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Summary 

The transition from rest to steady motion on the sudden application of a potential 
,gradient to the fluid contained in a saturated porous medium is investigated. An 
approximate analysis gives the result that the time of the effective establishment 
of the steady motion is proportional to the permeability and inversely proportional 
to the kinematic viscosity. Two (,xact solutions (one of them new) for simple cases 
suggest that the approximate ar1alysis is remarkably accurate. An analogy between 
this problem and one in h"at conduction makes the relevant results in that 
:field immediately applicable here. 

The analysis is extended to motion with the time variation of the applied potential 
gradient quite general. Certain properties of the motion when the potential varies 
periodically are determined, and the simple harmonic case is studied in some detail. 

It is found that the error in using Darcy's law (which neglects the transient phase) 
will usually be unimportant for the case of a suddenly applied potential gradient. 
However, signifieant deviations from Darcy's law may occur when the applied potential 
gradient is perIOdic, even for systems of quite low frequency. . 

The equations derived from the approximate analysis may be regarded as general
izations of Darcy's law which take into account time variation of the applied potential 
gradient. 

1. INTRODUCTION 

This communication reports part of an attempt to interpret Darcy's law 
in terms of classical hydrodynamics. Darcy's law has been expressed at a 
number of levels of generality. Darcy (1856) himself gave the equation 

q=KA(h+L)/L, .................. (1.1) 

where q is the discharge through a filter in unit time, A is the area of the filter, 
L is the thickness of the sand layer, h the water depth over the sand, and K 
" un coefficient dependant de la nature du sable". Later investigators have 
applied the equation to the flow of water in homogeneous isotropic porous media 
in forms such as 

q/A = a =KS, .................. (1.2) 

where a is the macroscopic flow velocity and S the magnitude of the potential 
gradient. An extension of (1.2) to any fluid may be made, provided the medium 
remains stable and does not react with the fluid, 

a = (K/v)S, ( 1.3) 

* Division of Plant Industry, C.S.I.R.O., Deniliquin, N.S.W. 
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where v is the kinematic viscosity. Here K, the permeability, is a characteristic 
of the geometry of the medium and is independent of the fluid. 

A vector extension of (1. 3) is 

U=-(Kjv)VI]), ................. (1.4) 

where U is the vector macroscopic velocity and I]) is the potential defined by 
( 1.5) 

I])=Pjp+O, .................. (1.5) 

where P is the pressure, p the density, and 0 the potential of the external or 
" body" forces. (1.4) holds for homogeneous isotropic porous media. The 
extension of (1.4) to anisotropic media is 

U = -(ljv)KVI]), . " ............. (1.6) 

where K is the permeability tensor. In this general case, the. direction of the 
vectors U and - V I]) differ except for certain special directions in the medium • 

.All these forms of Darcy's law are macroscopic approximations to the result 
given exactly by the Stokes-Navier equation for an incompressible fluid, 

aUjat- U X (V xU) +tVU2= -VI]) +vV2U, ...... (1.7) 

where U is the vector (microscopic) velocity and t the· time, subject to the 
appropriate conditions. * 

For 
UX(VXU)-tvU2=0 .............. (1.8) 

(1. 7) becomes the " complete" (Sommerfeld 1950) Stokes-Navier equation 

aUjat=-VI])+vV2U. . ............. (1.9) 

For certain special motions and media (e.g. flow parallel to the generators 
of the generalized tube) (1. 8) will hold exactly and we designate such motions 
" complete". However, in most media, the validity of (1. 9) depends on the 
reduction of the· Reynolds number of the motion, R, to sufficiently low values 
for the inertia terms (i.e. the terms of the second degree in U) to be negligible. 
When such a restriction is necessary we term the motion "approximately 
complete". Both analysis (Lamb 1924) and experiment (Muskat 1937) lead 
to an upper limit of R of order of magnitude unity, below which (1.9) adequately 
describes approximately complete motions. Pipe flow experiments (e.g. 
Goldstein 1938) suggest the existence of a " lower critical Reynolds number'~ 
of order of magnitude 103, above which (1.9) fails, even for complete motions~ 
due to the onset of instability. 

