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Summary 

Detailed schemes have been prepared for performing numerical calculations of 
frequency, expectation, and variance. Tables are given of the deviations of the 
asymptotic formulae from the exact formulae when the time of observation is small. 

I. INTRODUCTION 

A number of papers (Jost 1947; Feller 1948; Elmore 1950; Ramakrishnan 
and Mathews 1953; Hull and Wolfe 1954; Campbell 1956; Takacs 1956) 
dealing with the Type I counter have appeared in recent years. The present 
paper differs from these in being concerned primarily with the calculation of 
numerical magnitudes rather than with the derivation of general formulae. 

A Type I counter is one in which each count is followed by a fixed dead 
time "t" during which the counter is insensitive, the counter returning to the 
sensitive condition at the end of the period "t". Any event occurring in the dead 
time has no effect. It will be assumed that the events which are being counted 
are distributed in time according to a Poisson distribution with· parameter (1.. 
The quantities which are of interest are the frequency function F(t) and the 
expected number N(t) of counts in time t. F(t)dt is the probability that a count 
occurs in the interval (t,t +dt) and 

N(t)= J: F(x)dx. 

The counting will be assumed to start at t=O, the counter being sensitive 
at that instant. F(t) has the form shown in Figure 1, which corresponds to the 
special case (1."t"=1. At t=O, F(t) equals (1., and F(t) oscillates with decreasing 
amplitude about the value (1./(1 +(1."t") as t increases. When t is large F(t) may 
be assumed to have this value and N(t) may be taken as (1.t/(l + (1."t"). If the 
events occur in short bursts, as will happen when particles produced by a pulsed 
source are being counted, then the behaviour of F(t) and N(t) must be investigated 
for small values of t. 

Instead of supposing the counter to be sensitive at t=O, it is sometimes 
convenient'to consider the case where a count occurs at t=o. Clearly, in this 
case the counter will be sensitive at t="t", and the frequency, expectation, and 
variance of subsequent counts will be given by the same formulae as for the 
case where the counter is sensitive at t=O if t in these formulae is replaced by 
t-"t". 
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II. EXACT VALUES OF FREQUENCY AND EXPECTATION 

The function F(t) is given by the expression 

. P !J.k(t-k-t·)k 
F(t) =!J. :l: e-lL{t-k-r) k' , .............. (1) 

k=O • 
where 

t=p't"+IX, O<;IX<'t" ................... (2) 

The kth term of the sum gives, when multiplied by dt, the probability that the 
(k+l)th count occurs in (t,t+dt). The term differs from the corresponding 
term for a Poisson distribution in that the dead times following each of the 
first k counts are subtracted from t. 

0·7,----,----,-----,--------r-----,,--------, 

0·4 

0·~L----~--------72-----~3~----L4-~ 

·IT 

Fig. I.-Graph of F(t)/IL against t/-r for a Type I counter with IL-r=I. 

N(t) may be found by integrating F(t), giving 

P 
N(t)= :l: r(k+l; !J.t-k!J.'t")/r(k+l), ......... (3) 

k=O 

the terms r(k+l; x) being the incomplete gamma functions. Alternatively, 
the equation 

F(t)=!J.t1 - I:--r F(X)dX} ...................... (4) 

may be used, the term in brackets being the probability that the counter is 
sensitive at the instant t (i.e. that no count has occurred in (t-'t",t)). (4) can be 
written 

F(t)=!J.{l-N(t) +N(t-'t")}, 
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giving the recurrence relation 

and so 

or, using (1), 

where 

N(t)=l +N(t-"t') -fL-1F(t), 

p 
N(t)=p+1- ~ e-f1.(t-h) eXPk fL(t-k"t'), ....••...• (5) 

k=O 

k 

eXPkt= ~ tijj! 
j=O 

.••.•••...•..••••••..• ~ ••••... ~: '(6) 

Formulae more suitable for numerical calculations are obtained'in termslof 
the variable 

~=fL(t-P"t')=fL~. . ..........•............•• (7) 

It is found that 

(8) 

and 
p 

Np(~)=p+1-e-" ~ bp_k~k/k! ................•• (9) 
k=O 

the coefficients ar and br being functions of fL"t' given by the expressions 

and 

A 
r 

o 
1 
2 
3 
4 

r 
ar = ~ (jfL"t')T-ie-i f1."'/(r-j)! 

