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Summ<J/ry 

The drag force acting upon small particles such as droplets and bubbles, moving 
through a viscous medium, depends upon the rate of change of the state of motion of 
the medium and upon the diffusion of vorticity from the surface' of the particle. For 
accelerated particles the drag force changes with time and depends upon all previous 
accelerations. The equation of motion of a particle takes the form of an integro­
differential equation, which has been solved numerically in the case of deceleration 

. to rest from uniform motion with no impressed body forces. In any experiments 
designed according to the principles of dynamical similarity, the ratios of viscosities and 
densities of the medium and the particle must be maintained constant in the scale 
transformations involved. 

1. INTRODUCTION 
Recent studies of cloud and droplet physics have raised the question of 

what may be the detailed behaviour of very small droplets subject to forces 
which change with time; in particular whether or not it is possible to simulate 
the motion of such droplets in the laboratory by suita.ble changes in the scale of 
the variables (Sartor .1954). In theoretical studies of droplet dynamiCS it 
has so far been usual to assume that the only drag force experienced by a droplet, 
moving through a viscous medium at any instant with a Reynolds number R, 
to be identical with the drag it would experience if it were moving uniformly 
at that Same Reynolds number, and the acceleration has been assumed to depend 
only upon the di:fference between this drag force and any time-variable body 
forces acting upon the droplet only. 

The actual accelerations suffered by a body, immersed in a viscous medium 
and subject to time-variable forces, are affected by two factors. As is well 
known, the momentum imparted by such forces is distributed between the 
body and the surrounding medium, giving rise to an effect which, in a non­
viscous medium, is equivalent to an increase in the mass of the body. In fact, 
for a spherica.l droplet the effective increase in mass is equal to half the mass of 
the medium displaced by the droplet (Lamb 1932, p. 124). A further effect 
occurs owing to the finite rate at which vorticity di:ffuses from the surface of 
the body. The distribution of vorticity throughout the medium depends upon 
the past velocity of the body and thus upon its history. The actual drag 
experienced at any particular time is more a.ffected by the recent past history 
than by the distant past. 
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The case of the motion of a lamina under given forces and immersed in a 
viscous medium has been discussed previously by others (Lamb 1932, p. 591). 
The variation with time of the effect of past motions upon the current drag 
force for a sphere is here found to be similar to the case of a lamina. 

In the case of droplets and bubbles the effect of past history on the equations 
of rectilinear motion is determined to a degree of approximation corresponding 
to that given by Oseen's approximation to the problem of viscous flow around a 
sphere. The resulting integro-differential equation shows that any experiment, 
which endeavours to simulate the case of droplets and bubbles by changing 
the scales of the physical constants involved, must maintain constant both tbe 
Reynolds number and the ratios of viscosities and densities of the droplet and 
medium. 

The equation of motion has been solved numerically in the case of a droplet, 
initially moving with uniform velocity, which is allowed to come to rest as a 
result of the drag forces arising from the surrounding medium. 

The solutions show that the effect of past bistory on the motion of a small 
droplet or bubble may in certain circumstances affect, by a relatively large 
amount, its velocity and the distance it travels so tbat neglect of this effect in 
theoretical studies would cause serious error. 

II. THE DRAG FORCE FOR IMPULSIVE MOTION OF A DROPLET 

We shall restrict consideration at first to the case of a droplet of radius a 
supposed to be at rest for t<O and to move with uniform velocity U for t>O. 
The drag force experienced by the droplet will be the same as that which would 
apply if the droplet were held at rest and the medium allowed to flow past it 
with a main stream velocity - U. 

The flow may be expressed in terms of a Stokes type of stream function, 7, 
and Oseen's approximation to the inertia terms in the bydrodynamical equations 
for small U may be adopted. Thus 7 satisfies the partial differential equation 

where } . . .. (1) 

v is the kinematic viscosity of the medium, and r,6,cp are spherical polar co­
ordinates with the centre of the droplet as origin. The velocity U is directed 
along the positive axis of {1] corresponding to 6 =0. For t> 0 we may assume 
the component of the stream function corresponding to the uniform motion of 
the medium, namely - Ur2 sin2 6/2, to be omitted, and restrict attention to the 
disturbance caused by the droplet. 

