—p/D=0 had to be satisfied at nine equally spaced
inner points. This made the original matrix of order 9x9. By symmetry considerations this
was condensed to the above 3 X 3 non-symmetric matrix. For convenience the constant 625p/Da*
was put equal to one.
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It is seen that by operating simultaneously with D and D* not only the
desired solution for the v, is obtained but also the one for v; as well. This is
as it should be because of the mutual orthogonality relation with the residue
vectors ; r; had to be zero here, hence v; gave the exact solution to (37).

Furthermore, now that all ¢; and A; have been computed it is an easy matter
to obtain the inverse of D.

Let the inverse matrix be given by

a 12 a3
Qg1 Aag Qa3
a3y A3z Q33

Then find successively (using the main result of Section IV):

. PuPin 1 _0-8298612384  0-1553929015
"uZo(pw, D'py) T 117 98-23591284  35-83409646

=40-078125,

ot PPP 1 | 3-916945567 _ 02071005361
270 S0 (e Dpy,) 117 08-23591284 3583409646

=+40-125.
Similarly, it is found that

a3=-+0-078125,
a9y =+0.-06256
ago=-+0-25 ,
Gy3=-+40-1875 ,
ag,=-40-078125,
ag,=-+0-375
035 =—+0-453125.

Finally, let the characteristic polynomial for the above matrix be computed
(using the main result of Section V).

It is found that

%o(®) =1,

q:(2)=1—0-2727272727z,

q5()=1—0-5213381059x 40 -01996145375x2,

g5(2) =1 —0 781252 +0 - 08398437522 —0- 00195312527,

that is,
2% —432%+4002 —512 =0,
whilst

v1=-+0-6432023988,
Y2=+0-6518906069.
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VII. A COMPARISON WITH STIEFEL’S METHOD
Hestenes and Stiefel (1952) have also briefly discussed the non-symmetrical
case. They arrived at the following iteration formulae :

~

To=k—Axy, po=A"r,

A |
] Ap, [#
Vit =0;+a;p;, 4 (38)
Fow =ri—adp, [ e
p, ATl
' | A% 2’
Pimn=A" 11 +bp,. J

It was next attemptéd to solve the following system of six equations in
§ix unknownst by
(i) Stiefel’s method,
(ii) the present method.

+22 —16 + 2 + 2 0 0 g +1

—8 423 —7 —8 4+3 0 Uy +1
+1 —7 413 +2 —6 41 | _ | 139

+2 —16 + 4 420 —14 42 w, +1

0 +3 —6 — 7 +14 —5 ws +1

0 0 +2 +2 —10 +6 g +1

To save space only the successive v, vectors will be shown in Table 2. Vo Was
taken as 0 in both cases.

The correct solution as giveh by Crout’s method is (with a possible error of
one in the last figure) :
| 10-385284810
+0-837816454
+1-:10007911
+1-86431962
+2-47587025
_+3-30498417 .

The reason for the slower convergence in Stiefel’s case is due to the fact
‘that Stiefel’s procedure is essentially a procedure with the matrix D*D. The
eigenvalues of this matrix are necessarily more widely spaced than for D alone.
Consequently, the rate of convergence will be adversely affected if the constant
vector | has large components along the largest and smallest eigenvectors.

t The problem with which this equation is associated is the same as that described in the
footnote of Section V, the subdivision now having 25 inner points. By symmetry only six
prove to be independent.



436 J. GUEST

TABLE 2
SUCCESSIVE V; VECTURS
vy Stiefel’s Method Present Method
+0-009353718895 +0-4285714286
—0-007152843861 +0-4285714286
\2 -+0-004401750068 +0-4285714286
+0:006052406344 +0-4285714286
—0-007152843861 -+0:4285714286
-+-0-002200875034 +0-4285714286
+0:06372821316 +0:4572531715
+0-03593381053 +0-6580253718
V, 4-0-009822136321 +0-6293436290
+0-003034374902 +0-8014340864
—0-:03071552448 +0-7727523435
+0-01537565739 +0-7440706006
+0-06620838207 +0-3722517070
+0-05309477145 +0-8530106900
Vg +0-01698714733 +0-8942678642
+0-02239227478 +1-558693553
—0-03424002185 +1-473973065
+0-:01012951991 +1-405684445
401161590155 +0-4946151738
401209167665 +0-8280575085
vV, +4-0-05414183470 +0-9873382239
+0-1122802989 +1-709336742
4000582644703 +2-062209289
—0-04490672156 +2-115900105
+40-1248919599 --0-3845229637
+-0-1409036315 +0-8383734999
Vi 400958567300 +1-122971474
+0-1253287238 +1-841998113
-+0-0201016119 . +2-466182473
—0:05565182276 +3-294146561
403844214078 +0-3852848081
+0-8380317059 +0-8378164566
Ve +1-098388256 +1-100079112
4-1:-861448352 +1-864319617
+2-473336988 +2-475870252
+3:300624954 +3:304984174

Numerous checking facilities are available for either method. It is,
however, pointless to carry out more than the most essential checks and these
are :.