* A distinction exists between the significance of V' <D in macroscopic equations such as 
(1.4) and (1.6) and in microscopic equations such as (1.7). This does not lead to difficulties 
in the present work, but it should be borne in mind that in macroscopic equations v <D denotes 
a smoothed potential gradient, whereas in microscopic equations it denotes a vector point function 
which can be expected to vary in magnitude and direction from point to point. This note is 
intended as a warning and not as an adequate discussion of the dualism of the macroscopic and 
microscopic pictures. 
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Darcy's law predicts a motion dependent only on the potential distribution 
an,d quite independent of time. Most studies of fluid motion in porous media, 
relying as they do on Darcy's law, imply that the steady motion corresponding 
to any potential distribution suddenly applied to the system is set up within a 
negligibly short time. Apparently the validity of this assumption has never 
been examined. 

The hydrodynamic problem to be considered here is not to be confused 
with the elastic problem of the time of propagation of sudden changes in potential, 
treated by Muskat (1937). Here both the medium and the fluid are taken as 
inelastic, i.e. the velocity of propagation of disturbances is infinite. It must 
also be stated that the treatment is confined to saturated media. 

II. THE TRANSITION FROM REST TO STEADY MOTION 

We investigate here the motion described by (1.9) subject to the continuity 
condition (2.1) and the boundary conditions (2.2) 

v·U=o, .................... (2.1) 

t=O, U =0 in B; t;>O, U =0 at 0, <I>=<I>D at D. . ..... (2.2) 

B is the region of fluid occupation of the medium, 0 is the surface of fluid-solid 
contact, and D is the external boundary of B (i.e. that part of the boundary of B 
not contained in 0). • 

In employing (1.9) here instead of (1. 7), we exclude motions for which 
R> 1. For such motions it is known, in any case, that Darcy's law fails (Muskat 
1937). Further, nearly all fluid motions in the porous media of na.ture and 
technology possess Reynolds numbers less than unity. 

It follows simply from (1.9) and (2.1) that 

(2.3) 

subject to the conditions (vide (2.2» 

<I>=<I>D at D; 0<1>/01)=0 at 0, ........ (2.4) 

where length 1) is normal to the surface O. 

Olearly <I> at all point8 in the fluid depends only on <l>m the imposed potential 
distribution at the external boundary of B, i.e. <I> is independent of t and the 
distribution of <I> at all t is the same as that at the steady state. Denoting the 
velocity at the steady state by U 00, we have for the steady motion 

(2.5) 

subject to conditions (2.6) and (2.7): 

v· U 00=0, ...................... (2.6) 

Uoo=OatO; <I>=<I>DatD ........... (2.7) 
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Subtracting (1.9) from (2.5) and denoting (U co - U) by W, we have (2.8) 
subject .to conditions (2.9): 

t=o; 
t;;;,. 0 ; 

W=U co in B, L 
W=O at o. 5 

(2.8) 

(2.9) 

Since equation (2.8) depends on (2.3), a result following from (2.1), (2.8) 
implicitly satisfies the continuity condition 

V'·W=O. . ................... (2.10) 

III. Tim THERMAL ANALOGY 

With the reservation that W is a vector, (2.8) is the equation of heat 
conduction. We may regard each of the three scalar components of W as 
separately analogous to temperature,the three scalar fields being linked by 
continuity requirement (2.1 O).Oonditions (2.9) are then equivalent to three 
initial temperature distributions governing the three scalar fields, the boundary 
condition for each being that 0 is held at zero temperature; i.e. the establishment 
of a steady motion from rest is analogous .to the dissipation of three initial 
temperature distributions. 

In this way established results in the mathematics of heat conduction 
(Oarslaw and Jaeger 1947) may be employed in solving the present problem. 
Alehough the solution of (2.8) is facilitated by the use of heat conduction Green's 
functions, the fields in which analytical, or indeed even numerical, results 
will be readily available will be found to be limited to rather simple types of 
media. The main concern will often be to find the order of magnitude of the 
time required for the establishment of the steady motion. We shall see that the 
limited range of exact solutions presents no obstacle in such cases. 

Szymanski (1930) treated motion in the generalized tube under an imposed 
potential gradient varying in time, but his treatment was limited to flow parallel 
to the generators of the generalized tube (two-dimensional special case). The 
rather different approach of this section embraces the general medium (three
dimensional problem) but is special in the sense that the applied potential 
gradient may change only discontinuously, i.e. the potential gradient must be a 
step-function of t. In Section VIII an approximate method of computing 
motion in the general medium is developed for the case where the variation 
of potential gradient with time is quite general. 