The components of fluid velocity caused by the presence of the droplet are 
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and the boundary conditions, assuming no slipping to occur at the surface for 
t>O, become 

U r= U cos 6, ue= - U sin 6, 

ur=ue=O, 

r=a, 

r=oo. 

The remaining components of the stream function may be expressed as 
the sum of an irrotational function "0/(1) and a solenoidal function "0/(2), each 
of which is obtainable in the form of an infinite series of functions which satisfy 
the boundary conditions at infinity and whose coefficients are determined by 
the conditions at the surface of the droplet. 

The irrotational component is of impulsive type, whilst the solenoidal 
component corresponds to the diffusion of vorticity from the surface of the 
droplet required to maintain the boundary conditions. Both components 
provide contributions to the drag experienced by the droplet which behave 
differently with time. 

Taking Laplace transforms in the variable p, "0/(1) and "0/(2), where 
"0/ = "0/(1) + "0/(2), then 

where 

00 

"0/(1)= ~ A n(p)/rn.(1-[L2)P'n([L), 
n=l 

00 

"o/(2)=e(Lkr ~ B n(P)Xn(qr)(1-[L2)Pn([L), 
n=l 

Xn(Z) =zlKnH(z), 
q2=k2+p/v, 
k= U/2v=R/4a. 

} .... (2) 

R is the Reynolds number 2 U a/v, Km is the modified Bessel's function of second 
kind of order m, and Pn([L) is the Legendre function of order n. 

The boundary conditions require that 

00 

An+an ~ BmXm(qa)Xnm(ka)=Uan+281n/2p, 
m=l 

00 

~ Bm[nXm(qa)Xnm(ka) +kaXm(qa)Xnm'(ka) +qaXm'(qa) +Xnm(ka)] 
m=l 

=3Ua281n/2p, ........................ (3) 

where the 81n is the Kronecker function and Xnm is the function introduced by 
Goldstein (1929), and is defined by the identity 

00 

e(Lzp m'([L) = ~ Xnm(z)Pn'([L)' ................ (4) 
n=l 

Solution of the equations for the An and B n, followed by inversion of the 
Laplace transform, would provide the solution for the flow pattern of the stream 
function. So far as the drag on the sphere is concerned we require only to 
integrate the appropriate stress components over the surface of the droplet. 
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Thus we integrate the axial component of the tangential or viscous stress Pr6 
and the normal or pressure stress Prr' where 

P is the hydrostatic pressure, and "I) is the coefficient of viscosity of the medium. 
The total drag force D is then given by 

D =2na2 J: ( -Prr cos e +Pr6 sin e) sine de. 

Expressing tbis in terms of the stream function at r =a, and using the 
relation between the hydrostatic pressure P and the stream function, 

where p is the density of the medium and, taking Laplace transforms, then 

- _ 4npa [ 2 3p ] 8np U D--3- Ua -a-AI + 5/i2A 2• • ••••••••• (5) 

Actually a complete determination of D requires knowledge of all the A's 
andB'sin order that Al and A2 may be obtained. In the case of small droplets 
some approximations may be made. Thus Al will be of order U, and A2 of 
order U2. For sufficiently small U, A2 may be neglected and in the deter­
mination of Al all terms for n> 1 may be omitted. Thus we find 

where 

Al =( Ua3/2p)[1-3/{1 +qax'(qa)/X(qa) +kaXll'(ka)/Xn(ka)}] , 

XI(Z) =v(tn)e-Z(l +Z-I), 

Xn(z) =z-!I3/2(z), 

and I 3/2(z) is the modified Bessel function of first kind and order 3/2. For 
sufficiently small ka, therefore, 

kaXll' /Xn =1 +k2a2/5 +O(k4a4 ). 

If, however, k 2a2 be neglected throughout compared with (p/v)a, then upon 
carrying out the inversion on the Laplace transformation, the drag force reduces 
to 

D=6n"l)aU[1 +a/v(nvt)] + Uma(t)/2, t;;;.O, ...... (6) 

where m is the mass of the medium displaced by the droplet and a(t) is the 
Dirac a-function. Thus D, the force required mstantaneously to raise a droplet 
from rest to uniform motion, consists of three terms: (1) the viscous force 
which would be experienced in the case of uniform translation, in this case the 
drag according to Stokes' theory of a uniformly translated droplet; (2) a 
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time-variable component which is infinite at t=O and decreases as t- i ; and 
(3) a transient force which occurs only at t=O and is due to the momentum 
transferred to the medium by the sudden change in velocity. 

