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Summary 

Following the classical method a least squares solution is given for the equations 
s 
~ (ark+erbrk)xk=er (r=I, . .. , n>s), where the ark and brk are fixed known constants 

k=l 
and the er are observed values subject to error. The solution is obtained as a series 
in the successive moments of the joint distribution of the er, and only terms up to those 
involving the variance are retained. In this approximation the estimated values of 
the xk are biased, but, after correction for this bias and using a particular weight for 
each equation, the classical tests of significance for the case brk=O can be applied 
unchanged. With suitable assumptions it is shown that the series converges more 
and more rapidly as n->- 00 for almost all sequences of the er . 

1. INTRODUCTION 

The classical theory of the solution of a set of n linear simultaneous equations 
in 8 «n) unknowns by means of least squares is due originally to Gauss (Plackett 
1949). In this theory the equations are of the form 

where the coefficients crk are fixed (known) constants and the e's are observed 
values subject to (unknown) errors, aer, with zero mean. In the present paper 
the method of least squares is applied to the equations 

s 
~ (ark+eAk)Xk=er+aer (r=l, ••• , n), ...... (1.2) 

k=l 

where the ark and brk are fixed (known) constants and the coefficients of the x's 
depend linearly on the e's which are observed values subject to (unknown) 
errors. Such equations arise in the reduction of experimental observations 
leading to the determination of the direction of an invariant plane strain and a 
brief derivation of the equations arising in this case is given in Section II. 

Section III reviews the classical procedure for solution of equations by 
least squares and this method is adapted, in Section IV, to a least squares 
solution of equations (1.2). The solution is given as a series in the successive 
moments of the joint distribution of the e's, which with suitable assumptions 
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converges for almost all sequences of the e's as n-+ 00. Only terms up to those 
containing the second moments (variance) are retained and to this degree of 
approximation the classical tests of significance can be applied. 

II. THE PHYSICAL PROBLEM 

When a change of phase of the martensitic type occurs in a solid it is accom­
panied by a homogeneous strain which describes the change in shape of the solid. 
This homogeneous strain is essentially* an invariant plane strain in which a 
plane (the habit plane) with unit normal p remains invariant and all points move 
in a common direction dfl d I. A point with position vector y moves to the 
point 

y' =y +(p.y)d, (2.1) 

while a plane with normal n becomes the plane with normal 

n' =n -(n.d)pf{l +p.d). (2.2) 

The normal p to the habit plane can be measured readily and directly but the 
direction d is more difficult to estimate. 

Fig. I.-The junction between an original specimen surlace 
and the same surface after transformation. 

Figure 1 shows schematically the junction between an original specimen 
surface, with unit normal n, and the same surface after transformation, with 
normal n'. Also shown are a scratch originally in the direction of the unit 
vector y and the projection y~ of the direction y' onto the original surface with 

* According to Bowles and Mackenzie (1954) it only differs from an invariant plane strain 
by a small dilatation. In a recent review Bilby and Christian (1955) suggest otherwise. At 
present there is no direct experimental evidence that the difference is not a pure dilatation but 
in any case the difference is small. 
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normal n. The measurements which can be readily made are (a) the angle 6 
between y and the projection y~ of y' and (b) the angle cp between the surface 
normals nand n'. In the first case it is readily shown that 

p.y(nxy-tan 6 y).d=tan 6, ........ (2.3) 

where 6 increases positively for a right-hand rotation about the normal n. 
Likewise, in the second case 

-I nxp I (n-tan cp txn).d=tan cp, •••••••• (2.4) 

where n x p=1 n x p It and cp increases positively for a right-hand rotation 
a,bout the trace t of the habit plane in the original specimen surface. 

The habit plane and other quantities appearing on the left of (2.3) and 
(2.4) can be ·measured much more accurately than the small angles 6 and cp, 
so that the equations for the determination of d are effectively of the form (1.2). 

