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DISPERSAL OF DUST PARTICLES FROM ELEVATED SOURCES 

II. LIMITATIONS OF THE APPROXIMATE THEORY 

By G. T. CSANADyt 

[Manuscript received July 1, 1957] 

Summary 

This paper forms a continuation of a previous one (Csanady 1955) wherein Sutton's 
continuous point source equations were extended to the case of heavy particles of 
uniform free falling speed. The solution obtained there was an approximate one; 
limits of validity are discussed in detail in the present paper. This discussion is preceded 
by a generalization of the earlier solution and two charts are presented to aid calculation 
of the" mirror image multiplier", the basic function of the· approximate theory. 

1. INTRODUCTION 

In a previous communication (Csanady 1955) an approximate expression 
was derived for concentration and deposition rate of particles of uniform free 
falling speed j, discharged from an elevated, continuous point source into a 
horizontal wind. The method of derivation was, however, not sufficiently 
rigorous to establish the validity of the solution and no experimental evidence 
seems to be available for comparison. Substitution of the derived expression 
into the differential equations of turbulent diffusion (Batchelor 1949) shows in 
fact that the former is not an exact solution. It will be shown in the present 
paper that the solution is approximate but that it is likely to be useful in a certain 
class of practical problems, notably in estimating dust fall from a tall chimney, 
when the dust plume is flat (i.e. nearly horizontal). 

Another improvement on the earlier result would be to consider more 
general forms of the standard deviation function and to allow the " chimney" 
height to' vary with distance in order to take into account the possibility of 
thermal rise. These tasks present no difficulty and will be carried out below. 
To render the practical application of the theory still easier, it is also possible 
to draw up charts for the computation of the" mirror image multiplier" as a 
function of suitably defined non-dimensional variables. Two such charts are 
presented below. 

II. GENERALIZATION OF THE EARLIER SOLUTION 

Given that tl e effective chimney height h(x) may increase with distance, 
the mean height above ground level of a dust cloud of uniform free falling velocity 
j, in a horizontal wind of speed u, will be, at a distance x from the source, 

z*=h(x)-jxju. . ................... (1) 
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Where a given" streamline" (or rather mean-path-line) reaches ground 
there is a vertical component of mean velocity, in addition to the bodily drift 
velocity f of the cloud, • 

~w-~ dcrz _ dh 
-crz ' dt dt 

=(hu-fx) . cr;/crz-uh' ........... , (2) 

(dashes denote differentiation with respect to x). 

By the reasoning given in the earlier paper we find for the ground level 
value of the mirror image multiplier 

~w 
iXo=2f+~w' 

Combining the last two equations we find the result 

(hu-fx) . cr;/crz-uh' 

iXo=2f+(hu-fx) . cr;/crz-uh" 

(3) 

........... , (4) 

Equation (4) now allows for thermal rise and arbitrary standard deviations~ 
In order to calculate iXo it is necessary to assume some particular function for the 
standard deviations. On theoretical grounds it seems objectionable to extra
polate Sutton's formulae to large distances. It is possible, however, to fit a 
standard-deviation formula based on an exponentially decaying Lagrangian 
correlation coefficient to Sutton's numerical data and use the resulting expression 
for extrapolation. This approach is not new; it has been pointed out by the 
referee of this paper that Inoue (1952) stated the standard deviation equation 
in the following form : 

cr~=2g~xo[x-xo(1-e-XIXo)], .............. (5) 

where gz=gustiness in the vertical, 
xo=scale of turbulence. 

Sutton derives his numerical values from diffusion parameters measured 
at 100 m from the source. On the same basis the numerical values of equation (5) 
become 

xo=80 m, 
gz=0·085. 

Equation (5) with these numerical values has been used in drawing up the, 
charts presented below. 

