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Summary 

This paper deals with reciprocal static line-elements, previously defined by the 
author, the condition that their Ricci tensors vanish being no longer imposed. If 
the indices i, k run from 1 to n with the exception of the fixed index a (the line-elements 

being static with respect to:va) a certain quantitYQ~ appears with the remarkable property 
that in a reciprocal transformation Q~ is invariant, whilst Q~ merely changes sign. 

QV is closely related to the Hamiltonian derivative of the Gaussian curvature, so that 
flo 

the general results obtained may be applied to the field equations of General Relativity 
Theory, with n=a=4. Q! is then the total energy density; and formally every static 

distribution of matter has a " reciprocal distribution" associated with it. In particular, 
the equation of state of a distribution of fluid reciprocal to a distribution of fluid possess­
ing a given equation of state may be obtained directly from the latter, i_e. without the 
solution of the field equations being known. 

1. INTRODUCTION 

In a previous paper (Buchdahl 1954), hereafter referred to as RI, the 
line-elem'nt reciprocal to the static line-element 

was defined to be 

ds2 = (gaa)2/(n-3)gikdxidxk +(gaa)-1(dxa)2. •••••• (1.2) 

Here roman indices run over the range 1, ... , n (;>4) with the omission of the 
fixed index a. It was shown that, if (1.1) satisfies the equations 

GfloV=O, .....•••••.•••••.••... (1.3) 

then so does (1.2), GfloV being the Ricci tensor of the Vn the metric of which is 
(1.1). (Greek indices run over the entire range 1, ... , n.) In particular, 
when n=4 and a is chosen to be 4, (1.3) are the equations of the gravitational 
field in empty space. 

I now consider reciprocal static line-elements without assuming them to 
satisfy (1.3). In particular it will be shown (Section II) that, if 

( 1.4) 
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and p~ is the corresponding tensor-density, then the identities 

P __ po =- P __ po (-a 1 -i) (a 1 i)' 
a n-3 • a n-3 • 

} ........ (1.5) 

hold, unbarred and barred quantities being associated with (1.1) and (1.2) 
respectively. When n=a=4 it then follows from (1.5) that if one has any 
formal* static solution of the gravitational field equations in the presence of 
matter, then one can immediately write down another solution which is 
" reciprocal" to it (Section III (a)), and the total energies of two such distribu­
tions, supposed finite and regular, are equal and opposite in sign (Section III (b)). 
In particular, if one contemplates "reciprocal distributions "t of fluids in 
thermodynamic equilibrium (Section IV) whose equations of state are p =f(p) 
and p =/Cfi) respectively, then the second of these equations may be deduced 
from the first without either of the corresponding solutions of the field equations 
being known (Section V), and two such equations of state will be said to be 
reciprocal to one another. 

II. THE RICCI TENSORS OF RECIPROCAL METRICS 

It was shown in RI, Section 2, that the components of the Ricci tensor 
belonging to the static line-element 

ds2=e20"?ikdmidmk+e2Y(da;a)2 .............. (2.1) 

Here a subscript following a semicolon denotes covariant differentiation in the 
V n- 1 whose metric is ds2=gikdxidxk, and Gik is the Ricci tensor of this V n- B 
o 0 0 

whilst if ~, "1J are any two scalars, ~"1J stands for r!~;i"1J;k and Ll~ for tk~;ik' From 
(1.4) and (2.2) one then has 

P ik P ik -(n-3)(cr;ik- cr ;i cr ;k) -(Y;ik+Y;;'Y;k) +(cr;iY;k +cr;kY;i) 

+gik[(n-3)Llcr +Lly +t(n -3)(n -4)cro- +(n -4) cry +n], 

Pia=O, 

P =e2Y-20"(~1_p +(n -2)Llcr +t(n -2)(n -3)cro-). 
aa n-3o 

• See the remarks at the beginning of Section III (b). 

(2.3 ) 

t I.e. distributions such that the respective solutions gfLv, gfLv of the field equations are 
reciprocal to one another. 
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The tensor PIJ.V associated with the V n whose metric is (1.1) is obtained from 
(2.3) by setting 0'=0, y='t'=t log gaa and omitting the subscript 0: 

Pik=P~k-('t';ik+'t';i't';k) +gik(Lh +TI), 
Pia=O, 

P _ 1 2-rp' aa-n _3e . 

} .. (2.4) 

Here P~k is associated with the Vn- 1 whose metric is ds2=g;kdxidxk. Similarly, 
setting 0'=2't'j(n-3) and y=-'t' in (2.3) one has the tensor PIJ.V associated 
with Vn, that is, the Vn whose line-element is reciprocal to (1.1). Thus 

Raising one of the indices in each of the equations (2.4) and (2.5) it then follows: 
at once that 

p, = (g ) -2/(n -3)pk. 
t aa t, 

pa = _(g ) -2/(n-3)(pa __ 2_p~). 
a aa a n-3 • 

} .• (2.6) 

The components p~, p~ in which just one index equals a are of course zero, 
and they will not be explicitly referred to hereafter. Keeping in -mind that 

Y( -if) =(gaa)2/(n-3)y( -g), ............ (2.7) 

the equations (1.5) follow at once. If one defines 

Qv pV 1 ","V pi 
IJ.= IJ.-n -3°IJ. i, 

then (2.6) may be written in the curious form 

(2.8) 

Q-k Qk Q"-a Qa 
i= i, a=- a· ........... " ... (2.9) 

In transformations of the Xi, Q~ behaves as a tensor and Q~ as a scalar. 