III. THE CLASSICAL THEORY OF LEAST SQUARES 

If C is the n X 8 matrix (crk ) while x and e are the 8 x 1 and n X 1 matrices 
(xk ) and (er ) then the equations (1.1) can be written compactly in matrix notation 
as 

Cx-e=8e. . .. " ... . .. .. .. . .. (3.1) 

Then, given a symmetrical positive definite n xn weighting matrix W, the 
least squares method of solution consists in first forming the essentially positive 
quadratic form (weighted sum of squares, if W is diagonal) of the errors 

S=( Cx-e)'W( Cx-e), . .. .. . . .. .. ... (3.2) 

and then choosing x so· that S is minimum. This gives the normal equations 
A 

Nx= m, ..... '.' ....................... (3.3) 
where* 

N=C'WC, m= C'We ............... (3.4) 
A A 

The estimate x of X so obtained is unbiased, since E(x)= N-IC'W E(e)=x; 
the symbol E denotes the expectation value of the variable in brackets and is 
obtained by averaging over the distribution of this variable. Further, 

Smln.=e'We-e'WC N-IC'We, (3.5) 

and the 8 X 8 covariance matrix of the estimated values x is 
A A 

Cov (x,x)= N-IC'WVWCN-l, (3.6) 

where V is the n x n covariance matrix of the errors 8e. 

It was assumed above that W was given a priori, but t;p.equestion arises 
as to the" best possible" choice for W. Gauss showed that of all possible 

* N has a unique inverse provided C is of ran~ 8. 

H 
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linear combinations Xe of the er for which X is (functionally) independent of 
e and Xe is an unbiassed estimate of x (i.e. X C= I) that which gives the elements 
of x=Xe a minimum variance is given by 

X=( C'y-l C)-lC'y-l. (3.7) 

Usually, only the ratios of the elements of Yare known (or estimated) so that 
Y=Y00'2, where 0'2 is to be determined. Then, with the choice W=Yo\ an 
estimate of 0'2 is obtained from the equation 

(3.8) 
and (3.6) simplifies to 

(3.9) 

If it is assumed that the errors ~e are normally distributed with covariance 
matrix Y the maximum likelihood estimator x* of X is the least squares estimate 
with W' VOl and the maximum likelihood estimate 0'*2 of 0'2 is Srrrln./n. Further, 
Smin./0'2=nO'*2/0'2 has a X2-distribution with n-s degrees of freedom and the 
variables [(n-s)/n]i(x*-x)r/O'*[ N-l]rr have a t-distribution with n-s degrees 
of freedom. For a joint test of a hypothetical solution xh the variable 

e2z=~ (x*-xh), N(x*-xh) 

S Srrrln; 

is distributed like a variance ratio with s degrees of freedom in the numerator 
and n-s in the denominator (Oramer 1946). 

IV. ADAPTATION TO NEW PROBLEM 

The method proposed for the solution of the equations (1.2) is as follows. 
First calculate the coefficients of the (1)k on the left using the observed values of 
the er and then find the least squares solution X as in the preceding section, 
treating the calculated coefficients as fixed. This is quite straightforward; 
the real problem is to estimate the bias in the values of x so obtained and the 
covariance matrix of the solution after correction for bias. 

The equations (1.2) can be written in an obvious matrix notation as 

(Al+EB)x-e=~e, ................ (4.1) 

where E is a diagonal matrix with diagonal elements er in order. It is convenient 
to express these equations in a form showing explicitly their dependence on 
the deviations of e from its mean valuee-E(e). If Dis the diagonal matrix 
E - E and 1 is an n X 1 matrix consisting of a column of ones, (4.1) can be written 

(A+DB)x-:-e-Dl=ae, ............ (4.2) 

where A=Al +EB. It will be assumed that the correct value of x is 
satisfying the equations 

... ..•... .•. (4.3) 
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Subtracting (4.3) from (4.2) gives 

(A+D B)(x-xm) -Df=ae, 
where 

(4.4) 

(4.5) 

The equations are now of the form (3.1) with A + D B replacing C and Of replacing 
e. Further, it is clear that the least squares solutions of (4.1) and (4.4) give 
the same value of Smin .. 

case 

and 

The least squares solution of (4.4) is X- X m= N-l m, where in the present 

N=A'WA+A'WDB+B'DWA+B'DWDB=M+aM, say, 

m = A'W Df + B' DW Df, 

M=A'WA+B'E(DWD)B. 

(4.6~ 

(4.7)! 

