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Summary

In this paper the more important general formulae for the drift velocities and
diffusion coefficients of ions and electrons in gases are derived by the application of
dynamical principles. These formulae agree with those already established by a proper
application of the method of free paths. Formulae for the distribution of speeds of
agitation are also derived.

I. INTRODUCTION

There is an extensive literature on the theory of the motions of ions and
electrons in gases but the derivations of the formulae for drift velocities,
coefficients of diffusion of ions and electrons, and the conductivities of weakly
ionized gases in direct or alternating electrie fields accompanied or unaccompanied
by a magnetic field, that find most frequent practical use, are not readily
accessible.

In what follows the chief formulae are established in a general form by the
application of dynamical principles. Although the treatment is purposely
elementary it does not lack rigour.

The aim is to provide a compact and uniform summary of the theory of the
subject in a useful form (general references : Allis 1956 ; Margenau 1958).

II. ELECTRONIC MOTION IN GASES
(a) General

When electrons move freely among the molecules of a gas in the absence of
an electric field they interchange energy and momentum with molecules in
collisions and their steady state of random agitational motion is one in which at
any instant the directions of their velocities ¢ are distributed isotropically and
their speeds ¢ are distributed according to Maxwell’s formula which states that
the proportion of a group of n electrons whose speeds exceed ¢ but do not exceed
¢+de is

dn, 4

n P/

exp (—c?fa?).c?de, ..........inn (1)

where « is the most probable speed. In addition a condition of equipartition of
energy prevails in which the mean kinetic energy of agitation 3mc? of an electron
is equal to that, 1M (2 of a molecule.
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This motion becomes modified in important respects when electrons move
in a steady state of motion in a gas in the presence of a uniform and constant
electric field E. It now comprises a steady drift velocity W of the centroid of
the group with a superimposed random motion of agitation such that the speed W
is much smaller (a few per cent.) than the mean speed of agitation ¢. :

The speeds ¢ do not, in general, conform to Maxwell’s distribution formula
and the mean kinetic energy of agitation 4me? of an electron exceeds that, 1mMCe,
of a molecule by a factor k (Townsend’s energy factor) which is a function (specific
to each gas) of the ratio B/N of the electric field strength to the number of
molecules N in unit volume of the gas. When the measurements are referred
to a standard temperature (15 °C) the parameter B/p is more commonly employed
than E/N, p being the pressure of the gas.

These and other aspects of electronic motion in gases are considered in greater
detail in what follows.

(o) F(c.u)

Fig. 1

(b) Nature of the Distribution Function in a Steady State of Motion

Consider a general isotropic distribution of the speeds ¢ represented by a
function f(c) with the meaning that the proportion of electrons of a group n whose
speeds exceed ¢ but do not exceed ¢-de is dn,/n=4xrf(c)c2de.

This function is represented in velocity space by a spherical distribution of
points, such that the number of points contained within an element du dv dw
of velocity space at a distance ¢(u,v,w) from the origin is » f(¢)dw dv dw. Consider
the unsymmetrical distribution F(c,u) obtained from f(e) by increasing the w
component of every velocity ¢ by an amount V(¢) as shown in Figure 1. The
centre of symmetry has been displaced from O to O’ through a distance V,
thus leaving unaltered the number of points in the element of space dr at P
and P’ respectively, but the velocity ¢ increases from ¢=0P on the left to c—QP’
on the right. Let 0 be the angle between OP’ and the u-axis and suppose that
V<o, then cos 6=ufc and O'P'=c—V cos 6=c—Vu/e.

The number of representative points in dr on the right is

nF(c,u)d‘rznf(c— %V)d‘r,
whence



720 L. G. H. HUXLEY

It remains to determine the value of ¥V and the form of the function f(c) associated
with steady electronic motion in a gas under the influence of a steady and uniform
electric field E, it being assumed throughout that the number of electrons in
unit volume is much smaller than the number of molecules in unit volume so
that mutual interactions of electrons are unimportant.

(e) Specification of an Encounter
In Figure 2 (a) an electron or ion ¢ with mass m approaches a molecule O
with mass M at a relative velocity ¢ and is deflected to leave the vicinity of O
at a velocity g'. It is supposed that when e is sufficiently distant from a molecule
its trajectory is rectilinear.
In Figure 2, b is the perpendicular distance of O from the direction of g

and 0 the angle of deflection (the angle between g and g'). 0(b,g) is a function
of b and g¢.

(a)
Fig. 2

Tt will be assumed that there is a limiting distance ¢ such that if b exceeds ¢
the deflections 0(b,g) are zero or so small that even in aggregate they are
unimportant.

The vector diagram of velocities relating to an encounter is (following
Maxwell) depicted in Figure 2 (b). ¢; and c, are the velocities respectlvely of
the ion (or electron) and the molecule before an encounter and c; and cp those
after the encounter.