III. RECIPROCAL DISTRIBUTIONS OF MATTER 

(a) If one chooses n=4, the preceding results may be applied to the field 
equations of General Relativity Theory which are (in suitable units) 

(3.1) 

T~ being the components of the stress-energy tensor of the medium filling the 
region of interest. :va will be taken to be the coordinate time X4. The T~ 
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and T~ associated with any metric and its reciprocal are then related as follows, 
according to (2.6): 

(3.2) 

The components of the stress-energy tensor '!'[J.'i as measured by an observer at 

Test with respect to the coordinates employed above, who uses proper coordinates 
:e[J. at any point of interest, are (Tolman 1934, p. 215) 

{J, Pik being the density and mechanical stresses of the medium under considera­
tion. The results of measurements* carried out by such an observer on distri­
butions represented by a metric tensor g[J.'i on the one hand, and by its reciprocal 
(i[J.'i on the other are, in view of (3.2), therefore related by 

3 
Pik=(g44)-2pik, P=-(g44)-2(p-2 ~ Pii). . ..... (3.4) 

i~l 

(b) From (3.4), or more directly from (2.9), it follows that of two finite, 
regular reciprocal distributions T~ and T~ only one can be physically realizable . 
.A result due to Tolman (1934, p. 234) states that the total energy U of such 
a distribution of matter, including the energy of the field produced by it, is 
given by 

If fj is the total energy of the "reciprocal distribution", it follows at once 
from the second of equations (2.9) that 

U=-u. . ................... (3.6) 

The stated result is implied w~enever it is granted that any physically realizable 
distribution must have positive total energy. 

IV. FLUID DISTRIBUTIONS 

An interesting special case is that of adistribution of fluid in thermodynamic 
equilibrium. For this 

T~=-p8~, T~=p, ............ (4.1) 

where p and P are the proper density and pressure of the fluid. Equations 
(3.2) then read 

P=-(g44)-2(p+6p). . ........ (4.2) ~ 

* See the remarks at the beginning of Section III (b). 
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Now the equation 
T~;v=O, ...................... (4.3) 

which is identically satisfied, can here be reduced to the form (Tolman 1934, 
p. 317) 

grad p+t(p+p) grad log g44=O . ............ (4.4) 

Let the equation of state of the fluid be given in the form p ~f(p). Assuming 
P+P=FO, (4.4) then gives at once 

log g44=-2 f dp/(~+p). . .............. (4.5) 

Equations (4.2) may therefore be written 

p pexp f::' p=:-(p+6p)exp f::· ...... (4.6) 

These equations are a parametric representation of the equation of state* of 
the fluid constituting the reciprocal distribution. 

V. RECIPROCAL EQUATIONS OF STATE 

One may look upon (4.6) as directly defining an equation of state p=i(p) 
which is "reciprocal to" the given equation of state p =f(p). Note that the 
explicit form of the distribution, qua function of the coordinates, is not required. 
A particularly simple example is furnished by the equation of state . 

p=sp, ...................... (5.1) 

where s( =F -1) is a constant. Then 

(5.2) 

where 0=(s+5)/(s +1), and ~ is a positive. constant. Hence 

p=-(s+6)p . .................... (5.3) 

The equation p = -3p is evidently reciprocal to itself. 

VI. ELECTROSTATIC FIELDS 

If T~ is the stress-energy tensor of an electrostatic field, then the same 
cannot be true of T~. For otherwise the vanishing of the spur of the electro­
magnetic stress-energy tensor would require 

11=-11 and 11=-T! .............. (6.1) 

to hold simultaneously. By (3.2) the first of these implies 

(6.2) 

which is inconsistent with (6.1) since T! cannot vanish. 

* Actually they define a one-parameter set of equations of state since a generally non-trivial 
constant of integration occurs in (4.6). A change of this constant is, however,simply equivalent. 
to a change of units in which p and p are JIleasured. 
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VII. INCLUSION OF THE OOSMICAL OONSTANT 

The possible presence of a cosmological term in the field equations has 
hitherto been ignored. If this term be restored, (3.1) must be replaced by 

p~-a~A=T~, .................. (7.1) 

where A is the cosmical constant. Equations (3.2) are therefore appropriately 
modified by replacing T~ by T~ +a~A throughout. In the same way, equations 
(4.6) become 

p=(p-A)J+A, p.=-(p+6p-5A)J-A, .......... (7.2) 

where 

J=exP 4JdP!(P+P) . .................. (7.3) 
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