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Summary 

The aim of this paper and those following is to formulate and explore a new method, 
suitable for use with an electronic digital computer, for the solution of eigenvalue. 
eigenfunction problems in many variables, with the aim of applying the method to the 
Schrodinger wave equation. 

In this method, an expression for an eigenfunction F, depending on the variables 
x, y, . .. , z, is sought in the form 

F=F(x, y, . .. , z)="£.!i(x)gi(Y)' .. h;(z), .•.......... (A) 
i 

which is a sum of products of functions of one variable; the functions of one variable 
are represented numerically, and are determined with the aid of the variation principle, 
so as to give a " best" representation of F of this form. This may be contrasted with 
the Rayleigh-Ritz method, in which each term of the series (A) is, apart from a multi­
plying coefficient, an analytic function determined in advance, only the coefficients being 
determined by the variation principle. In view of this contrast, it would be expected 
that the present method would give a more accurate expression for F with a given 
number of terms, and may therefore be regarded as an attempt to solve the problem 
of the slow convergence of the Rayleigh-Ritz procedure for complex problems. 

The method is worked out in detail only for the fundamental solution. The 
stationary condition by which the functions of one variable are determined is shown, 
subject to certain reservations, to be a minimum condition (theorem 3), and the con­
vergence of the procedure is discussed. 

A way is suggested for obtaining an initial estimate of the eigenfunction, for the 
iterative improvement which the method prescribes. 

I. INTRODUCTION 

The outstanding property of the Schrodinger wave equation from the 
computer's point of view is that its solution is an inseparable function of many 
variables. One must represent any function either by a table of numbers or by 
a rule by which such a table could be generated (the rule being commonly 
embodied in an analytic expression) or by a partial table together with a rule for 
generating the rest of the table. For a function of many variables, full and 
direct tabulation is impossible, as the following rough calculation shows. If a 
function of one variable requires 100 tabular entries for close enough description, 
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then, roughly speaking, for a function of 30 variables, such as the wave function 
of the sodium cation, 10030 =10 60 tabular entries would be needed. .At 1 cm2 

per entry, the wave function would cover the Earth about 1040 times. From the 
impossibility of making such a table D. R. Hartree concluded that the wave 
equation cannot be solved accurately (Hartree 1957). 

This problem is overcome in Rayleigh's method by using an almost entirely 
analytic representation of the wave function. Rayleigh's method consists in 
setting up, as a representation of the solution, an analytic expression containing 
some variable parameters, and then determining the "best" values of these 
parameters by using the minimum property of eigenvalues. The form of analytic 
expression must be more-or-Iess guessed. Rayleigh's method has been used in 
most attempts to obtain accurate ab initio solutions of the many-electron wave 
equation. The form of Rayleigh's method most used is the" Rayleigh-Ritz" 
method in which the analytic expression is a linear combination of given functions 
and the variable parameters are the coefficients of the linear combination. If 
the given functions form a complete set, then, in principle, by allowing enough of 
them to enter the linear combination, a solution of arbitrarily small inaccuracy 
could be obtained. However, it is not possible to tell which members of the 
complete set are the best ones to use except by trying them out. 

The method proposed represents the eigenfunction by a partial tabulation, 
without restricting it. It seeks an expression for an eigenfunction depending 
on the variables x, y, . .. , z in the form 

'J:,!;(X)gi(Y)' •• hi(z) ................. , (*) 
i 

that is, a series in which each term is a product of one-dimensional functions. 
The one-dimensional functions are represented by tables of numbers, and are 
determined by the nature of the problem, through the minimum property of 
eigenvalues, so that each term added is a " best" term of this form; in contrast, 
in the Rayleigh-Ritz method, each term is determined, apart from its multiplying 
coefficient, in advance. In any practical application of the Rayleigh-Ritz 
method, moreover, each term is a product of functions of one variable (in order 
that the numerical integrations should be feasible). This comparison, in view 
of the degree of accuracy which has been attained in some applications of the 
Rayleigh-Ritz method (see, for example, Boys and Price 1954), suggests that 
the proposed method would provide an accurate representation of wave functions 
sufficiently compact to be capable of being handled by a high speed electronic 
digital computer with a large store. The imposition of the form (*) does not 
restrict the solution for a reason which may be expressed loosely as follows: if 

Xi(X), i=l, 2, ... , 

is a complete set of functions in a range -R<x<R, then the set of products 

Xi(X)Xj(Y)' •• Xk(Z), i=l, 2, ... ; j =1, 2, ... ; ... ; k=l, 2, ... ; 

is a complete set in 

-R<x<R, -R<y<R, ... , -R<z<R 

(Oourant and Hilbert 1953). 
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Thus any function defined in the region can be expressed as a sum of products 
of functions of one variable. 