IV. Two EXACT SOLUTIONS 

Szymanski provides the only available numerical solution of this problem
for the case of axial motion in the circular tube. It gives a most instructive 
picture of the manner in which the steady motion is set up more rapidly near the 
tube walls, the final increments of velocity being almost wholly in the region 
of the tube axis. His result is embodied in Figure 2 . 

.An even simpler problem of interest (since the circle and the infinite slit 
give the extreme values of area: perimeter ratio for regular figures) is that of 
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linear flow between and parallel to two parallel plates. If z is the ordinate 
normal to planes z=O, z=h, forming the surfaces of the two plates, we have 

u 00 = -(V<l»z(h-z)/2v. 

The problem reduces to solving (4.2) subject to (4.3) 

oW/ot=v02W/OZ2, ................... . 

t=O; W= -(V<l»z(h-z)/2v. t>O; W=O at z=O, z=h. 

o·so 

0·40 

0'2 

0'20 

0'10 

0'05 

0~--~~0~"~~--~0~'2~~--~0~'~3--~--0~'~4---L--~0'5 
z/h_~ 

Fig. I.-Transition from rest to steady motion for flow between 
parallel plates. Numbers on each curve give values of rr"vt/h2. 

U oot denotes the value of U 00 for z/h=O· 5. 

(4.1) 

(4.2) 

(4.3) 

From the known result in heat conduction (Oarslaw and Jaeger 1947), 
the solution is 

4 00 1 
W=--3-(V<l»h2 I: (2 +1)3 exp [-v(2n+1)27t2t/h2] sin [(2n+1)7tz/hJ. 7t V n~O n 

.............. (4.4) 

The discharge per unit width, Q, is given by 

Q __ (V<l>)h3[~_~ ~ 1 [_ (2 1)2 2/h2 ] 5 - v 127t4n:::o(2n+1)4exp v n+ 7tt J .... (4.) 

The solution is shown in dimensionless form in Figure 1. Here also the 
steady state tends to be established most rapidly near the fluid-solid interface 
and most slowly in midstream. However, as one might expect, the tendency 
is less marked than in Szymanski's problem. 
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v. AN ApPROXIMATE SOLUTION 

We now develop an approximate solution to the problem of the transition 
from rest to steady motion in the general medium. For simplicity, we take 
the case where the directions of U and - \7<1> coincide, i.e. the isotropic medium 
or a principal direction in the anisotropic medium with K self-conjugate. In 
the latter case superposition of the results for the three principal directions 
gives the general solution. In what follows we simplify the notation by writing 
the scalar 8 for - \7 <I> and the scalar 0 for V. 

The assumption on which this analysis depends is 

U =FU 00, ••••••• " ••••••••••••• (5.1) 

where F is a function of t only. It is evident that (5.1) cannot be exactly true, 
the" exact behaviour being exemplified by Figure 1 and Szymanski's result. 
However, if (5.1) did hold, we could also write 

'I"=F2'I" 00, i.e. f'I"dV=F2f'I"oodV, ........ (5.2) 

where 'I" is the point rate of viscous dissipation of energy, 'I" 00 the steady state 
value of 'I", and the integral is taken throughout the whole volume of the 
medium, V. 

Now, in the steady state, the mean rate of viscous dissipation of energy 
per unit volume, 'I" 00, is given by (5.3) in which 0 00 is written for the steady 
state macroscopic velocity. 

'I" oo=pO 008 •..................•. (5.3) 

(5.3) is simply proved by equating for any unit cube of the medium the 
rate at which work is done .on the fluid by the potential gradient and the rate of 
viscous dissipation of energy. 

Then (5.2) may be written 

f 'I"dV=pF2VO 008. • ••••..••....••. (5.4) 

Equating for any instant during the transient state the rate at which work 
is being done on the fluid passing through the medium by the potential gradient 
to the sum of the rate of gain of kinetic energy and the rate of viscous dissipation 
of energy, 

pFVO 008=rl.pFVO~dF/dt+pF2VO 008 •.•....•.•. (5.5) 

rI. is the ratio of the actual kinetic energy to that computed if U is assumed equal 
to O( =FO (0)' 

Using the relationship 
K 0 00 =-8 ........... , .......... (5.6) 
v 

a.nd rearranging (5.5), we get 

dF/dt= :X(l-F). . ........... ; ... (5.7) 
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The integral of (5.7) for which F vanishes at t=O is 

that is, 

where 

(5.8) 

(5.9) 

'(J=v/d •.••....•......•..•.• (5.10) 
(X is suitably replaced by 

where p is the porosity, so that 
'(J=p2v/yK. 

