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Summary 

This paper ~concerns the development from Maxwell's electromagnetic equations 
of an equation of propagation in an almost homogeneous medium. The equation is 
applied to the problem of determihing the secondary wave produced by an isolated 
Gaussian-shaped perturbation in the refractive index. An exact solution is obtah"led 
for points located on the axis of symmetry parallel to the direction of propagation of the 
incident primary wave. An approximate solution for points remote from the anomaly 
is obtained and its validity is compared with the more restricted exact solution. An 
interesting limit process is encountered in the derivation of the formula for the 
scattering cross section of the refractive index perturbation. 

1. INTRODUCTION 

In the field of radio communication there is currently a great deal of 
interest in the scattering of high-frequency waves by a turbulent atmosphere 
and the trans-horizon propagation of measurable signal strengths. Experiments 
with propagation of microwaves beyond the radio horizon show signal 
characteristics which cannot be explained in terms of free-space propagation, 
horizon diffraction, or mode theory of tropospheric ducts. In 1950 Booker 
and Gordont proposed a scattering theory based on the random space-dependence 
of the dielectric constant due to atmospheric turbulence. Although this theory 
was promising in some respects, the detail of the scattering mechanism was 
restricted to a random array of dipole scatterers. A number of other theoretical 
papers and a large amount of experimental data. have recently appeared in the 
literature, none covering extensions of the simple dipole theory. 

The purpose of this paper is to develop fundamental equations for the 
propagation and scatter of electromagnetic energy in a nearly transparent 
medium, and to apply these equations to the problem of scattering by an isolated, 
Gaussian-shaped perturbation in the refractive index. The resultant solution 
for the scattered field provides a means of determining the scattering caused by 
a refractive anomaly of arbitrary size. 
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II. PROPAGATION IN A NEARLY HOMOGENEOUS MEDIUM 

The propagation of electromagnetic energy is, in general, described by the 
partial differential equations of Maxwell. For a linear, isotropic, charge-free 
medium of zero conductivity, Maxwell's equations can be used to show that the 
electric intensity vector E(x, y, z, t) is governed by the equation 

. . . . . . . . . . .. ( 1) 

where [1. and E represent the permeability and permittivity of the medium. 
The free-space values for [1. and E are [1.o=47tjl07 Hjm and Eo=10-9j367t Fjm 
respectively. 

For a stationary, almost homogeneous medium, the refractive index 
n= Y([1.Ej[1.oEO) may be expressed as 

n=n1 [1 +p(x, y, z)], .................. (2) 

where n 1 is a dimensionless constant slightly greater than unity, and where 
I p(x, y, z) I~l. For a medium like the atmosphere, the permeability [1.=[1.1 
may be assumed constant, so that the permittivity is approximated by the 
equation 

E=E1[1+2p(x, y, z)], ................ (3) 
where El =ni[1.oEoj[1.1' 

A convenient substitution for the divergence of E in equation (1) can be 
obtained by substituting equation (3) into the Maxwell relation V· (EE) =0. 
After suitable manipulation of vector identities, followed by a logarithmic 
expansion, the approximation 

V·E= -2E·Vp 

is obtained. The substitution of equation (4) into equation (1) gives, 

Assuming the sinusoidal time-dependence, E =E' sin wt, gives, 

V2E' +V(E' 'Vp) + (47t 2jAi)(1 +2p)E' =0, 

in which the conventional notation Al =27tjWY([1.1El) has been used. 

(4) 

(6) 

It is convenient at this point to assume the total field E' as being composed 
of a weak scattered field E, and a dominant homogeneous field E which satisfies 
the simple propagation law v2E+(47t2jAr)E=0. Making this assumption, and 
neglecting the effects of secondary scattering of the scattered field, gives 

V2E + (47t2jAI) E= -(87t2jAi)pE -2V(E 'VP), ........ (7) 

which shows how the direct homogeneous field E produces sources for the scattered 
field E. 