Two suggestions have been made recently for the solution of the convergence 
problem presented by the Rayleigh-Ritz process. It has been suggested (Slater 
1953) that a good set of one-electron functions to use in a Rayleigh-Ritz expansion 
would be the (complete) set of solutions of a certain self-consistent field problem. 
However, it is not claimed that a practical method could be based on this idea. 
A second suggestion (Lowdin 1955; Shull and Lowdin 1959) consists in the 
demonstration that a certain set of one-electron functions, the" natural spin­
orbitals" must give rapid convergence. However, there does not seem to be 
any way of determining these without first obtaining the wave function. The 
present series of papers may be thought of as making another suggestion for the 
solution of this convergence problem. 

It is assumed throughout this paper that the fundamental solution of the 
eigenvalue-eigenfunction or eigenvalue-eigenvector problem considered is that 
corresponding to the algebraically least eigenvalue; this is no restriction. This 
paper is concerned mainly with the determination of the least eigenvalue and its 
eigenfunction or eigenvector; the method is worked out in detail only for this 
case. It is also assumed that this eigenfunction is non-degenerate. 

II. FORMULATION OF THE METHOD FOR AN EIGENVALUE PROBLEM 

WITHOUT SYMMETRY CONDITIONS 

In order to show clearly the basic properties of the method, it is first 
formulated (in Part I) not for the wave equation (from whose solutions it is 
necessary to select those with certain symmetry properties) but for an eigenvalue 
problem without symmetry conditions, which will be written 

Jft'1j;=AIj;, (1 ) 

where Ij; is a real function of n variables (x, y, ... , z) and Jft' is a real differential 
operator. Ij; is the fundamental eigenfunction of Jft' and A is the corresponding 
eigenvalue. The function Ij; is taken to be defined in a region -R<,x<,R, 
-R<,y<,R, ... , -R<,z<,R and to be subject to the condition that it vanish 
on the boundary x= ±R, y= ±R, ... , z= ±R of this region. Jft' is taken to be 
symmetric; that is, we take it that if cp and Ij; are arbitrary functions (apart 
from satisfying conditions of differentiability and the boundary conditions) 

f R .. . fR cpJft'lj;dxdy ... dz=fR .. . fR lj;Jft'cpdx ... dz. 
-R -R -R-R 

Let us write 

and 

Q=Q(V)=fR . 
-R 

.fR v(x, y, . .. , z)Jft'v(x, y, . .. , z)dxdy ... dz 
-R 

N =N(v)=JR .. . fR V2(X, y, . .. , z)dxdy ... dz. 
-R -R 
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The lowest eigenvalue of (1) is the least value which QJN assumes for any 
v=v(x, y, . .. , z) satisfying the boundary conditions, and the eigenfunction 
belonging to this eigenvalue is that v which gives to QJN its least value. Let 
u(x, y, . .. , z) be a first guess at this lowest eigenfunction. We seek a set of 
n functions f(x), g(y), . .. , h(z) vanishing at ±R (so that u+fg . .. h satisfies 
the boundary condition for a solution of (1)) such that u+fg . .. h is the best 
expression of this form for the lowest eigenfunction. Let g(y)=go(y) ... h(z)=ho(z) 
be fixed, and let af=af(x) be a variation off(x) which vanishes at ±R. Iff(x) 
gives to QJN its least value, QJN being formed for (u+f(x)go(Y) . .. ho(z)), then 
~(QJN)=O. Now 

aQ=a(J . . . fuJft'udx . .. dZ+2f . . . ffg . .. hJft'udx . .. dz 

+ f . . ·ffg· .. hJft'fg· .. hdx . .. dz) 

=2faf(J . . . fg . .. hJft'udy . .. dz)dx 

+2faf(J . . . fg . .. hJft'g . .. hdy . .. dz)fdx, 

where the integrations are from -R to R in each variable. Similarly, 

aN =2faf(J . . . fg . .. hudy . .. dz)dx+2faf(J . . . fg2 • •• h2dy . .. dz)fdx. 