It will be shown later, in Section IV, that the equation of motion of a droplet, 
depending upon (6) for the drag, implies physically inadmissible conditions. 
Although a droplet, subject to no body forces after time t =0, may come to rest, 
(6) implies that it must travel an infinite distance before doing so, owing to the 
complete neglect of terms of the order k 2a2• If k 2a2 be retained, the behaviour 
differs for large elapsed times and the distances travelled become finite. Thus 
we find 

_ [ 1 1 (1+Yl)Y12 2T )JT 2T Tj,IT 
D-67tYJaU 1 + V(7tT) - V 7t (YI-Y2) exp (-Yl 0 exp (Yl )d v 

+~ (1+Y2)Y~exp (_y2T)JT exp y~T dT/vTJ +lUm8(T), .. (7) 
V7t (YI-Y2) 2 0 

where T=vt/a2 and Yl and Y2 are the roots of the quadratic 

For small T, D approximates to 

(8.1) 

which corresponds to (6), and for large T becomes 

(8.2) 

thus, for T>16/R2, D decreases more rapidly than predicted by (6). 

III. THE IMPULSIVE MOTION OF BUBBLES 

The main assumption made in Section II was that of rigidity of the droplet. 
This applies only if the droplet is highly viscous comp1,ed with the surrounding 
medium, and does not apply to bubbles. When internal motions are considered, 
the stream function ill the interior is represented by 'PH and its Laplace transform 
is 

in which the unit suffix indicates reference to the variables and physical constants 
of the medium of the bubble, and ~n involves the modified Bessel function of 
first kind 
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The boundary conditions at the surface require the viscous stresses and the 
velocities of the two media to be continuous, that is, 

and 

ur(a) =0, 

Lim[ue(a+e) -Ue(a+e)] =0, 
E=O 

Lim ["I)! ur (a+e)-"I)l! Ur(a-e)] =0, 
E=O ua ua 

These conditions are sufficient to determine the coefficients An' B n, an, and En' 
although complete evaluation would be impracticable. 

If the drag force be evaluated to the same degree of approximation as was 
adopted in equation (6) we find 

D=67t"l)aU~[1 +a/ V(7tvt)] + Uma(t)/2, t>O, ........ (9) 

where ~ is a parameter depending only upon the coefficients of viscosity of the 
two media, that is, 

The form of the expression (9) is the same as that for a rigid droplet, although 
in this case the component due to viscosity is modified by the factor ~ which 
varies between the limit 1, which it takes in the case of highly viscous droplets 
("I)l~"I)), and 2/3 in the case of bubbles ("I)~"I)l). This factor arises from the 
internal motions which allow flow to occur at the surface, thus reducing the 
viscous stresses. The drag force in the case of uniform translation (when t = 00) 
agrees with that quoted by Lamb (1932, pp. 600-1). The force arising from 
the transfer of momentum to the surrounding fluid remains unchanged to the 
degree of approximation adopted. This is as might be expected since the 
bubble is presumed to retain its shape during the impulsive change of velocity. 
This would be so in practice if the internal pressure due to surface tension were 
large enough. 

IV. THE EQUATIONS OF MOTION OF DROPLETS AND BU13BLES 

To the approximation adopted, the drag force is a linear function of the 
velocity U, and consequently, for continuously variable velocities, the method 
of superposition of solutions may be adopted in which U is replaced by the 
increment in velocity over an infinitesimally small interval of time between T 
and T+dT, i.e. U(t-T)dT, the summation being taken over all previous elapsed 
time for which U is non-zero. Making the substitution for the drag force we 
find the equation of rectilinear motion to be 

(M+lm)U+6 ar:U+67t"l)a2~ foo U(t-t')dt'=F 
2 7t"l) .., y(7tV) 0 yt' , 
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where Jj1 represents the applied or body force acting upon the mass, M, of the 
droplet or bubble. The term tm constitutes the effective increase in mass 
arising from the transfer of momentum to the medium as the acceleration occurs 
and is not due to viscosity. The equation of motion may be reduced to non­
dimensional form by the transformations 

and 
A2=9p~/7t(2pl +p), 

f =Jj1/67tYJa~ Uo, 
} ........ (10.1) 

where Uo is some standard velocity, whence 

dV + V +AJw dV('t"-;') . ~~,=f . ........ (10.2) 
d't" 0 d('t"-'t") V ' 