(i) column checks for all the included vectors,
(ii) A checks, e.g. (1}, 7o) =0,
(iii) ¢ checks, e.g. (pz, D*py)=0.
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VIII. THE CORRECTION OF ROUNDING-OFF ERRORS
Rounding-off errors may become quite serious, in particular for large n.
These types of errors can, however, be minimized by using an artifice due to

Stiefel.
Let it be assumed that step ¢ has just been completed in the computation
and it is subsequently found that

(Dpi—h,P;) #0, i (40)

but is fairly small of course. (If this is not so the error is due to the computer.)
It is now desirable to redefine A; and ¢; in such a manner that

(roy 75.0)=0, ol

that is, assuring that »; ;, will be orthogonal to the old »; vector, and

(DPiy PE) =0, weeieiinannn... (42)

that is, assuring that p} +1 Will be orthogonal to the old Dp, vector. It is
necessary to prove the following

Lemma
@) (73 7';.,_1):(7'1'7 7';)_7\1'(1’;” D*p;)‘l‘ei—l)\i(f’i—l’ D‘P:), ... (43)
(i) A;(Dp, p;+1)=_("'i+1, 7';4_1)‘!‘("}'7 7';_,_1)‘*‘357\1'(1)27;'7 p;)- ceee (44)

Using the definition of r, and post-multiplying with 7i .4 Sives

(ryy 75 01)=—(p; 7ipy) Fei-1(pi-1, () PN (45)

Now substitute for i 1 =" +NDpY,
(ry 754 = (p,, ) —2(Pss D‘p*)
Fei—1(Pi-1y 77) +ei—1N(Pi-1, Dpz)
="y 1) =MDy DY) +eimih(Pi-1, DY), .... (46)
using the definition of ry.  This proves (43).

Also by pre-multiplying the definition of P; 41 by Dp; the following
relation results :

(Dp;, p;‘+1)=—(Dpi, r;H)-I—si(Dp,., P e (47)
Now substitute for A, Dp,=r;11—r; in (47). This givés

A(Dp;, p:+1):—(7'i+1,’ 7':.,.1) +(r; r:+1)+si)\i(1)pi7 P;),
which proves (44).
Next introduce a A; which is slightly different from 2; and choose it such
that '
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Using result (i) of the lemma and also the fact that (r;, »})=(r}, p,) in (10)
yields at once

+(ryy 77)
o= P ¢ T e 48
i=(p,, DD —ei1(pis, DD (48)
.
= (49)
where .

) (p*-y Dp;_1) )

d=1—ea 0 Y. 50

S, DY) (50)

There is now a refined A, at our disposal which assures that (r;, r} +1)=0
or at any rate is much smaller than it had been before the correction term was
applied.

Further, let an ¢; be now introduced—slightly different from the old e,—
which shall be chosen such that

Dpiy i 1)=0. «oveiiiiil (42 bis)
Now equation (44) holds for both ¢; and ¢; and also A; and A}, i.e.t '

eh(Dpyy ) =+Tit1y 15,1)y e, (51)
eN(Dpyy PI) = (rit, r;+1). .............. (52)

Hence using (51), (52), and (49) we obtain
=€l (53)

Thus both 2; and ¢; have been refined for rounding-off errors.

IX. CONCLUSIONS

The above method of solving systems of n equations in » unknowns seems
to be well suited for an electronic high speed computer, since once a programme
for an affine transformation has been devised the rest is quite straightforward.
However, the method is not very fast. In fact, compared with one of the pivotal
.condensation methods the present approach requires nearly three times as many
more multiplications. Against that should be weighed the undoubted advantage
of having control of round-off errors. The method is therefore not suitable for
desk machines for that reason. A good computer may complete a 10 x10
matrix in about 8 working hours when using the usual Crout’s method approach
but would spend about five times that time on the above method. It is important
to keep some checking facilities going when proceeding from one step to the
next. It is considered desirable to carry all column checks, one bi-orthogonality
test, and one test for the biconjugate relation. It will be found that the effect
of rounding-off errors becomes rather appreciable as n increases, but this can

1 The second term on the right-hand side must vanish by (41) for 7\". or by the bi-orthogonality
relations of the 7, and 1“;. for A,
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be overcome to a large extent by going beyond » steps. Lanczos (1950) suggests

a test for orthogonality by adding to b; a correction term ¢;; as defined by
R EON

T (b, b))

if b; is appreciably lacking in orthogonality with another vector b; of whose

orthogonality we are certain. This, however, has the obvious weakness that

while (b;, b;)=0 now, the new b; will disturb the prevmus orthogonality so that

in fact nothing better has been gamed in the end.

The present method, outlined above, is, in general, superior to Stiefel’s
as pointed out in Section VI, but some disadvantages of the method must also
be mentioned. :

(i) As compared with Stiefel’s method, its computing time is slightly
longer.

(ii) The method may fail altogether if

(Pry D'p;) =0,

which is, however, rather unlikely.
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