~(QJN)=(lJ1V){aQ-(QJN)aN}=O if and only if 

faf{f. ·fg··· hJft'udy . .. dz+(J . . . fg . .• hJft'g . .. hdy . .. dz)f 

-(QJN)f . . . fg . . "hudy . .. dz-(QJN)(f . . . fg2 • •• h2dy . .. dz)f}dx=O. 

If this holds for any variation af, then f satisfies the equation 

(J . . ·fg· .. hJft'g . .. hdy . .. dz)f-(QJN)(J . . . fg2 . •• h2dy . .• dz)f 

+ f· . ·fg· .. hJft'udy . .. dz-(QJN)f . . . fg . .. hudy . .. dz=O . 
. . . . . . . . .. (2) 

Equation (2) is formed for g(y)=go(Y) . .. h(z)=ho(z). 

If f(x)go(y) . .. ho(z) is small enough, that is, if u(x, y, . .. z) is near enough 
to the lowest eigenfunction of (1), then QJN in (2) can be formed for f=O and 
taken as constant, so that (2) becomes simply a differential equation for f. 
Anyway, it is to be expected that iterative solution of (2) would lead to a solution 
f(x)=fI(x) which is "self-consistent" (Le. which is yielded by (2) with QJN 
formed for U+fI(X)gO(y) . .. ho(z)) and moreover is that f which gives to 
'Q(u+fgo· .. ho)JN(u+fgo" .. ho) its least value. Keeping f fl fixed, the 
"best" g=gI is then determined, by solving the equation corresponding to (2) 
for g, in which the functions other than f and g are kept fixed at the same values 
as before. It may again be unnecessary to get a strictly self-consistent solution 
for g, that is, it may be sufficient to form QJN for (U+fIgO . .. ho) and treat it as 
a constant. The process is then repeated for each of the n functions up to h(z), 
and the cycle then repeated as many times as is necessary to obtain reasonable 
,convergence. The functions finally obtained, ft.)' gt.)' . .. , ht.)' (say), determine 
new approximations VI =u +f.,gt.) . .. ht.) and Q(vI)JN(vI) to the lowest eigen­
function and eigenvalue of (1). Denoting the kth improved approximation by 
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vk(x, y" , "Z), vk would b expected to converge to the lowest eigenfunction as 
k-+ 00, since this can be ex.l:- ''3ssed exactly by means of a series 

00 

u(x, y" , ., z) + ~ fk(X)gk(y) , .. h,,(z), 
k=l 

as noted in the introduction, 

So that the numeric?', mtegrations may be practicable, u(x, y,. , "z) and 
.1t'=.1t'(x, y" , "z) must be expressed as sums of products of functions of 
(or operators on) one variable, .1t' could in general be so expressed only by an 
infinite series, which would have to be terminated in numerical work, 

III. FORMULATION AS A METHOD OF SOLVING A NUMERICAL FORM OF 

EQUATION (1) 

The method will now be reformulated, taking the same eigenvalue problem 
(1) as starting point, In this formulation the function is replaced by a vector,. 
corresponding to a possible numerical representation of it, and the operation of 
differentiation of a function replaced by multiplication of the vector by a suitable 
matrix, which produces the appropriate finite-difference operation, There 
are two reasons for undertaking this second formulation. The first is to obtain 
a clear insight into the structure of the method, while avoiding the proverbial 
subtleties of the calculus of variations, While the results are obtained for one 
particular choice of numerical approximations, they can certainly be applied 
to any other sufficiently refined methods of numerical approximation which may 
be chosen, The second reason is that this formulation of the method could be 
used with advantage as it stands in the explo,.r' -~J stages of the solution of a 
complicated problem, that is, for establi - ~g "initial" estimates of the eigen­
function, in a way which is sug,!!'!>', ,,11 by the example in Part II (Bassett 1959a) , 

In anticipation of the nnal aim, the solution of the wave equation, .1t' in 
equation (2) will be taken to be of the form 

