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Summary 

The calculation of the galvanomagnetic, thermomagnetic, and thermoelectric 
effects in those isotropic metals and semiconductors which can be represented by the 
two-band model is simplified and extended to cases not previously treated. General 
expressions are obtained for effects involving time-independent electric fields, magnetic 
fields, and thermal gradients. Analytic formulae are given for the isothermal galvano­
magnetic effects when a high frequency electric field is applied together with a time­
independent magnetic field. 

Throughout, emphasis is placed on coefficients which are experimentally or 
theoretically important. The paper concludes with an appendix on the estimation 
of parameters occurring in the two-band model of metals and semiconductors. 

1. INTRODUCTION 

The exact calculation of the galvanomagnetic, thermomagnetic, and thermo­
electric effects in isotropic metals or semiconductors is extremely difficult and 
has not. yet been attempted. Approximate treatments have been developed 
by many authors (e.g. Wilson 1953, Oh. 8; Donovan 1954; Madelung 1954), 
but even these are complicated. Our object in the present paper is to show how 
these approximate calculations may be simplified and extended. 

The two main stages in all these approximate treatments are: 

(1) the derivation from the Boltzmann transport equation of expressions 
for the electric and thermal current densities in terms of the applied electric 
fields, magnetic fields, and thermal gradients; 

(2) the calculation from these equations of formulae for the above effects. 

Due to the complex structure of real metals and semiconductors it is necessary 
to base stage (1) of the calculations on some simplified theoretical model. In 
past work, the free-electron model and the two-band model have been the two 
most frequently employed. Since the two-band model (Wilson 1953, pp. 43, 
198-9) is the most general one for which the calculations can be carried to 
completion, we adopt it in the present discussion. 

For the most commonly studied effects which are either one-dimensional 
(e.g. conductivities) or two-dimensional (e.g. Hall effect), two components of 
each current density must be specified. In the past, one equation has been ~>iven 
for each component (cf. Wilson 1953, p. 219; Donovan 1954; Madelung 1954). 
Recently, however, Dingle (1956) has shown that, if two imaginaries are used 
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instead of one, it is possible to describe the two electric current components with 
only one equation. This work, which suggested the present investigation, 
indicated that a simplification could probably be effected in the calculation of 
the isothermal galvanomagnetic effects. 

Dingle based his treatment on the one-band (free-electron) model and 
assumed that harmonically varying electric and time-independent magnetic 
fields were applied. In order to simplify the calculation of the galvanomagnetic, . 
thermomagnetic, and thermoelectric effects for the isotropic two-band model, 
both the electric and thermal current densities are required for the case when 
time-independent thermal gradients also exist. To satisfy these requirements 
it is necessary to extend Dingle's work. This is done in Section II, where two 
equations (2.9. 2.10) are obtained for the current densities to replace the four 
customarily introduced in earlier work. 

Previously, stage (2) of the calculations has been attempted separately for: 

(a) steady electric field effects in (i) metals (e.g. Wilson 1953, Ch. 8) and 
(ii) semiconductors (e.g. Madelung, loco cit.) ; 

(b) high frequency electric field effects in (i) metals (Donovan, loco cit.; 
Donovan and Sondheimer 1953), and (ii) semiconductors (left untreated). 

In the present discussion, we still consider (a) and (b) separately (Sections 
III, IV) as the effects in each case are of basically different type (cf. Section 
IV (b)). .As most of the important effects in (a) have been calculated previously, 
our main object here is to simplify these calculations. However, in (b) past 
work has been confined to metals, and, moreover, the results obtained for the 

. surface resistance and magnetoresistance have only been extracted nurherically 
(Donovan, loco cit.). Here, our main aims are to extend the calculations to 
include semiconductors, and to obtain analytic expressions for the principal 
galvanomagnetic effects. 

For both (a) and (b), most previous authors appear to have been primarily 
interested in either metals or semiconductors, not both, and consequently their 
results apply to either the one or the other. In the present paper, we derive 
(Sections III (0), IV (b)) general formulae which may easily be specialized to 
either case. 

II. GENERAL EQUATIONS FOR THE ELECTRIC AND THERMAL CURRENT DENSITIES 

.As indicated in the introduction we base this first stage of the calculations 
on the metal or semiconductor model in which there are two conduction bands 
of standard form (Wilson 1953, pp. 43, 198-9). The band of greater energy is 
assumed to be normal (Le. the charge carriers are negative) and that of lesser 
energy inverted (positive charge carriers). We make the usual assumption 
that these bands are independent, and therefore we may consider each one 
separately. 

(a) Normal Band 

The following derivation of the formulae for the current densities broadly 
follows that given by Wilson (1953, p. 210), but with modifications suggested 
by Dingle's paper (loc. cit.). We assume that a "universal" time of relaxation 
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can be defined, and therefore in the presence of harmonically varying electri? 
fields, and time-independent magnetic fields and thermal gradients, the Boltzm.ann 
transport equation may be written (in Gaussian units) : 

(-27te/h)(E+c-1v /\ H) . gradk fn +v ·gradrfn= -(fn -fOn)[(1 +i(U'!n)/'n] , 

............ (2.1) 

where i2 = -1, e is the numerical electronic charge, v, r, and k are respectively 
the velocity, position vector, and wave vector of the electrons, '!n is the relaxation 
time, fn and f On are the equilibrium distribution functions of the electrons in the 
presence and absence respectively of applied fields, E is the electric field which 
is proportional to eicut, and H is the steady magnetic field. We also make the 
usual assumption that fOn is the Fermi-Dirac function {exp [(En-~n)/kT] +1}-1. 