(4.8~ 

Now, provided all the characteristic roots of the matrix M-qM are of modulus 
less than unity, the series expansion 

is convergent (Ferrar 1951). Although the series (4.9) will not converge for 
some values of D and hence of aM it will be shown in Section V that with 
appropriate assumptions the series converges for almost all sequences of observa­
tions er as n-+ 00. Hence, retaining oilly terms of the second degree in D, it 
follows that 

X-Xm=M-IA'WDf+M-IB'DWDf 
-M-IA'W D BM~lA'W Df-M-l B' DW AM-l A'W Of +. . ., 

.................. (4.1 O} 
so that the bias is 

E(X-xm)=M-IB'E(DWD-DWAM-IA'WD)f 
-M-IA'WE(DBM-IA'WD)f+ .... . .......•• (4.11) 

Terms such as E(DXD) in (4.11) are simply obtained by multiplying each 
element of X by the corresponding element of V, and to the present degree of 
approximation M-l may be replaced by N-l. Clearly there will be no bias". 
to any degree of approximation, in the special case BX m =1. 

Further, 
Cov (X,X)=M-IA'WE(Dff'D)WAM-l+ ... , .... (4.12) 

Smin.=f'DWDf-f'DWA'M-IAWDf+ ... , .. (4.13) 

and to the present degree of approximation these are of the same form as (3.6) 
and (3.5) respectively, Df replacing e-i. Thus, the choice 

W-l=E(Dff'D)/cr2 (4.14) 

gives the same simplifications as in the classical case. In particular, when 
errors in e are normally distributed the classical results on the varimmdistribu-
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tions follow. However, since f depends on X m' which is not estimated until the 
solution is complete, the appropriate W can only be- estimated by successive 
approximation starting, say, with the approximation f= 1. For the physical 
problem in Section II Bx m will usually be small compared with unity and the 
labour of repeating the solution is probably not worth while. 

The results of the present section fall short of the classical results in two 
respects. First, it has not been shown that the choice (4.14) for W is in any 
sense the best possible although it is probably not far short of this. Second, 
the relationship-between the present solution and a maximum likelihood solution 
for, say, normally distributed errors remains unknown although it seems almost 
certain that the results after correction for bias will be the same asymptotically 
as n-+oo. 

V. OONVERGENCE OF THE SERIES (4.9) 
To obtain a result concerning the convergence of (4.9) as n-+ 00 it is necessary 

to make some assumptions concerning the behaviour of the elements of the 
matrices A, B, Wand about the nature of the distribution of the diagonal elements 
of D, i.e. the distribution associated with the observations e. The assumptions 
stated below are' sufficient to ensure the convergence of (4.9) as n-+ 00. for almost 
all sequences of observations e, and will be satisfied in most cases of practical 
importance. 

It will be assumed that, for all n 

(i) The modUlus of all the elements of the matrices A, B, and W' are 
uniformly bounded by the constants aOlbo, and Wo respectively, 

(ti) the elements in each column of A have a finite mean square, 
(iii) ,the diagonal elements Aj of Dare independent and have finite variances 

Vj uniformly, bounded, by VOl 

(iv) the distributions of Aj/vji are identical. 

It now follows that as n-+oo the series (4.9) converges for almost all sequences 
of the Aj =e/---'-ej" , - , , 

Since the Aj are_ indep«;lndent, the choice (4.14) for W leads to a diagonal 
matrix. Thus"" everyone of the 82 elements of the matrix A'W D B/n can be 
written in the form 

and siInilarly every element of the matrix [B'DWDB-B'E(DWD)BJ/n can 
be written in the form' 

But the variables A)vJ and (A1--Vj)/v1, are identically distributed and have zero 
mean so that the 'strong law of large numbers (Feller 1950) applies to 
the sums on the right ot(5.1 )-and (5.2). Now (ti) ensures that 
Mjn=[A'WA+ B'E(DWD)BJ/n is always a matrix with finite diagonal elements 
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and so it follows that M-1aM converges to zero as n-'J>- Cf) for almost all sequences 
of the ej • 

Thns, as n increases, (4.9) not only converges for almost all sequences ej 

but does so more· and more· rapidly. 
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