(}2 (}2 

(}x2 - (}y2 -

(}2 
,- (}Z2 + V(x, y, . . "z), 

Letafunctionv(x, y" , "z) 0 Nvariablesx, y" , "zdefinedin -R<.x<.Rr 
-R<.y<.R, ' , " -R<.z<.R anr.. vanishing on the boundaries of the region be 
represented by a function dep'Jed at only the rN interior points 

(-R+lh, -R+mh" , ., -R+ph) l=l, 2, ... , r; m=l, 2" , "r; 
p=l, 2" , ., r. .. ....... , (3) 

where h=2Rj(r+l), The function so defined can be thought of as a vector 
of rN elements. The function or vector will be written in the form v(x, y,. , ., z)r 
which may be abbreviated to v; if it is convenient not to distinguish between the 
different kinds of elements of v(x, y" , "z) then it will be written v(X), where 
X stands for the set of variables x, y" , ., z, 

A function of one variable, of x say, defined in -R<.x<.R and vanishing 
on the boundary is represented by a function defined at the r interior points 

-R+lh (l=l, 2" .. , r), 
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function, in a way which is sug,!!'!>', ,,11 by the example in Part II (Bassett 1959a). 

In anticipation of the nnal aim, the solution of the wave equation, .1t' in 
equation (2) will be taken to be of the form 

02 

•• - OZ2 + V(x, y, . .. , z). 

Letafunctionv(x, y, . .. , z) o Nvariablesx, y, . . "zdefinedin -R<.x<.Rr 
-R<.y<.R, ... , -R<.z<.R anr.. vanishing on the boundaries of the region be 
represented by a function dep'Jed at only the r N interior points 

(-R+lh, -R+mh, . .. , -R+ph) l=l, 2, ... , r; m=l, 2, ... , r; 
p=l, 2, ... , r. .. ........ (3) 

where h=2Rj(r+l). The function so defined can be thought of as a vector 
of rN elements. The function or vector will be written in the form v(x, y, . .. , z)r 
which may be abbreviated to v; if it is convenient not to distinguish between the 
different kinds of elements of v(x, y, . .. , z) then it will be written v(X), where 
X stands for the set of variables x, y, . .. , z, 

A function of one variable, of x say, defined in -R<.x<.R and vanishing 
on the boundary is represented by a function defined at the r interior points 

-R+lh (l=l, 2, ... , r), 



THE SCHRODINGER WAVE EQUATION. I 435 

that is, by a vector of r elements, which will be written in the form f(x). The 
second derivative can then be represented by I:K(x, x')f(x') where K(x, x') is 

x' 
the (x, x')th element of the symmetric l' X r matrix 

-2jh2 
Ijh2 
o 

Ijh2 
-2jh2 

Ijh2 

o 
Ijh2 

-2jh2 

o 
o 
Ijh2 

Ijh2 
o 

-2jh2 
Ijh2 

Ijh2 
-2jh2. 

For a function v(x, y, . .. , z) a representation of the Laplacian, the sum of the 
second derivatives with respect to each variable in turn, at any point (3) can 
likewise be obtained by multiplication by a symmetric r N XrN matrix: thus 
the sum of the second derivatives of v(x, y, . .. , z) is represented by 

~ L( . " ') (' , ') , ,.... , x, y, . .. , z, x, y , ... , z v x ,y , ... , z , 
x,y, . . 0, Z 

where 

L(x, y, . .. , z; x', y', . .. , z')=L(x', y', . .. , z'; x, y, . .. , z) 
=K(x, x')'ayy' ... 'azz' +'axx'K(y, y') . .. 'azz' + ... +'axx''ayy' ... K(z, z'). 

From here on H is taken to be minus the above expression, plus the expression 

V(x, y, . .. , z)'axx''ayy' ... 'azz', 

which is a diagonal matrix. Using the X notation, the function obtained by 
operating on v(x) with H is I: H(X, X')v(X'). 

X' 
The integral of a function v(x, y, . .. , z) defined in -R<x<R, . .. , 

-R<z<R and vanishing on the boundaries is taken to be represented by 

hNI: I:. .I:v(x, y, . ., z)=hNI:v(X), 
x y X 

the summation extending over the interior points (3). 