To terms linear in the electric fields and thermal gradients, this equation 
has the solution 

where En=f/i,21 k 12/mn' mn being the effective mass of the electrons, and 
cn=(c1n, c2n , c3n )· 

The analysis then proceeds as in Wilson (loc. cit.), and for the special case 
of fields given by: 

E=(Ex,Ey, 0), 
H=(O, 0, H), 

Electric field 
Magnetic field 
Thermal gradient K=(Kx, K y, 0) = (oT/ox, oT/oy, 0), 

we obtain (dropping the subscript n)* 

} .. (2.2) 

where Q=( -e)H/mc is the circular frequency of precessional motion of an 
electron. 

Now, if we define C=c1 +jc2,· E=Ex+jEy, and K=Kx+jKy, with j2=-1 
(but ij *- -1), equations (2.2) reduce to . 

where 

* It is implicitly assumed that the Fermi energy ~ is a function of temperature only. i.e. that 
the substance is homogeneous. 
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(i) Electric Current Density.-The electric current density J=(Jx, J y , 0) 
has components: 

We introduce J=Jx+jJy , and obtain 

that is, 

J = -M tJoo "t"n(eE+~nK) E 3/2 
n mn 1+(' ... ) n o lC,)+J~.In "t"n 

...... (2.4) 

where M =16V2rce/3h3• 

(ii) Thermal Current Density.-The thermal current density W=(Wx,Wy,O) 
has components : 

where E' =An + E and An is the energy of the base of the normal band when the 
energy at the metal or se,miconductor surface is defined to be zero. In the past, 
the energy zero has generally been taken either at the bottom of the normal 
band (e.g. Wilson 1953, p. 219) or as the mean of the energies of the bottom of 
the normal and the top of the inverted bands (e.g. Madelung 1954). Here, 
we have defined the energy zero as above, since all experimental measurements 
are made at the metal or semiconductor surface. However, the choice of energy 
zero only affects the results when both the electric current density and the 
thermal gradient are simultaneously non-zero. 

From (2.3) and (2.5) we find that 

W = W +'W = _ A nJ + Mm~ roo "t"n(eE+~nK) Er:!2 afondE 
n x J Yen e ~ 0 l+(icu+jOn)"t"n aEn n' 

.. (2.6) 

(b) Inverted Band 
The current densities for the inverted band are derived by a method similar 

to that in Section II (a) (see Wilson 1953, p. 211). We find 

where Op=eH/mpc and Ap is the energy of the top of the inverted band. 
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(c) Total Ourrent Densities 
.As we have assumed that the two bands are independent, the total current 

densities are the sums of the current densities for each band. We therefore 
obtain from (2.4) and (2.7) 

J=J +J = -M [00 [m~'t'n(e:E+~nK)E3/2 of On dE + m;'t'p(e:E-~pK)E3/2 ofoPdE] 
n p J 0 l+(iw+jQn)'t'n n oEn n l+(iw+jQp)'t'p P oEp p' 

. . . . . . . . . . .. (2.9) 
and from (2.6) and (2.8) 

W= -xLK+Wn+Wp= -xLK-e:-1(AnJn+ApJp) 

+~foo [m~'t'n(e:E+~nK)E5/2 of On dE - m;'t'p(e:'E-~pK)E5/2 OfoPdEJ 
e: 0 l+(iw+jQn)'t'n n oEn n l+(iw+jQp)'t'p P oEp P' 

............ (2.10) 
where XL is the thermal conductivity of the lattice. 

We are now in a position to commence the second stage of the calculations, 
which, as indicated in the introduction, must be carried out separately for the 
two special cases of steady, and high frequency, electric fields. .As the time­
independent case is the more important it is considered first. 

III. STEADY ELECTRIC FIELD EFFECTS 

(a) Introduction 
.All the steady electric field effects are defined in terms of the components 

of the fields and the current densities. Since the x and y components of the 
current densities are the real and imaginary parts respectively of (2.9) and (2.10), 
it is now advisable to rationalize these equations (with w=O). This is a simple 
process which yields 

J= [<PEL(Q) +jH<PET(Q)] E + [<PKL(Q) +jH<PKT(Q)] K, 

W = ['Y EL(Q) +jH'Y ET(Q)] E + ['Y KL(Q) +jH'Y KT(Q)] K, 

where 

<PET(Q)=e:2c-1[m;lI21n(Qn) -m;1121p(Qp)] , ..................... . 

<PKL(Q)=T[1lln(Qn)o~(~) -1l1p(Qp)o~(¥)] +~[1~2n(Qn)-112p(Qp)], 

<pKT(Q)=e:c-1{ T[ m;l121n(Qn)o~(~) +m;l121p(Qp)o~(¥) ] 

+T-1[m;l122n(Qn) +m;IJ22P(Qp)]} , ............. . 