In the foregoing propagation equation for the scattered field E it is seen 
that the scattering excitation is represented by two separate terms on the right 
side of the equation. The scattering associated with the term (87t 2 jAi)pE has 
been examined on intuitive grounds by other investigators. The existence 
of the term 2v(E· Vp) has been neglected or ignored in most of the literature 
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on scattering theory, even though its effect may be appreciable under certain 
conditions. If p(X, y, z) is an arbitrary function, then VP is a vector of arbitrary 
magnitude and direction, and VCE· VP) will also be arbitrary in magnitude and 
direction. This is in contrast with the vector (87t2jAr)pE, which is always 
parallel to the incident direct-wave field vector llJ. 

III. SCATTERING FROM A NEARLY TRANSPARENT ANOMALY 

In order to examine in detail the mechanism of radiation scattering in a 
nearly homogeneous medium, it is convenient to consider the effect of an isolated 
perturbation in the refractive index. While the incident-direct field may be 
taken as a uniform plane wave without apprepiable loss of generality, the 
refractive-index perturbation should be three-dimensional and continuous. 
Such a model is well approximated by assuming the fractional variation p(x, y, z) 
of the refractive index has its maximum value at the origin and decreases with 
radial distance from the origin in a Gaussian manner. 

This is expressed mathematically as P=Po exp (-r2j82), where Po is the 
maximum value of p, 8 represents the" anomaly radius", and r= v(x2 +y2 +Z2). 
The incident-direct field may be taken as a plane wave having its electric 
intensity parallel to the x-axis and travelling in the z-direction. Thus 
llJ =ulEo exp ( - j27tZjAI) +u2 • 0 +ua ·0, where Eo is the necessary amplitude 
constant, where j is the unit imaginary number, and where ull Us, ua represent 
unit vectors in the x, y, z directions. 

Substituting the above assumptions into equation (7), and making use of 
the well-known retarded potential theory, shows that the components of the 
scattered-field vector E=uIEI +u2E2 +uaEa are given by the integrals 

where 

and 

00 
~ 

EI=PoE0fff~[27t22 + 2~2_4 82]h(~, 'VI, ~)d~d'VId~, ...... (8) 
47t P Al 8 .j .j 

'-v--l 
-00 

00 
~ 

E2=P:of f f~ ~h(~, 1), ~)d~d1)d~, . . . . . . . . . . . . . . .. (9) 

'-v--l 
-00 

00 
~--. 

Ea=P:of f f~[~~~jA: ~ ]h(~, 1), ~)d~d1)d~, ....... (10) 

'-v--l 
-00 

These expressions are too complicated to be readily evaluated without the aid 
of automatic computing equipment. Fortunately, however, there are two 
important cases of practical interest for which the integrals can be simplified 
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in terms of known functions. One case is when the field point (x, y, z) is on 
the z-axis, and the other case is when r,;?>s so that the integrands are negligibly 
small except where the value of p in the denominators may be assumed equal 
to r and the value of p in the exponents is well approximated by its projection 
in the direction of the field point. 

IV. EXACT SOLUTION IN THE INCIDENT-WAVE DIRECTION 

.At points far removed from the scattering anomaly the scattered field 
integrals given in equations (8), (9), and (10) can be simplified and evaluated 
in terms of elementary functions. The resultant solutions, however, can only 
be considered as approximations which are asymptotic to the exact solutions. 
The approximations will degenerate as the field point approaches the scattering 
anomaly. In order to estimate the validity of the approximations it is convenient 
to determine the exact solutions under conditions sufficiently restricted to permit 
the evaluation of the complicated integrals. Such conditions result from assuming 
the field point is on the z-axis. 