Consider now the quotient of quadratic forms 

I: ,,I: y(x, y, . .. , z)H(x, y, . .. , z; x', y', . .. , z')v(x', y', . .. , z') 
x, y, .. 0, Z x, y , .. " z 

or 

I: V2(X, y, ... , z) 
x, y, . • 0, Z 

I: I:l)(X)H(X, X')v(X') 
x x' 

L,/)2(X) 
x 

................ (4) 

The expression (4) takes on its least value for a vector v(X) which is a lowest 
eigenvector of H. That is, v(X) is a solution of the equations 

2: H(X, X')v(X')=Av(X) (5) 
x' 

with the least eigenvalue A. 
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Our task may now be stated exactly. It is to lay down a rule for getting a 
sequence 

v1(X), V2(X), VS(X), ... 

of vectors which converges to the lowest eigenvector of (5). It is assumed in 
this paper that there is only one such eigenvector, i.e. that the lowest eigenvalue 
is non-degenerate. 

It is convenient to rewrite (4) using the notation 

~ H(x, y, . .. , z; x', y', . .. , z')v(x', y', ... , z') 
x', v', .. . ,z' 

=Hv(x, y, . .. , z), 

so that (4) becomes 

~ v(x, y, . .. , z)Hv(x, y, . .. , z) 
x,y, .. 0, Z 

~ V2(X, y, . .. , z) 
.......... (6) 

x,Y, ... ,z 

hN~V(X)Hv(X) and hN~V2(X) will sometimes be written Q(v) and N(v). The 
x x 

expression (6) formed for v(x, y, . .. , z)=u(x, y, . .. , z)+f(x)go(Y) . .. ho(z) 
takes on its least value, for given functions u and go,. . ., ho, for a function f 
which satisfies 

~{Q(u+fgo· .. ho)JN(u+fgo· .. ho)}=O 

for r independent variations ~f of f 

1 
hN~Q=~ ~ (u+fg··· h)H(u+fg··· . h) 

I x, y, ... ,z 

~ (2~fg ... hHu+2~fg . .. hHfg . .. h), 
x, 'g, .. 0, Z 

h~~N=~ ~ (u+fg ... h)2 
x, y, . . 0' Z 

=2 ~ ~f(ug . .. h+fg2 • •• h2). 
:l,V, . . 0, Z 

~(QJN)=O if and only if ~Q-(QJN)~N=O, that is, 
~ ~f{g ... hHu+g . .. hHg . .. hf-(QJN)ug . .. h-(QJN)fg2 . .. h2}=O_ 

x,v, .. 0, Z 

This equation, formed for r independent functions ~f, is equivalent to 

( ~ g . .. hHg . .. h)f-(QJN)( ~ g2 . .. h2)f 
y ... z y ••• z 

+ ~ g . .. hHu-(QJN) ~ g . .. hu=O. .. (7) 
y • •• z y •• • z 

The transformation just carried out depends on the fact that H is symmetric. 
Equation (7), the central equation of the method, is the" nume,-jcal " analogue 
of equation (2). 

The lemma and theorems 1 and 2 below lead up to theorem 3, which states 
that the solution f of equation (7) is, subject to certain restrictions, that f which 
gives to QJN its least possible value. 
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Lemma. Let H(X, X') be the (X, X')th element of a symmetric m xm 
matrix, v=v(X) an m-rowed vector, 

Q(v)=hN ~ v(X)H(X, X')v(X')=hN~V(X)Hv(X)=(v, Hv), 
x, x' x 

and 
N(v)=hN~V2(X)=(V, v). 

x 
If u=u(X) is also an m-rowed vector, and y is a variable number, 
Q(u+yv)/N(u+yv) cannot have a local proper minimum with respect to y for 
two different values of y. 

Proof. Suppose that two such values of y exist. We may take one value 
as zero, and for the other we may assume that 

Q(u+yv)/N(u+yv) <Q(u)/N(u). . ........... (8) 

Now Q(u+yv)=Q(u) +2y(v, Hu) +y2Q(V) and N(u+yv)=N(u) +2y(v, u) +y2N(v). 
Since Q/N is stationary at y=O, 

and, at y=O, 
(u, Hv)-Q(u)/N(u)(u, v)=O, .............. (9) 

d 2Q/N =!(d2Q _ CL d2N) 
d y2 N d y2 N d y2 . 

The last equation implies that 

Q(v) -{Q(u)/N(u)}N(v) >0. . . . . . . . . . . .. (10) 

The inequality (8) is equivalent to 

Q(u) +2y(v, Hu) +y2Q(V) <Q(u) +2y{Q(u)/N(u)}(u, v) +y2{Q(u)/N(u)}N(v), 

that is, using (9), 

y2Q(V) < y2{Q(u)/N(u)}N(v). 