'Y EL(Q) = -e:-1[An<PELn(Qn) +Ap<PELP(Qp)] - [I 12n(Qn) -I 12p(Qp)] , 

(3.1) 

(3.2) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

'Y ET(Q) = -e:-1[An<PETn(Qn) +Ap<PETP(Qp)] -{ e:c-1[m;lI22n (Qn) +m;lI22P(Qp)]}, 

............ (3.8) 
G 
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'YKL(Q) = -XL -e:-1[An<PKLn(Qn) +Ap<PKLP(Qp)] 

-e:-1{ T[I12n(Qn)a~(¥) +I12p(Qp)a~(¥)] +~[I13n(Qn)+I13P(Qp)] 5' 
. . . . . . . . . . .. (3.9) 

'Y KT(Q)= -e:-1[An<PKTn(Qn) +Ap<PKTP(Qp)] -0-1{ T [m;;'-1122n(Qn)a~(¥) 

-m;1J22p(Qp)a~(¥)] +T-l[m;;,-1123n(Qn) -m;1123P(Qp)]} (3.10) 

and, for instance, 

In order to express the <P's and 'Y's entirely in terms of elementary or 
tabulated functions of the parameters, it is only necessary to evaluate the integral 
Lst(x). This can be readily achieved in the following special cases (see 
Appendix I) : 

(1) The electrons (or holes) form a strongly degenerate system-at normal 
temperatures this applies to all metals and semi-metals, and to some semi­
conductors. 

(2) Thc electrons (or holes) form a weakly degenerate system-most semi­
conductors are in this group. For the more important scattering mechanisms 
(thermal, neutral-impurity, and ionic-impurity) the above integral can be 
expressed in terms of functions tabulated by Johnson and Whitesell (1953), 
Dingle, Arndt, and Roy (1957a, 1957b, 19570), and Beer, Armstrong, and 
Greenberg (1957). 

We are now in a position to derive formulae for the coefficients which 
describe the various steady electric field effects. In general, previous authors 
(e.g. Wilson 1953, Ch. 8; Bass and Tsidil'kovskii 1956; Beer, Armstrong, and 
Greenberg 1957) have expressed these coefficients directly in terms of the metal 
or semiconductor parameters, i.e. as functions of the expressions equivalent to 
equations (3.3)-(3.10). In the present paper we give all our formulae in terms 
of the <P's and 'Y's (cf. Madelung 1954). The advantages of introducing these 
eight functions are: 

(a) The calculations are simplified and condensed. 
(b) The final expressions obtained for the coefficients are simpler, and hence 

any relationships between the various effects are more easily deduced. 

(c) Once the values of these functions are determined, either theoretically 
or experimentally, any essentially one- or two-dimensional coefficient may be 
readily evaluated. Possible methods of measuring these functions experi­
mentally are indicated in the subsequent work (Section III (e)). 

(d) From <PEL' <PEn 'Y EL' and 'YEn the values of the principal two-band 
model metal and semiconductor parameters may be estimated (see Appendix I). 
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For metals, the parameters .An' .Ap, 't'n' 't'p, mn, mp, ~n' ~p, and hence the number 
of free electrons (n) and holes (p) per unit volume may be determined. As far 
as the author can ascertain, no method has previously been given for the evalua­
tion of all the above metal parameters fr9m measurements of the galvano-' 
magnetic, thermomagnetic, and thermoelectric effects alone. Moreover, earlier 
authors have made simplifying assumptions (e.g. n=p, 't'n='t'p; cf. Wilson 
(1953, p. 217)), thus reducing the value of the two-band model. 

It is interesting to note that, as all the essentially one- or two-dimensional 
effects can be expressed in terms of these eight functions, only a maximum of 
eight of these effects may be considered to be independent. It can easily be 
shown that this applies to anisotropic as well as to isotropic materials. 

(b ) Notation 
As the experimental conditions under which each effect is measured may vary . 

considerably, it is an advantage to adopt some standardnqtation to indicate 
the combination under consideration. In the present paper we indicate the 
conditions by the superscripts in Table 1. 

TABLE 1 
NOTATION EMPLOYED FOR INDICATING EXPERIlIIENTAL 

CONDITIONS 

Superscript Condition 

E E,,=O 

e Ey=O 
J J,,=O 
j Jy=O 
K K,,=O 

k Ky=O 
W W,,=O 
w Wy=O 
0 H =0 

The (1) direction is taken as longitudinal and the y direction as transverse. 
For instance, the isothermal electrical conductivity for non-zero magnetic 

fields and zero transverse electric current is denoted by crjKk• 

(c) General Formulae* for the Steady Electric Field Effects 
Since there are many coefficients describing the various effects, it is impossible 

to include them all in a paper of reasonable length. We therefore consider only 
those which satisfy one or other of the following criteria:' 

(a) the coefficient is experimentally important, or 
(b) it is an extremely simple function of the cI>'s and 'F's, and is experi­

mentally measurable. 

* Unless stated otherwise, the formulae in this subsection are derived from equations 
(3.1) and/or (3.2). 

GG 
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The reason for employing (a) is obvious. Condition (b) is adopted since the 
coefficients satisfying it provide the simplest method of determining the «D's 
and 'Y's, and hence of evaluating the parameters of a metal or semiconductor 
[Section III (a) (d)J. 

(i) Conductivities.-(1) Electrical conductivity.-The electrical conductivity 
is defined by a = Jx/Ex' Only the isothermal conductivities are treated here 
since they are the more important experimentally and also the simpler 
theoretically. 

The principal cases are: 

Zero Magnetic Field 
aKO=«DEL(O), .••••••.••.•••.•. (3.11) 

Non-zero Magnetic Field 

aeKk=«DEL(O) . ••..•...•..•••.... (3.12) 

The measurement of this quantity immediately yields experimental values for 
the function «DELl the exact determination of which is essential for reliable 
parameter estimation (see Appendix I). This conductivity is also required 
in the derivation of the Corbino magnetoresistance (Section III (c) (ii) (1». 