i=O 

r 

. . . . . . . . . . • . .. (10) 

br = ~ as=br - 1 +ar • • ••••••••••••••••••••• (11) 
8=0 

TABLE 1 

SOHEME FOR THE OALOULATION OF a r AND br 

1 

1 ao bo=ao 
a 1 bl=bo+~ 

fl.'l" 1 a2 b2=b1 +aa . 
!(fl.'l") 2 2fl.'l" 1 a3 b3=b2+a~ 
t{fl.'l") 3 t{2fl.'l") 2 3fl.'l" 1 a4 b4 =b3 +a4 

A scheme for the calculation of ar and br is shown in Table 1. The entries. in. 
each column are the successive terms of e j f1.". a r is the sum of the proqucts 
of corresponding elements in row r and row A, The sums in (8) and (9)can be 
evaluated by successive multiplications' and additions: For example, when 
p is 3, 
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Emample 1 
What is the value of N(t) when t equals 450 (l.sec, if't' is 134 (l.sec and (l. is 

4070 events per second Y 
Here (l.'t' is 0·545380 and (l.t is 1· 831500, and so p is 3 and ~ is 0·195360. 

The values ar and br are calculated in Table 2. From formula (9) 

Np(~)=4-3 ·346455e-~=1·24741l. 

TABLE 2 
OALOULATION OF a r AND br FOR EXAMPLE 1 

A 1 0·579622 0·335962 0·194731 a r br 
r 

0 1 1 1 
1 1 0·579622 1·579622 
2 0·545380 1 0·652076 2·231698 
3 0·148720 1·090760 1 0·647386 2·879084 

Sum, S 1 1·694100 2·090760 1 Check, SXA 2·879085 

For values of p less than 2 the formulae for F(t) and N(t) are: 

p=O: (l.-lF(t)=e-~, N(t)=l-e-~, 

p=l: (l.-lF(t)=e-~(~+e-lLor), N(t)=2~e-~(1+~+e-lLor). 

For higher values of p it is best to use the scheme of Table 1. 

III. ASYMPTOTIC FORMULAE . 
;Equation (4) can be integrated to give 

N(t)=(l.t-(l.f t N(m)dm. 
t-or 

(12) 

If the asymptotic formula, valid for large t, is written 

n(t)=Y«(l.t+Iji), ........................ (13) 

Y and Iji can be found by substituting this expression in (12) and equating terms 
in t on each side and constant terms on each side. This gives 

(14) 

The asymptotic value f(t) of F(t) is of course equal to y. 

For Example 1, 
y 0,647090, ylji=0'062273, (l.t=1·831500, 

:and 
n(t) =1·185145 +0, 062273 =1· 247418. 
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This is very close to the exact value. Since the asymptotic values are 
easily calculated, it is of interest to determine by how much the asymptotic 
values differ from the exact values when !1-t is small. This question has been 
investigated by determining the maximum values of the fractional divergences 

I F(t)-J(t) IIF(t) and I N(t)-n(t) IIN(t) 

for values of t greater than P", P =1(1)4. The maximum divergences (expressed 
as percentages) of J(t) are shown in Table 3 and of n(t) in Table 4 for values of 
!1-" up to 2. From these tables it is possible to determine in any particular 
problem whether the asymptotic formula is sufficiently accurate. 

TABLE 3 

MAXIMUM PERCENTAGE DEVIATION OF ASYMPTOTIC VALUE itt) FROM 

EXACT VALUE F(t) WHEN t>PT 

P I 2 3 4 
fl.T 

0·0125 0·01 
0·025 0·03 
0·05 0·12 
0·075 0·27 0·01 
0·1 0·5 0·01 
0·15 1·0 0·04 
0·2 1·8 0·09 

0·3 3·8 0·24 
0·4 7 0·4 0·02 
0·5 10 0·7 0·05 0·01 
0·6 14 0·9 O'II 0·02 
0·7 18 1·0 0·21 0·04 
0·8 24 1·2 0·37 0·05 
0·9 29 1·8 0·6 0·07 

1·0 36 2'5 0·9 0·10 
1·2 51 4 1·6 0·27 
1·4 69 7 2·4 0·6 
1·6 91 II 3·1 1·0 
1·8 II6 15 3·6 1·7 
2·0 146 21 5 2·6 

For Example 1, !1-" is 0 ·55 and P is 3, and so n(t) should differ from N(t} 
by an amount not exceeding O· 01 per cent. 