From this and equation (10) Q(v)/N(v)=Q(u)/N(u) which implies that d2(Q/N)/dy 2 

vanishes at y=O. Now Q/N has the form (a+by+cy2)/(a' +b'y+C'y2) and if 
the first and second derivatives of this function of y vanish at y=O then 
a/a'=b/b'=c/c'. Hence Q/N is independent of y and cannot have a proper 
minimum with respect to y. 

Theorem 1 
Let us write A(v)=Q(v)/N(v) for any function v. Let ~=~(x) denote a 

function of x. Let 

and 

~tA{u+(f+t~)g . 

d2 

dt2A{u+(f+t~)g . 

. h} 

. h} 

I t=o =O'} 

I >0. 
t=o 

........ (11) 

Let every ~(x) satisfy equations (11), for f='f. Then the same cannot be true 
for f="f unless 'f and Iff are identically equal. 
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Proof. Let us suppose that the theorem is false, and its conditions are 
satisfied by 'f and by ''1, where 'f and ''1 are not identically equal. Then 

:rx A{u+(,f+rx(''j_'f))g . .. h} I =0, 
1,,=0 

:~2 A{U+('f+rx("f-'f))g· .. h} 1"=0>0, 

dd~ A{u+(''j+~(,f-"f))g . .. h} I =0, {3=0 

d~2 A{U+(I'j+~('f_''j))g . .. h} I >0. {3=O 

Hence, writing rx=t, ~=1-t, we find that 

A{u+(,f+Wf-'f))g . .. h} 

has a proper local minimum with respect to t for t=O and t=1, which contradicts 
the lemma. 

Theorem 2 

If the functions u(x, y, . .. , z) and g(y), . .. , h(z) are given and 

A(u) < min A{rx(x)~(y) . .. y(z)}, 
(%,13, ... ,y 

there is a function f=f(x) for which A{u+f(x)g(y) . . h(z)} assumes its least 
possible value. For this function f, A is stationary. 

Proof. Since A(v) is bounded below as v varies, A(u+fg . .. h) is certainly 
bounded below as f varies. Let l be the greatest lower bound of A as f varies. 
Then a sequence fn exists such that A(u+fng . .. h)---+l. If ~f~(x)---+oo, then 

x 

A(fng . .. h)---+l, which contradicts the hypothesis. Hence ~f~(x) is bounded, 
x 

and so possesses at least one limit point, f(x) say, for which A(u+fg . .. h)=l, 
since A is a continuous function of the elements of f. The rest of the theorem 
may be deduced from the fact that A is a rational function in the elements of f. 

Theorem 3 

Let the functions u(x, y, . .. , z) and g(y), . .. , h(z) be given, and let 
A(u)< min A{rx(x)~(y) . .. y(z)}. Let A{u+f(x)g(y) . .. h(z)} <A(u) and let 

at, (3, ... , 'Y 

A be stationary with respect to f. There is only one function f which satisfies 
these conditions, and that gives to A its least possible value. 

Proof. It is sufficient to show that, under the hypotheses of the theorem, 

d2 I dt2A{u+(f+t~)g . .. h} t=o>O 

for any~. Since A is stationary with respect to f, 

dd A{u+(f+t;)g . .. h} I =0. 
t t=O 

438 1. Y. BASSETT 

Proof. Let us suppose that the theorem is false, and its conditions are 
satisfied by 'f and by "f, where '1 and ''1 are not identically equal. Then 

:rx A{u+(,f+rx(''f_'f))g. . h} I =0, 
t ,,=0 

:~2 A{u+(,f+rx("f-'f))g· . h} 
1"=0>0, 

d~ A{u+(,'f+~(,f-"f))g· . h} I =0, 
(3=0 

d~2 A{u+(,'f+~('f_''f))g. . h} I >0 . 
(3=0 

Hence, writing rx=t, ~=l-t, we find that 

A{u+(,f+Wf-'f))g . .. h} 

has a proper local minimum with respect to t for t=O and t=l, which contradicts 
the lemma. 