(b) Jq=O 

Although it is not particularly important, this conductivity is included 
here since it is required for the calculation of the normal magnetoresistance. 

We find that 

(2) Thermal conductivity. ---'- The thermal conductivity is defined by 
x= - Wx/Kx' The usual experimental conditions are J=O and Wy=O, but in 
this case the formulae obtained for x contaiu. products of the «D's and 'Y's. For 
E=O and Ky=O, the expressions derived for x are much simpler, and therefore 
they would be expected to yield more precise values for the «D's and 'F's. How­
ever, these latter conditions are more difficult to apply in practice, and little, 
if any, work has been carried out for them. 

We can readily deduce the following equations for these two cases: 

Zero Magnetic Field 

(a) 

(b) 

. xEO = -'Y KL(O), ••••••.••................... 

xJ o= -'Y KL(O) +['Y EL(O)«DKL(O)/<PEL(O)]. 

Non-zero Magnetic Field 

(a) 

The measurement of xEek would therefore yield values of 'Y KL(O). 

(3.14) 

(3.15) 

(3.16) 
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(b) 
<I>EL -H<I>ET <I>KL -H<I>KT 

H<I>ET <I>EL H<I>KT <I>KL 

'YEL -H'YET 'YKL -H'YKT 

H'YET 'YEL H'YKT 'Y:KL 
x/;w= - (3.17) 

<I>EL -lJ<I>ET -H<I>KT 

H<I>ET <I>EL <I>KL 

H'YET 'YEL 'YKL 

(ii) Galvanomagnetio Effeets.-(l) Oorbino magnetoresistanoe.-The Corbino 
magnetoresistive effect is described by the coefficient Mpe=(p"_pO)/po, where p 
is the resistivity. For the more important isothermal conditions we obtain 
from (3.11) and (3.12) 

M:ek=[<I>EL(O)/<I>EL(O)] -1 ............. (3.18) 

(2) Normal magnetoresistanoe.-The normal magnetoresistance M~k is 
defined by M:l=(piKk_pKO)/pKO. Equations (3.11) and (3.13) yield 

M K.k= _ H 2<I>j.T(O) +<I>EL(O)[<I>EL(O) -<I>EL(O)] 
p' 2 2 •••• (3.19) 

J <I>EL(O) +H2<I>ET(O) 

(3) Hall coefficient.-The Hall coefficient is R=Ey/HJ,,; Jy=O. For the 
more common isothermal conditions we easily obtain 

RKk= _ <I>ET(O) 
2 . 2 •• •••••••• , (3.20) 

<I>EL(O) +H2<I>ET(O) 

A simpler closely related effect is defined by 

S=Ey/HE,,; (Jy=O) =(tan f)/H, 

where f) is the Hall angle. Under isothermal conditions we then find that 

SKk= -<I>ET(O)/<I>EL(O). • ...•......•.. ,(3.21) 

As <I>EL(O)=cr"Kk, this coefficient gives experimental values for <I>ET(O), a function 
which is extremely important for the estimation of parameters (see Appendix I). 

(4) Ettingshausen ooeffioient.-The Ettingshausen coefficient AE is defined 
by AE= -Ky/HJ,,; Wy=O. The usual experimental conditions are J y= W,,=O, 
in which case H<I> <I> H<I> 

ET EL KT 

'YEL -H'YET 'YKL 

Aiw_ 
H'YET 'YEL H'YKT 

E -- .. (3.22) 
H <I>EL -H<I>ET <I>KL -H<I>KT 

H<I>ET <I>EL H<I>KT' <I>KL 

'YEL, -H'YET 'YKL -H'YKT 

H'YET 'YEL H'YKT 'YKL 
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A more useful coefficient, closely related to the above, is B E= -Ky/HE,,; Wy=O. 
For the conditions Ey=Kx=O, it reduces to the extremely simple form 

B'EK =Yfi' ET(O)/Yfi' KL(O). •••••••••••••• (3.23) 

Unfortunately, however, it possesses the great practical disadvantage of requiring 
mixed thermal conditions. If instead of K,,=O, we apply the restriction W,,=O, 
the coefficient so defined is more easily obtained experimentally. In this case 

B eW Yfi' nYfi' ET-Yfi' ELYfi' KT 3 
E = 2 2' ••••••••••.••. ( .24) 

Yfi' KL + H2Yfi' KT 

Equation (3.24) provides an experimental method for determining the function 
IlJ" ETl the exact evaluation of which is important for estimating both metal and 
:semiconductor parameters. 

(iii) Thermomagnetic Effects.-(l) Magneto thermal conductivity.-This effect 
is described by the coefficient M",=(x-xO)/xo, which is usually measured subject 
to the restriction J=O. However, in this case, M", involves fourth order deter­
minants (see Section III (c) (i) (2)), and therefore it has few theoretical applica­
tions. For zero electric field conditions, M", is much simpler. We find 

(3.25) 

(3.26) 

(2) Righi-Leduc coefficient.-The Righi-Leduc coefficient is BRL=Ky/HK,,; 
Wy=O, and is therefore the thermomagnetic analogue of S (Section III (c) (ii) (3)). 
It is generally measured under conditions of zero electric current, but theoretically, 
zero electric field conditions possess a distinct advantage. However, experi­
mentally, the reverse is true, and it is doubtful if B RL has yet been determined 
for these latter conditions. We obtain 

BifL= -Yfi' KT(O)/Yfi' n(O), .•............ (3.27) 

Measurements of this quantity would therefore yield values of Yfi' KT(O). 