If the field point (x, y, z) is on the z-axis, then x=y=O, and the integrands 
in equations (9) and (10) are odd in ~,with the result that E2 and E3 are both zero. 
This result can also be reasoned from the symmetry of the physical problem. 
In order to simplify the integral for E1) on the z-axis, it is convenient to introduce 
the translated polar coordinate notation ~ = p sin IX cos~, 'Y) = p sin IX sin ~, 
~=z+p cos IX, and to replace the volume element d~d'Y)d~ by p2 sin IXdlXd~dp. 
Under these conditions the integrand in equation (8) is independent of ~, 

permitting immediate integration with respect to that variable. Integration 
with respect to IX is easily done by replacing cos IX by a dummy variable. The 
final integration with respect to p gives 

.. (11) 

where 

0= . 1 P.·lj27tz Ai/47t2Z2 
(12) 

1 (1 +j7tS2jA1Z) (1 +j7tS2jA1Z) 2 (1 +j7tS2jA1Z)3' 

0= 1 jA1j27tz Ai/47t2Z2 
(13) 

2 (1 +j7tS2jA1Z) (1 + j7tS2 jA1Z) 2 (1 +j7tS2jA1Z)3' 

A2j27t2z exp ( -z2js2) 0= 1 (14) 3 (1 +j7tS2jA1Z)2 SV7t 
.................... 

and where 

1 1 JZ II =2 + SV7t 0 exp (-u2js2)du, ...................• ( 15) 

I - exp (j47tZjA1)JOO 2 2 . 
2- 8V7t Z exp (-u js -]47tUjA1)du, ....... . (16) 

The quantities 01) O2, and 0 3 are complex numbers which are readily evaluated: 
in terms of s, A1) and z. The integral II is easily interpreted in terms of the error 
function of well-known statistical theory. The integral 12 can be represented 
in terms of the error function of a complex variable. 
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Equation (11) represents the exact solution for the scattered field on the 
z-axis. The formula is valid for all values of z, including points at or near the 
origin, where the centre of the scattering anomaly is located. When the anomaly 
radius is large compared to one wavelength, the above solution can be further 
simplified for points near the origin. Thus, if S>A11 and -s<z<3s, it can be 
shown that the quantity 0III-0J2+03 is well approximated by the value 
0III-02I2+03~( -jAIZ/21ts2)[1+erf (z)]. Substituting this expression into 
-equation (11) gives 

El = - jPoEo[1 +erf (z)] ~ 1t 2~S exp ( - j21tZ/Al)' . . .. (17) 

which is valid for -s<z<3s when S>Al. As might be anticipated on intuitive 
grounds, the magnitude of the scattered field intensity increases with z in the 
-vicinity of the origin. This effect is illustrated in Figure 1, where the space factor 
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Fig. I.-Space factor for the scattered field. On the z-axis the 
scattered field is given by I E/Eo I =PoBF/t..1. When S~t..l and 

--8<z<3s, F=1tv'1t{l+(2/SV'1t)f: exp (--u2/s2)du}. 

F=1tV1t[1 +erf (z)] is plotted as a function of z. It is apparent from the 
graph that the scattered field intensity does not attain its greatest magnitude 
until the incident wave has passed through the greater part of the refractive 
region. 

Equation (11) is easily simplified for large values of z. It is readily shown 
that when S>Al and 2s<z<oo, the value of II is nearly unity, the magnitudes 
of 0 3 and 0 212 are negligible, while the expression for 0 1 simplifies so that 
.(JIII-02I2+03~[1+j1tS2/A1ZJ-I. Equation (11) then reduces to 

E = 1i) V1t(21tS) 2 exp (-j21tZ/Al) (18) 
1 PO"'o 2 A} z/S+j1tS/Al' ....... . 
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which is valid when S> A1 and Z> 2s. It is seen from this expression that as z 

increases in the positive direction the amplitude of the scattered field eventually 
varies inversely with distance. Thus, when z';?>1tS 2jA1, the above formula 
becomes 

...... (19) 

which confirms the expected inverse-distance behaviour at remote points. This 
result is also useful in checking the validity of the far field solution to be con­
sidered in the next section. 