Theorem 2 

If the functions u(x, y, . .. , z) and g(y), . .. , h(z) are given and 

A(u) < min A{rx(x)~(y) . .. y(z)}, 
ex,!3, ... ,y 

there is a function f=f(x) for which A{u+f(x)g(y) . . h(z)} assumes its least 
possible value. For this function f, A is stationary. 

Proof. Since A(v) is bounded below as v varies, A(u+fg . .. h) is certainly 
bounded below as f varies. Let l be the greatest lower bound of A as f varies. 
Then a sequence fn exists such that A(u+fng . .. h)---+l. If ~f~(x)---+oo, then 

x 

A(fng . .. h)---+l, which contradicts the hypothesis. Hence ~f~(x) is bounded, 
x 

and so possesses at least one limit point, f(x) say, for which A(u+fg . .. h)=l, 
since A is a continuous function of the elements of f. The rest of the theorem 
may be deduced from the fact that A is a rational function in the elements of f. 

Theorem 3 

Let the functions u(x, y, . .. , z) and g(y), . .. , h(z) be given, and let 
A(u)< min A{rx(x)~(y) . .. y(z)}. Let A{u+f(x)g(y) . .. h(z)} <A(u) and let 

at, (3, ... , 'Y 

A be stationary with respect to f. There is only one function f which satisfies 
these conditions, and that gives to A its least possible value. 

Proof. It is sufficient to show that, under the hypotheses of the theorem, 

d2 I -d 2A{u+(f+t~)g . .. h} >0 
t t=o 

for any~. Since A is stationary with respect to f, 

~tA{u+(f+t~)g . .. h} I t=O =0. 



THE SCHRODINGER WAVE EQUATION. I 439 

It follows that 

d2A I 1 (d2Q I d2N I ) 
dt2 t~O =jf dt2 t~O -A dt2 t~()' 

that is, 

d 2A I 1 
dt2 = N( +.n z.,{Q(~g . .. h) -A(u+~g . .. h)N(~g • .. h)}. 

t~O U g .. . 

By hypothesis, Q(~g . .. h)/N(~g . .. h)=A(~g . .. h»A(u+jg . .. h). 
Hence 

d2A I >0. 
dt2 t~O 

IV. CONVERGENCE 

There are three kinds of sequence of solutions (each member of a sequence 
giving an eigenvalue estimate) which the method prescribes: (i) the sequence 
of solutions j of equation (7) (of which it may be sufficient, for practical purposes, 
to take the first member) which should converge to a " self-consistent" solution; 
(ti) the cyclic sequence of self-consistent solutions j, g, . .. h, j, g, . .. h, . .. 
of equation (7) and its analogues; (iii) the sequence of partial sums in the series 
expression for the eigenfunction. 

In the example of Part II all three sequences converge, the first so rapidly 
that the first member of the sequence is sufficient. 

(i) In the form which the stationary condition (7) assumes for a wave 
mechanical problem (Part III, Bassett 1959b), if it is looked on as a differential 
equation for j, the "constants" depend on j in first order. The equation is 
similar in this respect to the equation for the radial dependence of a one-electron 
function in the Hartree-Fock method with superposition of configurations 
(Hartree 1957) and so convergence can probably be attained in practice. In 
the stationary condition (7) itself, which applies to an eigenvalue problem 
without symmetry restrictions, the dependence of the "constants" on the 
solution is only second order, as only Q/N is so dependent, and no difficulty 
would be expected with convergence. 

(ti) The convergence of the eigenvalue estimates belonging to the sequence 
(ti) is ensured by theorem 3, which shows that these eigenvalue estimates form 
a monotonic decreasing sequence, which is certainly bounded below, and if the 
product jg. . . h does not converge, it must approach a range of equally accept­
able functions. 

(iii) The completeness of a suitable set of products of functions of one variable 
argues strongly, if loosely, for convergence of the sequence (iii), but the matter 
will be settled best by practical trial. 
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(li) The convergence of the eigenvalue estimates belonging to the sequence 
(li) is ensured by theorem 3, which shows that these eigenvalue estimates form 
a monotonic decreasing sequence, which is certainly bounded below, and if the 
product fg. . • h does not converge, it must approach a range of equally accept­
able functions. 

(iii) The completeness of a suitable set of products of functions of one variable 
argues strongly, if loosely, for convergence of the sequence (iii), but the matter 
will be settled best by practical trial. 
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