(5.11) 

(5.12) 

49 

For a circular tube y=h-33, and for flow between plates y=l' 20. 
Probably y will always be of about this order of magnitude. 

It is perhaps worth remarking that the approximation of this subseotion 
is exactly analogous to that made in elementary dynamics when the approach 
to the terminal velocity of a body falling in a viscous fluid is calculated on the 
assumption of a resistance proportional to, velocity and independent of 
acceleration. 

OL---~--~--~~2~--~~3~--~--4~--~~S 

p2v t/Yf- _ 

Fig. 2.-Transition from rest to steady motion. Full curve gives 
approximate solution (5.9). Broken curve shows divergence of two 

exact solutions from the approximate solution. 

VI. THE AccuRACY OF THE APPROXIMATION 

The full curve of Figure 2 represents (5.9) in dimensionless form. ,It 
was intended to show on the same graph the exact solutions for flow in the 
.circular tube and between parallel plates referred to above, using the known 

D 
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values of K and y for these systems. However, for these two exact solutions, 
values of OJ 0 00 for any particular value of ~t were found to differ by less than 
about 0·005; so the two curves could only be shown as one in the figure. 
Further, it was only in the region ~t<0·8 that these exact solutions differed 
from (5.9) by sufficient for them to be represented by a separate curve. The 
broken curve joining the full curve at about t=0·8 represents the exact solutions 
up to that ]Joint. Beyond that the full curve represents the approximate 
solution and both exact solutions. 

It is apparent from this result that the approximate solution promises to be 
surprisingly accurate-in fact more accurate than we really need for our present 
purpose, which is to evaluate the order of ma1Pritude of time required for the 
establishment of the steady motion. 

VII. THE TIME FOR THE ESTABLISHMENT OF THE STEADY MOTION 

.Although this matter might have been treated in terms of the" half-life", 
it was felt that, since the process is not exactly exponential, .it is perhaps better 
discussed in terms of to•oo, the time taken for 0 to reach the value 0 .990 00 • Then 
from (5.9) 

to•99 =4·6yKjp2V • • ••••••••••••••• (7.1) 

.Adopting typical· values p=0.·5, y=1·3, and for water (20 °0) 
v=1·005 X 10-2 we obtain 

to.99 =2380K, (7.2) 

with K in cm2• For K in darcys (Muskat 1937) this becomes 

(7.3) 

It will be observed that to.gg is proportional to K and inversely proportional 
to v. Since in nature and technology both values of v less than that for water 
and values of K greater than 10 darcys are uncommon, it will be seen that the 
steady state is generally set up within a few seconds, and, in fact, usually within 
a fraction of a second. It will be noted that to•gg is quite independent of the 
dimensions of the medium and the magnitude of the potential gradient. 

VIII. GENERALIZATION OF THE .APPROXIMATE .ANALYSIS 

(5.5), the basic equation upon which the preceding approximate study 
depends, may be recast into the form 

(lj~)dOjdt+O =KSjv. (8.1) 

Previously we restricted our attention to the case with S constant for all t> 0, 
but this limitation is unnecessary as only the instantaneous values of 0 and S 
enter into (5.5) and (8.1). Hence, with"S allowed to vary in time quite generally, 
(8.1) may be integrated to yield 

o = Ooe-f3t+(~KjV)e-f3J: S(T)ef3TdT. . ..... (8.2) 
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00 denotes the value of 0 at t=o. (8.2) expresses the macroscopic fluid motion 
in terms of the initial conditions and the imposed 8(t). Because of the super~ 
posability of the motions (Strang 1948) (8.2) can be shown to depend only on 
the original assumption (5.1). Clearly (5.9) is merely a special form of (8.2). 
It is of some interest to consider the problem of 8 simple harmonic. For 

8=8 sin t/CiJ, ...•....•....•.••. (8.3) 