It is shown in Section IV that the standard deviation is approximately equal 
to V(y3!1-t), and so the ratio of the constant term y~ in n(t) to the standard 
deviation is ~/v(Y!1-t), which will be considerably less than unity unless t is very 
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'small. This term can then often be omitted and n(t) taken as simply Y[Lt. 
'However, when the experiment consists of a large number of repeated determina­
tions over the time t it is advisable to retain the constant term to avoid bias. 

TABLE 4 

MAXIMUM PERCENTAGE DEVIATION OF ASYMPTOTIC VALUE n(t) FROM 

EXACT VALUE N(t) WHEN t»PT 

P 1 2 3 4 

!JoT 

0·025 0·01 
0·05 0·04 
0·075 0·08 
0·1 0·13 
0·15 0·25 
0·2 0·39 0·01 

0·3 0·7 0·01 
0·4 1·0 0·02 
0·5 1·2 0·04 0·01 
0·6 1·3 0·07 0·01 
0·7 1·4 0·12 0·02 
0·8 1·4 0·18 0·02 

1·0 1·4 0·35 0·03 0·01 
1·2 2·1 0·6 0·06 0·02 
1·4 2·8 0·8 0·10 0·04 
1·6 3·7 1·0 0·17 0·05 
1·8 4·6 1·2 0·26 0·06 
2·0 5·6 1·3 0·37 0·08 

IV. VARIANCE 

The variance of the observed number of counts is given by the formula 

p ~ P [2 
V(t)= k~O {2(p-k)+1}e- IL(t-k-r) eXPk [L(t-k-r)-(k~O e-lL(t-k-r) eXPk [L(t-k-r) 5 . 

............ (15) 

For purposes of numerical calculation it is convenient to introduce the variable ~ 
defined by equation (7), and to write 

where 
r r 

gr= ~ !s and !r= ~ (2j+1)e-jlL't'(j[L't')T-jj(r-j)! .... (17) 
8=0 j=O 

It will be observed that the terms of!r differ rr()m those of ar only by the factor 
,(2j +1), and so the scheme of Table 1 can be used to calculate!r and gr if the row.A. 
is replaced by a row F whose elements are (2j +1)e-jlL't'. 
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Table 5 shows how the calculations given in Table 2 for Example 1 may be 
extended to include the variance calculations. Using (16), with ~=0'195360, 

V3(~)=9 . 923019.e-"-(3 '346455e-,,)2=0 ,585318. 

For values of p less than 2 the formulae for V(t) are: 

p=O: e-"-e-2{>, 
p=l: e-{>(l +~ +3e-wr) -{e-(>(l +~ +e-1J:r)p. 

For higher values of p it is best to use the scheme of Table 5. 

TABLE 5 

EXTENSION OF TABLE 2 TO PERMIT THE CALCULATION OF VARIANCE 

F 1 1·738866 1·679810 1·363117 

A 1 0·579622 0·335962 0·194731 
r ar br ir 

0 1 1 1 1 
1 1 0·579622 1·579622 1·738866 
2 0·545380 1 0·652076 2·231698 2·628153 
3 0·148720 1·090760 1 0·647386 2·879084 3·453991 

Sum, S 1 1· 694lO0 2·090760 1 Check, 2·879085 Check, 
AxS FxS 

The asymptotic formula v(t) for the variance is 

where 

For Example 1, 

y=0'647090, y3=0·270953, X=0·328465, [Lt=1'831500, 

and so 
v(t)=O ,585249. 

gr 

1 
2·738866 
5·367019 
8·821010 

8·821009 

( 18) 

This is very close to the value given by the exact formula. Calculations 
have been made of the divergence of the asymptotic value v(t) from the exact 
value V(t) when [Lt is small. Since the variance is seldom required very accurately, 
a detailed table similar to Table 4 will not be given. It is found that the per­
centage difference between the two values is less than 10 per cent. for all t»'t' 
when [L't'<0'89, and for all t»2't' when [L't'<1·78. 