G is the velocity of the centroid X of m and M and g and g, are those of

m and M relative to X before the encounter and g1 and gg those after it. It
follows that g=g,+8, and g'=g;+8o.

In a system in which the gas as a whole has no mass motion, and to which
the velocities ¢ refer, the actual deflection of e is the angle 6, between ¢, and c
and in general this angle depends not only upon b and g, but when ¢, is given,
upon ¢,. However, when m/M <1 and also 6,>¢,, as is the case if ¢ is an electron,
then g~c, and 0(b,g)=0(b,¢,)=0,. Also ¢, differs little from ¢, in most instances.

An important quantity is cos cos 0, the average value of cos 0, taken over all
encounters in which the ion or electron is travelling with speed ¢; before an
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encounter. Since the velocities c; are distributed with axial symmetry about
the direction of c,, in the case of an electron where 6,=60(b,c,),

[}

cos 0, = [21cf cos O(b,cl)bdb] [n62=2/c? f cos (0,¢,)bdb.
0 0

The mean value of cos 0, averaged over the whole distribution of speeds ¢,

would be written cos 0,, that is to say it is the mean value of 0 in an encounter
of any kind.

(d) Free Paths
Consider a large number p of free paths «;, @, . . ., x4, all traversed at the
same speed ¢ by the ion or electron, but not necessarily consecutively.
If [, is the mean free path, then

n
plm:?wk‘

Let § be the mean speed of the ion (with speed ¢) relative to the molecules which
move at random and let N be the number of molecules in unit volume.

The sum of the times spent in traversing the paths «, is t=pl, /¢, that is to
say, p=ot/ly.. Butp=gt.Nno? consequently, if {,=1/Nro?, l,—=c/§. Nwc=(c/§)l-
For electrons §j=c¢; l,=1/Nno?=l, o is the limiting value of the impact
parameter beyond which deflection of the ions are unimportant.

Fig. 3

(e) Caleculation of V
According to Section 2 (b), the velocity of an electron is the vector sum
V+c of a fixed velocity V and velocity of agitation c.

Consider the vector diagram of velocities of a collision of such an electron
with a molecule with momentum MC (Fig. 3).
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- In Figure 3, ¢;=V+4c; G=(mc,+MC)/(m-+M) is the velocity of the
centroid X of m and M, and r is the velocity of the electron (or ion) relative to X.
These are the velocities before the encounter. After the encounter the corres-
ponding velocities are c, G, G, and r'.

If no ehange results in the internal energy of the molecule then 7' =r.

Consider first the case in which all directions of r’ are equally probable
when C and ¢, are given, as would occur in encounters between rigid smooth
spheres (Maxwell 1890).

The mean velocity of electrons and molecules (c; and C as specified) after
encounters is therefore G. Consider next, the mean residual velocity in all
encounters of electrons for which c, is given but C is allowed to range over all
possible directions. Draw XP parallel to G to meet c; at P. Then G=0P+4PX.
But OP={m|(M +m)}e, and XP={M /(M +m)}C, consequently P is a fixed point
and XP has a fixed length when C is constant. The possible end points of G
lie on the surface of a sphere about O and those of G on a sphere about P. Thus
the mean projections of both C and PX on the direction of c; are zero. The mean
residual velocity after all such encounters is OP. Finally ¢ may assume all
directions with respect to V and therefore QP does likewise. The mean residual
velocity is therefore OQ={m/(m+ M)}V for encounters in which the agitational
speed has a fixed value c.

Suppose that all directions of r’ are not equally probable but that r’ is
distributed with axial symmetry about r. Since the scattering occurs with axial
symmetry about the direction X¢, the mean values of the components of ¢’ and r’
normal to X are zero, so that the mean value of the vector ¢’ when the scattering
about X is not isotropic is a vector parallel to r. It may be written ar.

But, from the triangle PXQ, ar=a{M /(M +m)}(c,—C), so that when G
is distributed over all possible directions in space the residual mean value of ¢’
is a vector parallel to ¢, and equal to {aM /(M +m)}c,. But ¢;=V--c, so that
when ¢ ranges over all possible directions the mean value of ¢’ reduces to
{aM /(M +m)}V, where a=cos 0, where 6 is an angle of deflection of the velocity r
relative to X in an encounter when the speed of the ion or electron relative to a
molecule is g={(M +m)/M}r.