0 0 =0, . . . . . . . . . . . . . . . . . . . . .. (8.4) 
(8.2) becomes 

o V(:!~~1) [(~CiJ sin ~-cos~) +e-~], (8.5) 

which may be rearranged as 

where 

0= ~8 cos 6 [s~ (£ -6) +(sin 6)e- f3} .. ...... (8.6) 

sin 6=(~2CiJ2+1)-1 ............................. (8.7) 

I 
I 

I 
I 

I 
36° I 

I 
I 
I 
I 
I 

18° I 
I 
I 
I 
I 

/ 
/ 

/ 
/ 

-------
,../,....-------

/ 
/ 

0'8 / 
/ 

/ 

Fig. 3.-" Steady" fluid motion with simple harmonic 
applied potential gradient. Full curve denotes the phase 
lag 6. Broken curve denotes the amplitude in the 
dimensionless form, !1-u/Ks. Note that !1- in the figure 

corresponds to v in tne text. 

In the limit as t --* 00, the motion becomes simple harmonic with the same 
period as :the impressed gradient (i.e. 21tCiJ) with a phase lag between 8 and a. 
The amplitude of a is (K8/V) cos 6. Figure 3 shows the variation of the phase 
lag () and the amplitude u with the significant parameter of the system, ~CiJ. 

Figure 4 compares the final " steady" motion with the :first few cycles of 
the transition from rest for the case of ~CiJ=0·213. This value corresponds, for 

DD 
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example, to 21tCJ)=0·5 sec, K=2·8 x 10-3 cm2 (equal to that of a tube of diameter 
0·3 cm), v=1·005 X 10-2 cm2 sec-I. 

Since the motions we consider are superposable (Strang 1948), it follows 
that for any S which is a periodic function of time, (8.2) will be of the form 

0=0Ie-[3t+02+03, ............... (8.8) 

where (i) 0Ie-[31 represents the exponential decay of an initial motion Ou 
which may be interpreted as the motion corresponding to the degree 
that 00 is out of equilibrium with S, 

(ii) O2 is periodic with the same 'period as S, 
(iii) 0 3 represents the steady motion produced by the steady application 

of the mean value of S. 

Fig. 4.-Fluid motion with simple harmonic applied potential 
gradient. Curve A denotes .the transition from rest. Curve B 
denotes the final steady motion. Both curves for ~oo=O·213. 

Curve C denotes the applied potential gradient. Note that [.L in 
the figure corresponds to v in the text . 

. IX. DISCUSSION 

These investigations suggest that transient effects in saturated porous 
media will not often be large enough to invalidate the use of Darcy's law. How
ever, for the sudden application of a potential gradient to a very permeable 
medium containing a fluid of low kinematic viscosity an appreciable time may 
elapse before the motion has effectively· attained the steady state. Equation 
(7.1) provides a suitable criterion. 

Moreover, where the applied potential gradient is periodic, significant 
deviations from Darcy's law occur even if the frequency of the system is as 
low as one cycle per minute. Naturally, the permeability and kinematic 
viscosity influence the magnitude of the deviations here also. Equation (8.6) 
enables the effect of the various factors to be evaluated for the case of a simple 
harmonic S function. 
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It is possible that in the systems of very rapidly changing potential which 
occur in such phenomena as the movement of liquids into initially unsaturated 
media, deviations from the" diffusion" description of the motion (Philip 1955) 
may occur due to the failure of Darcy's law. Such problems arising in 
unsaturated media are beyond the scope of this paper and require further study. 

The approximate macroscopic analysis of transients given here has the 
feature in common with Darcy's law that it represents an attempt to provide a 
simpler and more amenable description of the motion than does the Stokes
Navier equation. Thus, if we consider the form of Darcy's law 

O=KSlv (9.1 ) 

and rewrite (5.9) as 
0= (KS Iv )(l-e -131), (9.2) 

the replacement of the S of (9.1) by the S(l-e-f3t ) of (9.2) may be regarded 
as a process of generalizing Darcy's law to include the influence of the sudden 
application of the potential gradient at t=O. In the same way, we may look on 
(8.2) as the complete generalization of Darcy's law to include any time variation 
of the potenti~l gradient, the S of (9.1) now being replaced by 

~e-f3J: S(T)e f3TdT +(vOo/K)e- f3t • (9.3) 
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