It is clear that the motion of a small droplet or bubble at any instant will 
depend markedly upon its previous motions, since the effect upon the drag 
force of past accelerations decreases slowly with elapsed time t, as t- lo , only so 
long as the maximum Reynolds number is sufficiently small (cf. (8.1) and (8.2)). 
The actual magnitude of the effect depends upon the relative densities of the 
two media and their coefficients of viscosity, and any experiment conducted 
and designed according to principles of dynamical similarity must be arranged 
so that the value of the parameter A is maintained constant during the trans­
formation of scale. 

The value of A is affected only little by variations of the viscosity of the 
medium since ~i may vary only between the limits (i)! and 1. In this respect 
the need to maintain a constant ratio of viscosity may well be relaxed. However, 
the variation with the density is important as A may be about (9p/27tPl)i for 
droplets (Pl;?-P), and (6/7t)i for bubbles. In particular, 

A=0·0428, for water droplets in air, 
=1'38, for air bubbles in water. 

V. SOLUTION OF THE EQUATIONS OF MOTION 

To illustrate the effect of past history upon the velocity and position of 
droplets and bubbles, a simple situation is considered in which, up to the time 
t =0, motion is uniform and rectilinear and determined by a constant impressed 
body force such as that due to gravity. A.t time t=o and for all subsequent 
time this force is supposed removed, so that the particle decelerates to rest 
under the action of viscous forces. 

Suppose therefore that Uo be taken so that f is equal to unity for 't" <0 
and zero thereafter. In the absence of any effects of past acceleration, i.e. 
A =0, the velocity for 't"> 0 would be e-'t". The difference in the velocity due 
to the effect of past history, w, satisfies the integro-differential equation 

dd w +W+AJ't"d~('t"-;'! .d:',=Ae-'t"J't" e't"'~;', 't">0, .. (11.1) 
't" 0 't" -'t") v't" 0 v't" 

and 
W=O, at 't"=0. 
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The difference in the distance travelled will be linearly related to 8, where 

8=J1:' wd",. . ................ (11.2) 
o 

Solution of the equation (11) for w as a power series in '" gives an expression 
which is useful when", is sufficiently small, thus 

where 

00 

W= ~ an",2n+3/2, 
n=O 

a3 =X(1-2;} 
a5=-;(1-5; +7;} 

and X =i7tA2. Expansion into power series of'" gives 

where 

and 

00 

W= ~ w,)t, 
r=l 

-'-- -1:'J1:' j'!L 1:" d",' w1 -e 0 0 e ,h,d{L. 

For large elapsed times, ",:>1, WI is at most, of the order ",-I, and from the 
differential equation it is seen that the Wr is then of order ",-(r+1)/2, at most. 
Thus 

The solution for w has been carried out numerically for various values of A. 
The computations were assisted by transforming the variables as follows 

and adjusting the degree of the singularity of the integrand by writing 

2cr S rJa{w,(cr')-W'(cr)} ]L 
w'(cr)= (l+7tAcr)(w(cr)+A 0 y'(cr2_cr'2) . dcr'-2F(cr) 5' 

where 

F( cr) =exp ( -cr2) J: exp (cr'2)dcr', 

and w'(cr)=dw/d't", etc. 
The numerical integration was carried out on the C.S.I.R.O. digital computer 

using a process similar to that due to Huen, and using three stages of approxi-
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illation for each interval h of (J (h=lj50). .As the values of wand w' were found 
at the end of each interval they were recorded and w' stored for use in the 
computation of all succeeding values. The computation of each value proceeded 
in three stages. Thus, w'~) was found by extrapolation 

whence by integration, 

o 

,," 
,.,_--- 5 -----------__________________ _ 

,." _ 1=10--·--------------------____ _ 
,,'" --­

" --~ ..... ---
123 

SQUARE ROOT OF TIME PARAMETER=T 1/2 
4 

Fig. I.-The effect upon the velocity of a decelerated droplet or bubble of 
past non-uniform motion. The curves are solutions of equation (11.1). 