IPEL -HIPET IPn 

HIPET IPEL HIPKT 

BJj 
HYfi'ET Yfi'EL HYfi' KT 

RL=- .. (3.28) 
H IPEL -HIPET -HIPKT 

HIPET IPEL IPKL 

HYfi'ET Yfi'EL Yfi'KL 

(3) Ettingshausen-Nernst coefficient. - This coefficient is defined by 
BEN=-Ey/HK,,; Jy=O, and is thus the thermomagnetic analogue of BE 
(Section III (c) (ii) (4)). In practice, BEN is usually determined subject to the 
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restrictions Jx=O and either Ky=O or Wy=O. However, theoretically, the 
simplest and therefore the most useful conditions are Ex=O and Ky=O. We find 

B~1=<I>KT(Q)/<I>EL(Q), •••••••••••••••• (3.29) 

A measurement of this quantity would thus determine <l>KT(Q). 

B~~= <l>EL~KT-<I>E~<I>KL. • ••••••••••••• (3.30) 
<l>EL + H2<1>ET 

As values of <l>EM <l>En and <l>KL are obtainable, equation (3.30) provides an 
alternative method of evaluating <l>KT(Q). 

(iv) Thermoelectric Effects.-In the present discussion we consider only those 
effects which apply to a single metal or semiconductor. Thus, for example, 
the Peltier effect is not treated. 

(1) Thomson coefficient.-The Thomson coefficient [1. is defined as the 
coefficient of -KxJx in the equation Q=E.J -div W, which gives the rate of 
energy production per unit volume of a substance in which an electric field, 
electric current, and thermal current are present. For zero magnetic fields 
we readily obtain 

[1.0= [<I>KL(O)/<I>EL(O)] +(a/aT)['F EL(O)/<I>EL(O)]. .. •. (3.31) 

It is also easy to ~alculate [1. for a non-zero magnetic field, but as this case does 
not appear to be of any experimental or theoretical importance it is not treated 
here. 

(2) Other coefficients.-Other thermoelectric effects which may become 
important due to their theoretical simplicity are as follows: 

(a)* 

A determination of this quantity therefore enables <l>KL to be obtained. 

(b) n"/V= Wx/Ex; Kx=O, (Ey=Ky=O)='F EL(Q). (3.33) 

(c) n11.=Kx/Ex; Wx=O, (Ey=Ky=O)= -'FEL/'FKL. (3.34) 

A measurement of either (b) or (c) would thus yield the value of 'FEL(Q). The 
evaluation of this function is important for estimating both metal and semi­
conductor parameters (see ·Appendix I). Unfortunately, neither of the last two 
effects appears to have been investigated experimentally up to the present time. 

IV. HIGH FREQUENCY ELECTRIC FIELD EFFECTS 

(a) Introduction 
For alternating electric fields only the isothermal galvanomagnetic effects. 

are experimentally important. Under isothermal conditions the equation 
(2.9) for the electric current density becomes 

M fro [ m~TnE~2 ajon m!TpE;/2 aj op ] 4 1 
J=- c: 0 l+(icu+jQn)Tn aEndEn+1+(icu+jQp)Tp aEpdEp E ... ( . ) 

* The name "Beer-Willardson" effect has been suggested for this by Armstrong and 
Greenberg (Beer, Armstrong, and Greenberg 1957). 
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.As in Section III, it is now desirable to separate the real and imaginary parts of 
this expression. By substituting 

2 

in (4.1) we can readily derive the following rationalized equation 

where 

IIELR(Q,CU) = ie[1 lln(CU +Qn) +1lln(cu -Qn) +1 llP(CU +Qp) +1 IIp(CU -Qp)] , 

· .... " ..... (4.3) 

II EL1 (Q,cu) = -ie{cu[121n(CU +Qn) +121n(CU -Qn) +121P (cu +Qp) +121P(cu -Qp)] 

+Qn[121n( CU +Qn) - 121n( CU -Qn)] +Qp[121p( CU +Qp) - 121P( CU -Qp)]}, 

IIETR(Q,CU) = ie2c-1{m;1[121n( cu +Qn) +121n( CU -Qn)] 

_m;l [121P( cu +Qp) + 121P( cu -Qp)] 

.... : ....... (4.4) 

- (ccuJeH) [121n( CU +Qn) -121n( CU -Qn) +121P( CU +Qp) - 121P( CU -Qp)]}, 

· . . . . . . . . . .. (4;5) 

IIET1(Q,cu) = -ieH-l[1lln(cu +Qn) -1lln(CU -Qn) +1llP(cu +Qp) -I IIp(CU -Qp)] , 

· ........... (4.6) 
and, as in Section III, 

(b) General Formulae for the High Frequency Electric Field Effects 

Before attempting to derive any formulae we must first distinguish between 
two basically different types of effects. 

Point Effects.-These are defined in terms of the currents and fields at 
a particular point in the metal or semiconductor, and are therefore independent 
of the geometry of the specimen. In general, they are not directly measurable, 
i.e. the fields and currents appearing in the definition cannot be directly deter­
mined. The conductivity is an example of a point effect. 

Surface Effects.-In these it is necessary to take into account the variation 
of the electric field with distance from the surface of the sample, and therefore 
the geometry of the metal or semiconductor is important. In general, they are 
directly measurable. Examples of surface effects are the surface impedance 
and the surface magnetoresistance. 
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(i) Point Effects.-These effects are defined in a similar manner to those 
in the steady electric field case, and the expressions obtained for them are 
formally the same, but with IIELR+iIIELI replacing <DELI and IIETR+iIIETI 
replacing <D ET. 