For small values of [Lt the standard deviation (the square root of the variance) 
will be of the same order as the expectation. However, if the average number 
of counts is taken over a large number k of intervals of duration t, the standard 
deviation will be divided by the factor Yk. 
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V. ESTIMATION OF (L 
In many investigations an e~perimental determination n of the counts in 

time t is made and an estimate of the parameter (L is required. The value (Lo 
derived from the asymptotic formulae (13) and (14) is 

v(t2 +2n"t"2) -(t-2n"t") 
(1.0 2t"t" -(2n -1)"t"2 ............ (20) 

Example 2 
For a counter with dead time 134 (Lsec the average number of counts in 

350 (Lsec is 1· 276. What is the value of (L ~ 
From (20), 

410·27-8·03 
(1.0= (93800 -27868) X 10_6=6100 ·8. 

Since p is 2 and (Lo"t" is 0 ·82, the error through use of the asymptotic formula is, 
from Table 4, less than 0·2 per cent. 

TABLE 6 
OALOULATION OF VALUE OF N(t) OORRESPONDING TO !-to (EXAMPLE 2) 

!Lo't"=0·817507, !-tot=2·135280, p=2, ~=0·500266 

0 0 0·441531 0·389900 
A 1 0·441531 0·194950 
,. 

0 1 
1 1 
2 0·817507 1 

N(t}=3-2·843718e-f>=1·275656 

b,. 

1 1 o 
0·441531 1·441531 0·441531 
0·555905 1·997436 0·750855 

As a check, the value of N(t) corresponding to (1.0 is calculated in Table 6. 
This differs from n by 0 . 000344~ which is negligible in the present case. However, 
if it is desired to obtain the value (L for which N(t) is exactly equal to n, the 
formula 

(L ~~t) =e-f>(~~ap_j~;/j! +(L"t"~cP_j~;/j!) .......... (21) 

may be used. The quantities cr are calculated in the same way as the quantities 
ar, with e-jlL'r replaced by je-ilL". In Table 6 the cr are calculated for Example 2 
by intermultiplying row 0 and row T. From (21), the change d(L required to 
increase N(t) by 0·000344 is given by 

and so 

and 

o ·000344=(d(L/(1.o)e-f>(~~ap_j~;fj! +(L"t"~cP_j~;/j!) 
= (d(L/(Lo)O ·606370(0 ·451200+0 ·794403), 

(L/(Lo=((1.o+d(L)/(1.o=1·000455, 

(L=6103·58. 
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.A recalculation of Table 6 with this new value of fL does in fact give· 
N(t)=1·276000. 

By differentiation of (20) it is found that 

dfLo=!~1+fLO't"+'t"/2Y(t2+2m2)} 
dn t( 1-(2n-1)'t"/2t ., ......•.••.• (22) 

and an estimate of the variance of fLo may be obtained from 

var fLo = (dfLo/dn) 2 var n. . ..................... (23) 

For Example 2, dfLo/dn is 8052. To obtain an estimate of var n, the 
approximate value fLo may be substituted in equations (18) and (19), leading 
to the value 0·467622. The standard deviation of fLo is then 5506. If the 
estimate n is the average of k determinations, this quantity should be divided 
by Yk. 

VI. SCALING CIRCUITS 

The probability Q(k+1,t) that k+1 or more counts occur in time t is given 
by the kth term of the expansion (5) of N(t), 

Q(k+1,t)=1-e-[.L(t-h) eXPk fL(t-k't"). . ....... (24) 

This differs from the corresponding formula for the Poisson distribution in that t 
is replaced by t-h. Molina (1942) in his Table II tabulates a sum P(c,a) which 
may be used to obtain Q(k,t), the relation being 

Q(k,t)=P(c=k; a=fLt-(k-1)fL't"). . ......... (25) 

The square root approximation to the significance limits of the Poisson distribu­
tion (Blom 1954) leads to the formula 

yk-y{fLt-(k-1)fL't"}=!X, ............ (26) 

where X is the value of the standardized normal variate corresponding to the· 
significance level Q. 