The actual behaviour of the scattered field in the direction of the incident 
wave is illustrated in Figure 2, where equations (17), (18), and (19) are plotted 
as functions of z for the case in which s=10A1• The graph shows a rather rapid 
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Fig. 2.-Scattered field intensity in the incident-wave direction 
for a lO-wavelength anomaly radius. 

increase of the scattered field in the neighbourhood of the origin, to a maximum 
value of I E1 I "-'112 I PoEo I when z,,-,3s, and then a gradual decrease, to become 
nearly identical to the inverse-distance behaviour at z"-'100s. The corres­
ponding plot for the case in which s=100A1 would be similar except that the 
scale markings on the vertical axis would be increased by a factor of 10, and that 
the transition to the inverse-distance asymptote would not be adequately 
completed until z"-'1000s. It is clear that the strongest interference between 
the direct and scattered fields .occurs when z"-'3s. The early assumption that 
the incident field is essentially undisturbed by the scattered field is seen to be 
valid, provided that I Po I «AI/100s). This important condition is easily satisfied 
in all cases of tropospheric scattering of v.h.f. and microwaves. 

v. SOLUTION FOR THE FAR FIELD 

When the field point (x, y, z) is suffiCiently far removed from the orlgm, 
the expression for p can be approximated as p"-'r-x~jr-yYj/r-z~jr for use in 
the h(~, Yj,~) function in equations (8), (9), and (10). The approximation 
p"-'r is adequate for use in the denominators, since each integrand is of negligibly 
small magnitude except near the origin. These assumptions reduce the formulas 
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for EH E2, E3 to expressions which yield to integration. The results show that, 
when r';:P8, equations (8), (9), and (10) reduce to 

(20) 

(21) 

.... (22) 

On the z-axis, these equations agree with the far field previously obtained fr,om 
the exact solution. It is easy to confirm that the scattered field represented by 
these formulas propagates radially outward from the origin, with the electric 
vector perpendicular to the direction of propagation. 
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Fig. 3.-Scattered field patterns. 
101'q=101Opo' h/l' . {s/r)(21's/Al)2 exp {-{21'S/AI)2 sin2 fa}, 

Po=10-6, 1..=30 cm, r=lOOO m. 

In order to investigate the magnitude I E I =y'(Ei+E~+E~) of the scattered 
field at points far from the origin, it is convenient to introduce the polar coordinate 
transformation x=r sin e cos cp, y=r sin e sin cp, z=r cos e. The ratio q=1 E/Eo I 
of the scattered-field strength to the incident-field strength may then be 
expressed as 

, q=po ~7t ~(2~8) 2 y'(1-sin2 e cos2 cp) exp { -C~8) 2 sin2 ~}, 
.......... '. " ... (23) 

wbich exhibits the expected inverse-distance behaviour. The angular dependence 
of the scattered field in the yz-plane is shown in Figure 3, where equation (23) 
is plotted for two different anomaly sizes. 

The scattering cross section a, being the total scattered power radiated 
out of a surface enclosing the scattering anomaly divided by the incident power 
density, is defined as 

J 271:J7I: a= 0 0 q2r2 sin e de dcp. 
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The evaluation of this expression with the aid of equation (23) shows that the 
ratio g= cr/7tS 2 of the scattering cross section cr to the" geometrical cross section" 
7tS 2 is . 

7tp2 
g= 2k~([k4_k2+1] -[k4+k2+1] exp (-2k2)}, ........ (24) 

where k=27ts/A1• The behaviour of this equation is shown in Figure 4, where 
the scaled cross-section ratio g/p~ is plotted as a function of the normalized 
anomaly radius S/A1• From equation (24) it can be shown that 

lim g=(327t5p~/3)(s/A1)4, 
8-+00 

which is in good agreement with the well-known Rayleigh theory of small 
dielectric spheres. 
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Fig. 4.-Cross-section ratio v. normalized anomaly radius. 
g=(7tp~!2k2){(k'-k2+1)-(k4+k2+1) exp (-2k2)}, 

where k=27ts!Al' 

VI. CONCLUSIONS 

/ 

The foregoing theory describes in detail the scattering of electromagnetic 
energy by a single Gaussian perturbation in the refractive index. .A turbulent 
atmosphere may be considered as being composed of many such perturbations, 
distributed randomly in location, size, and intensity. .A statistical treatment 
of a large number of independent scattering elements, based on the detailed 
theory discussed here, should yield a worth-while contribution to the under­
standing of trans-horizon propagation of microwaves. 