(1) Electrical conductivity.-AIl in Section III (c) (i) (1), the electrical con­
ductivity is defined by a = Jx/Ex· The only experimental conditions of any 
importance are: 

Zero Magnetic Field 

From (4.2) we obtain 

aO= [IIiLR(O,w) + IIiLI(O,Cil)] i exp {i tan-l[IIELI(O,Cil)/IIELR(O,Cil}]} . 
.•... ....... (4.7) 

Non-zero Magnetic Field 

(a) Ey=O 
a6 = [IIiLR(Q,Cil) + IIiLI(Q,Cil)]i exp {i tan-l [IIELI(Q,Cil)/IIELR(Q, Cil)]}, 

. . . • . . • . . . .. (4.8) 
(b) Jy=O 

a;=a6+ H2[~iTR+~iTI] exp {i[2 tan-1(IIET1) "":'tan-1( IIELI)]}. 
[IIELR+IIELI]i IIETR IIELR 

............ (4.9) 

(ii) Surface Effects.-The following calculations do not take account of the 
anomalous skin effect (Reuter and Sondheimer 1948). The displacement current 
is included, although for metals it is only significant when the anomalous terms 
in the skin effect should also be taken into account. It is considered here since 
it may be required for semiconductors, due to their lower conductivity, and also 
because it is as easy to include as to exclude. 

It is assumed that the metal or semiconductor specimen occupies the volume 
defined by z>O. The magnetic field is then in the direction of the outward 
normal from the surface, and the electric fields are parallel to the surface (see 
Section II). 

As indicated in Section IV (b), the electric field is a function of position. 
With the above assumptions this function satisfies Maxwell's equations, which 
yield . 

where fL is the magnetic permeability and x is the dielectric constant. AIl it 
has been implicitly assumed in Section II that fL=l, we must also make this 
assumption here, thus excluding ferromagnetic materials from consideration. 

On combining (4.2) and (4.10), and remembering that oE/Ot=iCilE (see 
Section II (a» we obtain 

E"=(A+jHB)E, ........... ! •••• (4.11) 
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where 
A =0C-2{ -0X +47ti[IIELR(Q,0) +iIIELI(Q,0)]}, .... (4.12, 

B =47tCuc-2i[IIETR(Q,w) +iIIETI(Q,0)]. . ........... (4.13) 

To simplify later work we define here 

( 4.14) 

Under the boundary condition that E(z) is always finite, (4.11) possesseS'· 
the solution 

Ex(z)=aexp (-A1z)+bexp (-A2Z), } ...... (4.16) 
Ey(z) = -ja exp (-AIZ) +jb exp (-A#), 

where a=t[Ex(O)+jEy(O)], b=t[Ex(O)-jEy(O)], Al=(A+jHB)!, A2=(A-jHB)i,. 
and - t7t <arg AHA2 <; t7t, i.e. the real parts of both Al and A2 are positive. Since 
we have taken E oceiOlt (Section II) and we require the solution to represent 
waves travelling in the positive z direction, the imaginary parts of Al and A2" 
must also be positive, i.e. 0 <;arg AHA2 <; 7t. The final restriction on arg AHA2' 
is therefore 0 <;arg Al,A2 <; t7t. 

We are now in a position to calculate the various surface effects. 

(1) Surface impedance.-The surface impedance is defined by 

(4.17) 

For non-zero magnetic fields, one more condition is necessary. The most 

convenient restrictions are either, (i) Ey(O)=O, or (ii) .r: Jy(z)dz=O, i.e. E~(O)=O . 
.As (ii) appears to be the more common condition (Donovan 1954) it is assumed 
here. It is also required in the calculation of the normal magnetoresistance. 
Condition (i) would define the high frequency analogue of the Corbino magneto­
resistance (Section III (c) (ii) (1», but no attempt is made to calculate this 
effect here as it is neither experimentally nor theoretically important. 

With restriction (ii), we find from (4.16) and (4.17) that 

Z(w,H)=(47twc-2)i(AI +~)/2AIA2 ..................... (4.18) 

= (27twc-2)i[(A +jHB)I+(A -jHB)I!] [A2+H2B2]-! . 

. .... .... ... (4.19) 

Since A and B are complex numbers, any attempt to separate the real and 
imaginary parts of (4.19) exactly will result in extremely complicated expressions. 
However, for weak magnetic fields (H I B III A I <1), it is comparatively simple 
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to expand (4.19) in ascending powers of HB/A and then rationalize term by 
term. We find after expanding and rationalizing (4.19) that 

Z(w,H)=(47tCuc-2)il A I-texp (-tHI)f1-§ .~2~~p exp [2i(tp-6] 

35 H41 B 14. } 
+128 IAI4 exp[41(tp-6)] .. , ............ (4.20) 

and 

Z(w,0)=(47twc-2)il Ao 1-1 exp (-ti60), •••••••••••••••••• (4.21) 

where Ao and 60 are the values of A and 6 for H =0. 

Equation (4.19) may also be expanded in descending powers of HB/A 
to obtain formal expressions for the strong magnetic field case (H I B 1/1 A 1>1). 
But for metals at least, this condition implies, in general, that I Qn 1"n I and/or 
I Qp1"p 1>1 and the derivation of the Boltzmann equation then breaks down 
(Wilson 1953, p. 210). We therefore do not consider this case here. 