Since mechanical recorders have dead times 't"* of the order of 0·1 sec, it is· 
often necessary to interpose a scaling circuit between the counter and the recorder­
to reduce the number of counts reaching the recorder by a factor m. If more­
than m counts occur in the time 't"* -'t" during which the counter has become 
sensitive again following a recorded count while the recorder is still insensitive, 
there will be a counting loss in the recorder. It is customary to choose the, 
scaling factor m so that this loss can be neglected. This means choosing m so­
that Q(m,'t"* -'t") is negligible, using either Molina's table with 

Q(m,'t"*-'t")=P(m,Wt"*-mfL't"), .............. (27) 

or the square root approximation 

ym-Y(fL't"*-mfL't")=!X. . ............. (28) 

When m is small the estimate from (28) will be slightly higher than the exact, 
estimate from (27). 
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ExampZe 3 
If "C' is 134 !Lsec and !L does not exceed 4000 events per second, what scaling 

factor is required in front of a fast mechanical recorder of dead time 0·02 sec 
:if the scaling loss is to be less than 0·1 per cent. Y 

The 'Va-lues '!L"C'* and !L" are 80 :",nd 0 ·536. Molina's table gives 

P(66,44 ·6)=0 '0017, P(67,44'1)=0 '0008, 

:and so m, must. exce,ed .66 if the scaling losses are to be less than 0·1 per cent. 
For the square root approximation, X is 3·09 for the 0·1 per cent. level, while 

'\1'66 - '\1'44 ·6=1·45, '\1'67 - '\1'44 ·1=1· 54, '\1'68 - '\1'43 ·6=1· 64, 

which would imply that m must be greater than 67. 

VII. Two COUNTERS IN SERIES 

If the functions for the second counter are distinguished by an asterisk, 

F*(t)=F(t) - J:. F*(t-x)F(x-"C')dx, .......... (29) 

:and 

N*(t)=N(t) - J:* N*(t-x)F(x-"C')dx. . ......... (30) 

'The exact expressions for F*(t) and N*(t) will be quite complicated, but the 
:asymptotic forms can be found fairly easily. It will be observed first that, when 
"t'*<"C', N*(t) is equal to N(t) and the second counter has no effect on the counting 
:rate. This condition should clearly be aimed at iIi the design of the equipment . 

. To find the asymptotic formula n*(t) for N*(t) when "C'*>"C', 

n*(t)=Y*(!Lt+~*) and n(t)=Y(!Lt+~) 

:are substituted in (30); and terms in t equated and constant terms equated. 
~his· gives 

y*=y{l+N("C'*-"C')}-I, ~*=~+(y*fy) J:* x!J.F(x-"C')dx. .. (31) 

'The integral can be put in the form 

J:. m!J.F(x-"C')dx=iq(q+i)(l +!L"C')- :~: (!L"C'*+q-p)!L-IFp(~*), •. (32) 

-where 

.Example 4 
A Geiger counter with a dead time of 100 !Lsec is operating a recording 

·circuit whose dead time is 240 !Lsec. If the rate of arrival of the particles being 
. .counted is 1000 per second, find an expression for the average number of counts 
in time t. 
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In this case 

(1:t'=0'1, (J:t'*=0'24, q=2, ~*=0'04, 

N(-.* -'t')=Nl(~*)=O '131422, 
(1.-1Fo(~*) =0·960789, (1.-1F 1 (~*) =0·907789, 

,,(=0'909091, t!J=0·004545. 

"Rence, from (31) and (32), 

"(* =0 . 803494, t!J* = 0 ·004545 +0 . 022174,,(* fy =0 . 024143, 

153 

:and the average number n*(t) of particles counted in time t will be given by 

n*(t)=O • 803494(1000t +0 '024143). 

No detailed investigation of the deviations of the asymptotic values from 
the ~xact values has been made for the case of two counters in series, but it 
,seems probable that the percentage deviations are similar to those for a single 
counter of dead ti.ri1e 't'*. The variance of the number of counts is quite close to 
,,,(*8(1.t when (1.t is large; in fact, 

v*(t) =,,(*8(X(1.t +X*), (33) 
'where 

x={2,,(*(1 +t!J*) -1}fy*2 

}s very close to unity. The expression for the constant term X* is very 
,oomplicated. 
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