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Summary

The relationships between the elastic constants of homogeneous isotropic materials: *
in n dimension are derived and are shown to depend on n. The maximal value of the-
generalized Poisson’s ratio is 1/(n—1). The n-dimensional formulae reproduce the-
well-known three-dimensional relations for n=3, while n=2 produces the relations:
appropriate for monomolecular films. The correct degenération is shown for n=1.

I. INTRODUCTION

In the physical chemistry of monomolecular films it is customary to regard
the film (or monolayer) as a two-dimensional system since there is no bonding
“between molecules of the same kind in the third dimension. One accordingly
defines a surface bullk (compressional) modulus and a surface shear modulus having
the dimensions of surface traction (force per unit length) instead of traction
(force per unit area) (Langmuir and Schaefer 1937).+ This procedure prompts:
the development of a general n-dimensional elastic theory comprising both two-
and three-dimensiondl theory as special cases.

In this paper it is proposed to derive the general relationships connecting
the four elastic material constants of homogeneous isotropic bodies in # dimen-
sions. It will be shown that these relations are generally dependent on the:
number of dimensions considered.

II. THE FUNDAMENTAL ELASTIC MODULI IN # DIMENSIONS
An infinitesimal elastic deformation of a homogeneous isotropic body can
be resolved into a change in size (dilatation or contraction) and an independent.
change in shape (distortion). Homogeneous isotropic bodies therefore possess:
two fundamental elastic moduli, the bulk modulus relating to changes in size
and the shear modulus relating to changes in shape.

It follows from the independence of the two fundamental moduli that the-
general n-dimensional stress tensor 8;; i8 not proportional to the strain tensor €
These tensors may, however, be resolved into separately proportional component:
tensors such that

S =88y e, (1a)
62j=6zj —-6;;]', ................... e e (lb)p
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‘where sj; and e; may be called mean normal tensors while s; and e;; are termed
deviators.

We can now state

‘where K, and @, are the n-dimensional bulk modulus and shear modulus
Tespectively. v :

The dimensional factor in (2a) appears because K, is traditionally defined
a8 the proportionality constant between the mean normal stress s;;/n and the
(hyper)volumetric strain e;,

S n=K ;. ........... e (2a’)

'That (2a) and (2a’) are equivalent may be seen from the following development.

Since the deviatoric tensors relate to changes in shape only, the sums of
their principal components vanish. Using the summation convention

SH=0, i (3a)

=0y e e (3b)
and, from (1a) and (1b)

SHT=84iy ceeecenienieiiiiian (4a)

Cii==Bije oo (4b)

The mean normal tensors relate to changes in size only. Clearly their non-
principal components must vanish while their principal components must be
equal. It then follows from (4a) and (4b) that

SiH=8ulM . @iy e (5a)
€i=0un Ay i (5b)

where d;; is the unit tensor. Substituting (5a) and (5b) into (2a) then leads
to (2a’).

The numerical factor 2 in (2b) arises because of the traditional definition
of shear which is twice the corresponding shear component of the strain tensor.

III. THE RELATIONSHIPS BETWEEN THE BLASTIC CONSTANTS

To derive the general relationships between K,, G, the n-dimensional
extensional (Young’s) modulus Y,, and Poisson’s ratio p., we consider a pure tensile
stress in the nth dimension. For such a stress all components of the stress
tensor vanish except s,,. All non-principal components of the strain tensor
also vanish since a pure tensile stress produces no distortion. The extension
é,, in the nth dimension is accompanied by (n—1) contractions —pu,e,, in the
remaining dimensions. Consequently

8 i=8pny ceeeceeeninaan e

€;; =€, —(M—1) )€ o (6b)
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Substituting into (5a) and (5b) and introducing Y, from Hooke’s law, the:
mean normal tensors become - )

SGH=8pnT e @iy v i - (7a)
ep=[1—(n—=1)p,18,, /Y, . dy. ............ (7b)

The non-principal components of the deviators also vanish since there is.
no distortion. The principal components can be expressed by the following:
set of equations

S11=%2=" « .=S-1)m—-1=0—8;/My ... .. (8a)
S =S8, =8Ny e (8a’)
L1=€2=" + . =C—1)n—1)=—nlpy —Cii[ Ty  « e nr. (8b)
’ O =Cpy—Ci;[Ty et (8b")

obtained by subtracting the principal components of the mean normal tensors:‘
from those of the total tensors according to (1a) and (1b).

Substituting for s;; from (6a) and for e,; from (6b) and using Hooke’s law

S11=822=" + =8 -1)—1)=—Sua/Ty  + .. (9a)
Sun=(M—1)8,, /My ... i (9a’)
fi==. . .=6u_w-1=—1+)5, /0¥, .... (9b)
' o= —1)1+1,)8,,/n T, o (9b")

Defining a tensor g,; such that

Ju=92=- . -=fJu-n0-n=—1, ... .. ... (10)
e L (10"

while all non-principal components vanish, the deviatoric tensors may be written

SH=8unlM e Jijy v o (11a)
=148/ Y . Gije o (11b)

Now from (2a), (7a), and (7b)
Y

Kn:m], ............... v. (12)
and from (2b), (11a), and (11b)
Y,
G, B Fm) e (13)
From (12) and (13)
V 2n2K, G,
Yn=m, e (14)
nK,,—2G,,

pn_mfl. ’.:. .’ ............. (
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IV. THE MAXIMAL VALUE OF PoIssoN’s RATIO
Writing (15) in the form

WK, [1—(n—1),1=2G, (14 L,)y  cvvvnneen. (15')

it is apparent that p, cannot be less than —1 and.cannot exceed 1/(n—1). The
maximal value of Poisson’s ratio, p,max,), i8 thus seen to depend on x.

The identical result can also be obtained directly by the following con-
sideration : let an m-dimensional hypercube of unit length be extended by a
small amount A in one dimension. The change AH in the hypervolume then is

AH=1+NA—pg)@D—1. ..., (16)

Expanding (1—p,A)®»~D by the binomial theorem and neglecting all higher
powers of A ‘
AH=14N[1—@—1)gA]—1. «eevernennn. (17)

If the hypercube is incompressible (K,= o), AH=0, and again neglecting
A2, , .
p.n(max,)zll(n ——1). ................ (18)

Either from (13) by substituting p,=1/(n ;1), or from (14) by substituting
K,= o0, we obtain the general relationships between the extensional and shear
moduli of incompressible bodies (for n>1) as

y 2n

”= m—_:f)Gn. .................... ( 1 9)

V. SPECIAL CASES
v For n=3, (12)—(15) and (18) and (19) reproduce the well-known three-
dimensional relationships. The two-dimensional relations can be obtained
simply by substituting n=2 and are seen to be different from the relations in
three dimensions. Forn=1, (12) and (14) correctly show that the bulk modulus
of a “ one-dimensional body ” degenerates into the extensional modulus

Ky=Y1 oeieiiieiaiiaaiaaannns (20)

This modulus is the only elastic constant a ‘ one-dimensional body ” can
have. Neither G, nor p, have any meaning for n=1. In fact, expressing G,
and y, in terms of K, and Y, from (14) and (12) and using identity (20) we
obtain, for n=1,

_ nmn—1)K, _
Gl_‘2(n—1)(n+1)_0/0’ .............. (21)
n—1
p.1=—i=0/0. .................. cen (22)