Taking first the case of constant" chimney" height, i.e. of a horizontal gas 
plume, h' =0, and introducing the nondimensional variables, 

x =x/xo, Y =fx/hu, 

equation (4) may be transformed into 

............ (6) 
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which is represented in Figure 1. To find values of ato with an inclined gas plume 
it is convenient to use the results in Figure 1 and draw up a subsidiary chart to 
find a "modifilPd" multiplier IXom' valid for a given inclination of plume. It 
is thus possible to recast equation (4) into the following form : 

(7) 

where ~=uh' 12f and (xo is the value obtained from Figure 1, i.e. with a horizontal 
gas plume, but for identical X and Y. Equation (7) is represented in Figure 2. 
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Fig. I.-Chart to facilitate computation of the mirror image multiplier 01:0 for 
horizontal plume. X and Yare non-dimensional distance variables. 

In industrial dust clouds conditions are of most interest at the point where the 
(lentre of the plume reaches ground level. Here we have ato=O, so that the 
mirror image term may be ignored in a first approximation if the gaseous plume 
is horizontal. However, if there is a thermal rise, 

. . . . . . . . . . . . . . .. (8) 

where lXom,c is the value of atom at x=hulf, so that, taking into account the definition 
of ~, 

1+0t0m,c=1-(xh' 12h)/(1-xh' 12h). . ....... _ ... (9) 
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Thus one may take the reduction of deposition due to the inclined gas 
plume into account in a first approximation by simply applying the factor 
(1 +ocQm,c). Physically, the reduction is due to "stretching" of distance elements; 
the inclination of the gas plume causes the deposition to be distributed over a 
larger area and the amplitudes must be diminished to preserve continuity. 
The expression for dust fall rates is best written as 

D= Wi· (1+0C0) exp {_ JL _ (h-i xju)21, ...... (10) 
2 'Tt'O'yO'zu 20'; 20'z 5 

where W is the total rate of dust emission and 0C0 is to be found from the charts 
presented here, once the three non-dimensional variables X, Y, and ~ are known. 

The introduction of the factor 0C0, which is a function of x, into equation (10) 
conflicts with the differential equations of turbulent diffusion. The reason' for 
the discrepancy is that in the derivation of equation (3) (see Osanady 1955) 

(3 

Fig. 2.-Correctioh chart for the mirror image multiplier when plume axis is inclined. 

the transport due to a gradient in oc has not been considered. It is in principle 
possible to rectify this but the resulting expression for OCo becomes impracticably 
complex. A more fundamental mathematical investigation starting from the 
differential equations may some day yield an exact solution. As subsequent 
arguments will show, the present approximate theory should meanwhile be 
useful in certain practical applications. 

III. VALIDITY OF SOLUTION 

(1) Group-effect in Dust Glouds.-Mutual drag-interference at the concentra
tions encountered in chimneys is negligible. The average distance between 
particles is of the order of 100 particle diameters and th~ probability that two. 
particles travel within a distance of 10 diameters is usually less than 1 per cent. 

(2) Even assuming h to be constant, the substitution of h-fx/u in Sutton's. 
(1953) equations in place of h is not a rigorous step. The conditions under which 
the approximation may be expected to hold can be investigated following the 
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method indicated by Sutton (1953, p. 136). For simplicity we discuss the 
isotropic case and assume that the distance from the source is large enough for 
the Lagrangian correlation to be approximately zero: 

cr;=cr~=cr~=2K(t-tc)' ................ (11) 

where K =V'2 . to, the limiting value of turbulent diffusivity, with V'2 the mean 
square turbulent velocity fluctuation, to the area under the Lagrangian correlation 
coefficient, and tc is the centre of gravity of the same area. Equation (11) is 
best deduced from Kampe de Feriet's form of Taylor's well-known theorem 
(see e.g. Batchelor 1949). 

If there is a steady horizontal wind and a uniform downward drift, the 
cloud emitted at t' at x=y=z=O will at time t be centred at 

x=u(t-t'), y=O, z= -f(t-t'). (12) 

By the method indicated in Sutton's book one finds, after integrating over all 
the smoke-puffs, 

C=47tiro exp [2~Ix-xc-ro(1+~r-~(z+fxc)}} ... (13) 

where 

x=utc, 
r6=x2+y2+z2+(u2+f2)t~-2(ux-fz)tc· 

It is now easily verified that, provided 

1~1 and y2~(z+f~~/U)2~1, ................ (14) 
u x-xc 

the above expression reduces approximately to 

C- W ex \ _ y2+(z+fx /U)2} (15) 
- 47tK(x-xc) P ( (4K/u) (x-xJ' ....... . 

which is of the type used in the author's previous paper and equation (10) 
above. Substitution into the differential equation of turbulent diffusion 
(Batchelor 1949) shows that the physical interpretation of this approximation 
is neglect of diffusion along wind, which is valid at large distances from the 
source and for a flat dust plume, according to the conditions just found. One 
may thus expect that when there is a thermal rise, dh/dx must also be much 
smaller than unity for the same kind of expression to be valid. 