(2) Surface resistance and reactance.-The surface resistance R(w,H) and 
surface reactance X(w,H) are defined as the real and imaginary parts respectively 
of Z(w, H). From (4.20) and (4.21) we obtain 

\ 3 H21 B 12 
R(w,H)=(47twC-2 )1 A I-\sin !6-8 I A 12 sin [!(56-4tp)] 

35 H41 B 14. 1 } 
+128 I A 14 sm [z(96-8tp)] +- .. , .......... (4.22) 

R(w,0)=(47twC-2 )1 Ao 1-1 sin !60, •••••••••••••••••••••••• (4.23) 

(4.24) 

X(w,0)=(47tWC- 2 )1 Ao I-I cos t60 •••••••••• ; •••••••••••••• (4.25) 

(3) Surface magnetoresistance.-The magnetoresistance M R( w,H) is defined 
by 

M R( w,H) = [R( w,H) -R(w,O)]/R( w,O). 

The substitution of (4.22) an9- (4.23) into the above leads to 

M (w H)= [Sin t6 I Ao III -1]-~ H21B 121 Ao Ii sin a(56-4tp)] 
R' sin t6 0 I A Ii 8 I A 16 /2 sin !60 

\ 35 H21 B 12 sin [t(96-8tp)] 1 
X ll~ 48 I A 12 sin [!(56-4tp)] + .. T .... (4.26) 
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(4) Hall ooefficient.-Following Donovan and Sondheimer (1953) we define 
the Hall coefficient Y(w,H) by 

Y(w,H)=+Ey(O)/[Hf: Jx(Z)dz]; 

= -(47two-2)iEy(0)/HE~(0) i 

:From (4:16) we obtain 

Y( w,H) =ij(47twO-2)(Al -A2)/(H.2AIA2) 

[00 Jy(z)dz=O 
J 0 . 

E~(O)=O. 

=ij(27twO-2)H-l[(A +jHB)I_(A -jHB) I] [A 2+H2B2]-i . 

......... ... (4.27) 

As in Section IV (b) (li) (1), equation (4.27) can be expanded in ascending powers 
()f HB/A, yielding 

Y( H 27twl B I· l' 6)] f1 5 H21 B 12 [2'( 6) w, )= - 021 A 13/21 exp [21(2cp-3 l - 8 TAl2 exp 1 cp-

63 H41 B 14 . . } 
+128 1 A 14 exp [41(cp-6)] - ................ (4.28) 
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APPENDIX I 
Estimation of Two-band Model Parameters 

The parameters of a metal or semiconductor may be determined from the 
~xperimentally measurable functions (PELl (J)ETl '¥ ELl and '¥ ET defined in Section 
III (a). It is convenient to consider this problem separately for metals and 
:semiconductors since, in general, the above functions assume different forms 
-for each case. 

(i) Metals.-In metals the electrons and holes form strongly degenerate 
.systems, i.e. Fermi energy ~~kT. Under these conditions, convenient experi­
:mental parameters are An,Ap, m n, m p, 't'n' 't'p) ~n' and ~p (see Section II). We 
now proceed to show how these quantities may be estimated from the four 
-functions (J) EL' (J) ETl '¥ EI.' and '¥ ET' 

.All the above functions have been expressed in Section III (a) in terms of 
-the integral 

f'" 't'BEtH ofo 
Lst(w) = - 0 1 +w2..r2 oEdE, 

-which, for ~~kT, may be evaluated by applying the asymptotic expansion first 
;given by Sommerfeld (1928) 

f'" ofo - 1 202cp(~) 
- 0 cp(E)oEdE-CP(~)+6(1tkT) 0~2 +. . . ....... (1) 

From (1) we obtain, to first order terms in kT/~, 

't'B~tH 
Lst(w) =1 +w2..r2• (2) 

Substitution of (2) in (3.3), (3.4), (3.7), and (3.9) yields 

(J)EdO)=Me('t'nm!~~2+'t'pm;~;/2)=O'n+O'P' •••...•....•..••.. (3) 

(4) 

(5) 

Ai. (r\) !LnO'n !LpO' p (6) "VET,),o\ =1+!L!H2 1+!L;H2' .••..•...••..•.•.....•.•.• 

e'¥EI.(O) = -(AnO'n+ApO'p)-~nO'n+~pO'p, .•....•.......•...•. (7) 

'¥ (0)- ( AnO'n + ApO'P) ~nO'n + ~pO'p (8) 
e EI. -- 1+!L!H2 1+!L;H2 -1+!L!H2 1+!L;H2' 

e'¥ ET(O)= -(An!LnO'n -Ap!LpO'p) -!Ln~nO'n -!Lp~pO'p, • • • . . • • . • • •• (9) 

'¥ (0)= _ (An!LnO'n _ Ap!LpO'P) _ !Ln~nO'n _ !LP~PO'P (10) 
e ET 1 +!L!H2 1 +!L;H2 1 +!L;H2 1 +!L;H2' .. 

where the electron conductivity mobility c!Ln=e't'n/mn' and the hole mobility 
·c!Lp=e't'p/mp' 
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From the equations (3), (4), (5), and (6), which are four independent relations 
involving the four unknowns (In' (Jp, (Ln' and (Lp, we find that 

<PET(O) -<PET(Q)(l +(L2H2) 
(Ln=<P EL(0)-<PEL(Q)(1+(L;H2)' ............ (11) 

<PET(O) -<PET(Q)(l +(L~H2) 
(LP=-<PEL(0)-<PEL(Q)(1+(L~H2r .••...•... (12) 

Equations (11) and (12) may be solved by successive approximations. 