from which w'~) was found by use of the differential equation where the integral 
was computed to the same degree of precision as in the integration, thus 

in which F N , taken for values at the interval h, were supplied from punched 
tape, and aON is the Kronecker a-function. Using w'~) a new value of W N was 
found by integration, from which the final value of W'N was obtained 

2Nh 
w' =W'(3) = - . . [W(2) -w(l) +.l7tAW'(l) - w'(2)] 

. N N (l+A7tNh) N N 2 N N· 
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A final integration over the interval gave WN' truncation errors being of order h-3 

only. The distance travelled, 8N, at the end of the Nth interval was obtained 
by integration following the evaluation of WN' thus 

Figure 1 shows the ratio wj).., for values of ).. exceeding the range of the 
physically important cases. The curves are plotted against the abscissa a 
which is proportional to the square root of the elapsed tinie. 

TABLE 1 

THE MAXIMUM SHOWN EFFECT OF PAST HISTORY UPON THE VELOCITY 

Wmax. OF A DROPLET OR BUBBLE AT ELAPSED TIME 't" 

A CIlmax. 't" 

0·1 0·0780 1·233 
0·2 0·1433 1·240 
0·5 0·2893 1·259 
1·0 0·4406 1·287 
2·0 0·6011 1·327 
5·0 0·7705 1·389 

10·0 0·8692 1·439 

Table 1 gives the values of the maximum change in velocity due to the 
history of the motions. In particular it is seen that the dillerence may be as 
much as 0·5 for the maximum physically admissible value of)... This occurs 
at an elapsed time ,,=1· 30. 

VI. THE DISTANCE TEA VELLED 

In the absence of effects due to history, the distance travelled would be 
unity. The excess distance travelled, 8, is of order -rS/2 for small '" but for 
large '" according to equation (6) of order "i. Such a behaviour for large 
elapsed times does not occur in practice. The actual distance travelled before 
coming to rest is finite. The theoretical result is due to the neglect of terms of 
order R2 in the calculation of the drag. 

If allowance be made for terms of this order the integrand of the equation 
of motion for large ,,' would, from equation (8.2), become of order ,,'-3/2R-2 
instead of ,,'-!. Figure 2 shows the excess distance travelled as the ratio 8j).., 
on the basis of equation (6) for the drag force. The steadily increasing behaviour 
of 8 for large elapsed times is evident. 

To allow for the inclusion of the drag force for large elapsed times, the 
integrand of equation (11) must be multiplied by a factor 251t)..2/2R2". Thus 
W would decrease as ,,-312 and 8 would vary as ,,-! and tend to a constant limit. 
However, the solution obtained here may be considered as a reasonable approxi­
mation for ,,<'16jR2, where R is the Reynolds number of the droplet or bubble 
at its initial velocity. 
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A rough estimate of the total distance travelled may be obtained by assuming 
the motion to be controlled by the weighting factor ,,-1 up to the time at whicli 
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Fig. 2.-The additional distance travelled by a decelerated droplet or 
bubble due to the effect of non-uniform motion. The curves are solutions 

of equations (11.1) and (11.2). 

the additional factor entering into the integrand is of the order unity, at which 
time the motion ceases. This time "~ax. may be taken as 

"max.~36A2/R2. 

TABLE 2 

APPROXIMATE MAXIMUM EXOESS DISTANOE 8max. 

TRAVELLED FOR A DROPLET OR BUBBLE 

0·1 
0·2 
0·5 
1·0 
2·0 

8max.lA 

-0' 0411 +0, 0332jR* 
-0·0533+0·0683jR 
-0·0597 +0, 160jR 
-0·0631+0·287jR 
-0·0540+0·447jR 

* R=Reynolds number. 

Table 2 gives the approximate values of the maximum excess distance assuming 
the curves of Figure 2 to apply up to "max.-

o 
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VII. OONCLUSION 

The effect of the finite rate of the diffusion of vorticity in the case of 
accelerated motion of small droplets and bubbles can be an important factor in 
determining at any instant their velocity and position. Although the effect is 
small for liquid droplets immersed within a gas, it is important in the case of 
vapour bubbles in a liquid or for two immiscible liquids. 

Any attempt to carry out laboratory experiments to simulate the case of 
small droplets or bubbles must preserve a strict dynamical similitude which 
extends to maintaining the correct value of the parameter A under the conditions 
of the experiment. 
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