(3) The introduction of a multiplier IX(X, z) disturbs the flux between what 
have previously been streamlines and may also conflict with continuity in the 
sense that the total dust deposition might appear higher than the emission. 

Investigating continuity first, we have for the total deposition after 
integrating equation (10) 

W! jW1 +1Xo f (!X/U-h)2}d_W -- exp - (fi- , 
y(27t) . U 0 crz 2cr; 

.... (16) 
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which has here been set equal to the emission W. Equation (16) may be written 
as 

1 foc V7t _ ~ exp (-p2)dp =1, ................•••. (17) 

where 

with 

flu 
M = (1 +exo) flu - V20" zP' 

fxlu-h . 
p= V20"z' 

Equation (17) will be satisfied, for example, if M =1 +odd powers of p. 

If we assume hi =0 for simplicity, with equation (4) M may be reduced to 

M =1/(1-Bp)=1+Bp+B2p2+ . .. , .......... (18) 

B=(1/v2)0";ulf· 

Close to the source O"z=gz, while at large distances, "!Ising an asymptotic 
·formula such as equation (11), one obtains 

The integral in equation (17) will now contain a term, tB2, and in order 
to satisfy continuity it is necessary that B2<1. Substituting the value of B 
from equation (19) and ignoring Xc against x=hulf (i.e. against that distance 
where the centre of the dust plume reaches ground level, which owing to the 
previous condition on the" flatness" of the dust plume should indeed be large) 
we have the required condition 

flu,>-g;xo/4h. • •.........•......•• (20) 

Oloser to the source we should have flu,>-gz, which would often be difficult 
to satisfy, hence the need for a " tall" stack. 

Disturbances in flux are likely to be most important near the centre of the 
dust cloud as the latter reaches ground level. Here the approximate theory 
shows a concentration of Cs • (1 +exo), with Cs the concentration due to the simple 
term alone (not including the mirror image term in equation (10». In deriving 
an expression for exo the balance in vertical transport has been considered, 
ignoring, however, transport due to a gradient in IX. It is possible to take this 
gradient into account in writing down the transport balance equation (see the 
author's previous paper, p. 548 on) but the resulting equations are excessively 
complicated. 

Near the point of maximum deposition streamlines are nearly straight and 
have the incliIiation flu. One may thus write 

GIX dexo u 
az~- dx . J' .•.•....•••....... (21) 
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since one may assume that oc is constant along a streamline, see the author's 
previous paper. From equation (4), assuming h' =0 and using the asymptotic 
behaviour at large x of az, one finds, ignoring Xo and Xc against x, 

(22) 

at x=hu/f, the centre of the dust cloud. 

The transport due to a gradient in oc is 

1J'= -KzCsooc/oz, .•••.•..••........ (23) 

where Kz=lda;/dx, turbulent diffusivity. This must be small compared to the 
transport due to the free fall velocity f (at the centre of the dust cloud, 0C0=0) : 

osi,;>KzCs/4h, •••••.•••••.....•... (24) 

using the r~sults in equations (21) and (22). Substituting the asymptotic value 
of the diffusivity, Kz=g~uxo, we find again 

f/u,;>g~xo/4h, ••••.•••.••..•...... (25) 

which is identical with equation (20). Using the numerical values quoted in 
connexion with equation (5) we may write (h in metres) 

f/u,;>1·16/8h. 

For a 50 m chimney, for example, the limits of validity of the approximate 
~heory are 

l,;>f/u,;>O ,003. 

In practice one could take perhaps 

, ()'25;>f/u;>0'01, 

which often covers an important range. 
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