The partial conductivities (In' (Jp are then obtainable from (3) and (5). 
The number (n) of conduction electrons and the number (p) of conduction holes. 
per unit volume may also be deduced, since (see Wilson 1953, p. 198) 

( 13) 

The substitution of (Ln' (Lp, (In' and (Jp in (7), (8), (9), and (10) yields four 
linear equations which may be solved for the four unknowns An' A p, ~n' and ~p-

The parameters '!n' '!P' m n, and mp are then obtainable, since from (3), (4)~ 
and (5) we have 

'! = (C(Ln(J~)!( 3h3 )i 
n et~n 16V2ne2 ' 

mn=e'!n/(Lnc, 

with similar expressions for '!p and mp' 

Finally, the difference in energy (M) between the base of the normal band 
and the top of the inverted band may be deduced from the relation ~E=An-Ap' 

(ii) Semiconductors.-In many semiconductors the electrons and holes form 
non-degenerate systems (~-<O). In this case the most convenient parameters. 
are: 

(a) The electron and hole densities nand p. 
(b) The conductivity mobilities (Ln and (Lp' 

As we have assumed (Section II) that both electrons and holes have Fermi-Dirac 
distributions, nand p are given by (Wilson 1953, p. 15) 

= - 16V2nm~2foo E3/2ofondE 1 
n 3h3 n oE n' 

On ........ (14) 
• ;- 3/2f __ 16v 2nmp 00 E3/20fo/JdE 

p - 3h3 0 p oE p p' 

In 1jerms of the integral Ist(x) (Section III (a», equations (14) may be written 

n=mne-1IOln(0), L 
p =mpe-1I OlP(O). 5 

The mobilities are defined by (Shockley 1950, p. 16) 

(JEO =e(n(Ln +P(Lp)' 

( 15) 
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From (3.3) and (3.11) we have 

and hence 
crKO=<DEL(O) =e[1 lln(O) +1 llP(O)] , 

!Ln=1 lln(O)/n=eI lln(O)/mJ Oln(O), } 

!Lp =1 llP(O)/P =eI llP(O)/mp1 OlP(O). 
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( 16) 

(17) 

The above four parameters may be determined from <DEL and <DET as we now 
proceed to show. On combining (3.3), (3.4), and (16) we obtain for these 
functions 

<DEL(Q) =e{n!Ln[Llln(Qn)/Llln(O)] +p!Lp[LllP(Qp)/LllP(O)]}, ..•. (18) 

<DET(Q) =~[nr'~Oln(OjL21n(Qn) _pr,.}JOlp(OjL21P(Qp)]. • • • . •• (19) 
c rn Llln(O) rp LllP(O) 

It is then necessary to evaluate the integral 

Joo "sEtH oj 
Lst(x) = - ° 1 +x2..r2 aJJdE. 

For non-degenerate systems,jo=exp [(~-E)/kT], and therefore (unlike case (i)) 
the energy dependence of " must be taken into account. This varies with the 
scattering mechanism. Here, we consider in detail only the special case of 
scattering by the thermal vibrations of the lattice (" ocE-i). For ionic-impurity 
scattering [,,=g(E)E3/2] an exactly similar method is applicable, provided the 
slowly varying function g(E) is replaced by a constant g(Em)-for a further 
discussion of tb,is point see Dingle (1955), Beer, Armstrong, and Greenberg 
(19~7)-and only the numerical constants differ in the final results. The third 
important case of mixed scattering is considerably more complicated since one 
further parameter (the ratio of thermal to ionic scattering) must also be evaluated. 

For thermal scattering we have "ocE-i (Wilson 1953, p. 265) and therefore 
Lst may be written 

JOO yt+3/2-s/2 
Lst(x) = (kT)tHaBer./kT + 2 2 e -ydy .........••..... 

o y x a 
(20) 

=(kT)tHaBel;/kT(t+~ - ~8 ) I At+3/2_8/2(x2a2 ), •••••••• (21) 

where y=E/kT and ,,=ay-l. The 'integral 

A,.(u)~iJoo Y"+ e-Ydy 
r. ° y u 

has :been tabulated by Dingle, .Arndt, and Roy (1957a). 

For the two special cases of x=o and x-r>1, equation (21) reduces to 

Lst(O)=(kT)t+ia8el;/kT(t+~ - ~8)1 (22) 

Lst(X)=(kT)t+iaB-2e!;/kTX-2(t+~ -~8)1 ........ (23) 
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On combining (17), (18), (19), (22), and (23) we obtain 

<PEL(O) =e(nfLn +PfLp) , ...................... (24} 

These four algebraic equations can be solved for n, p, fLn' and fLp-

(25) 

(26) 

(27) 

The values of the parameters An' A p may then be deduced from 'P' EL and 'P' ET" 
since equations (3.7) and (3.8) reduce to 

'P' EL(O) = -AnnfLn -ApPfLp-I 12n(O) +I12p(O) 

= -(An+2kT)nfLn-(Ap-2kT)PfLp, 

'P' ET(O) = -(37t/8c)(AnnfL~ -ApPfL;) -ec-1[m;;-lI22n(O) +m;lI22p(O)] 

(28) 

=-(37t/8C)[(An+~kT)nfL~-(Ap-~kT)PfL;l ........ (29) 

Finally, the energy gap (/}'E) between the bands may be deduced from the relation 
/}.E=An-Ap. 