The mean residual momentum after encounters is therefore
{(m 4o M)/(M +m)ymV, which is the same as the mean momentum that the ion
possesses when it enters the speed group ¢. The mean momentum lost in an
encounter is

mv(l—m+“M)— mM v,

M4+m )] M-+tm

and the mean rate at which an ion or electron loses momentum in encounters is

M—l— = “)l
where l,=1/Nro?.
In a steady state of motion the mean momentum mV is the sum of the mean
momentum {(m +oM)/(m-+M)mV at entry and that acquired from the field,
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namely, Eely/g. The mean momentum imparted by the field is therefore equal to
the mean momentum lost in an encounter. Consequently,

Eelo_ mM
or
. V=Eellmg, ¢ «viiiiiiiiinnn. (3)
where
M +m =
= M0 —o) ) a=cos 0.

l is an equivalent mean free path and g is the mean speed of the ion or electron
with agitational speed ¢, relative to the molecules. For electrons, g~¢, m/ M <1,
l=l/(1—a). The equivalent cross section is here

A(e)=1/Nl=(1—cos 0)/l,=2=n f ’ {1—cos 0(b)}bdb.

When electrons and ions interact as point centres of repulsive force P= k/r"
then, if v>2, the integral

2% J “ {1—cos 0(b)}bad
0
is convergent and defines an equivalent cross section and mean free path
1=1/2xN f “ (1 —cos 6(8))bdb=1/N A (),
0

where A(c)=27nBA,(v)/¢*0-D, in which B=(k/m)2/*-1) and A,(v) is a function
of v only (Chapman and Cowling 1952, p. 171; Huxley 1957a, p. 125). For
instance, when v=>5; A(c)cl/e.

If the scattering is isotropic,

A =2th° bdb=rc%=A4,.
0

In this event, a=0,

_Be WM +m)_Eely(1 1
“mg M g \m M)

In general, I=Iy(M +m)/M (1 —«) may be written I=I,+8 (Huxley 1957, 1960),
where
S=m4aM)ly/ M1 —a). .oveveviinen.... (5)

(f) Formula for Drift Velocity W in a Steady and Uniform Field E
The mean speed of drift in the direction of E (parallel to Oz) of the group of
electrons with speeds ¢ is the mean value of the component « of the velocities ¢

averaged over all directions in space. From equation (2) it follows that the
mean value of w=c cos 0 is
Ve df

—ofie) oo B v g
¢)=cf(c) cos O—Vo% .cos2 = — T d6
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so that, from equation (3),

Eel df

WO =g 0y +rererrrrreeeeenes (6)

The mean value of W (c) taken over all speeds ¢ is the drift speed W of the centroid
of the whole group. Thus,

2
Be (=, oo dfy

3m ], gd

Ee 47led ] © 1 dj/le
= —— —_— — — 2
st |1 7], [, 5wl
CBe , d[l®
—3—,”'/.0 (E(—g—), ............................ (7)

where I=1[,+S ; (equation (5)); ¢ is the mean speed of an ion or electron relative
to the molecules. For electrons, m/M<1, g=c, equation (7) becomes

W=—

_Ee —2 d 2
Wz o 0%, ooonniiiiinnn (8)

the bar denoting an average with respect to c.

This formula was previously derived directly by a correct application of the
method of free paths (Huxley 1957a, 1960).

Throughout, the atomic charge e is regarded as algebraically positive, that
is to say, a negative value should be substituted in the case of electrons.

(9) Drift Speed in an Alternating Electric Field
Let the electric field be considered to be a rotating vector in the XOY plane,
E=E,expipt. It is assumed that the frequency p/2x is sufficiently large that
fluctuations in the mean energy ime?® are unimportant. This assumption is also
correct for the special case p=0.
An expression for the velocity V is first obtained. The momentum mV
fluctuates in a time-dependent field because its rates of loss by encounters and
of gain from the field are not equal. Thus, from Section II (e),

av . M \g
mH_EOe exp (1pt)—( Tm oc)lomV,

or
49 V=%°e EXP (IPL);  «ovnenenennnnneraraaanns (9)
whence
Eye .
=0 exp (iPf)y ceceereriiitcraaaane 10
m(V +ip) Xp (lpt)’ ( )

where v=g/l.
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When the vector V is not directed along an axis of coordinates the appropriate
form of equation (2) is

Fleuvm)=fle)— - Y

T T Crrrreeeeees (11)
So that, when E=E, exp (ipt)=E, +iE, and V=V, iV, the appropriate form
of equation (11) is

__Bgeu exp (ipt) df

F(e,uyw)=f(c) em(v+ip)  de’

It follows, as in Section II (f), that, with E=E, exp (ipt),

_Be [ dme df
3m ), (v+ip) de

_Be e ,df ¢ 2
=3m . [c dc(v +ip>]47w fde

W=

Be ,d[ @
—3—m [ %(mﬁ). .................... (12)

(h) Drift Velocity in the Presence of a Magnetic Field

Let a magnetic field B act along the direction Oz and E along Oz and write
o= —Be/m. Then equation (9) is to be replaced by

av B ) '
G TV =", exp (ipt) HoV,
or
av . By .
qp TVl V=—"rexp (ipt). ... (13)
Whence
B exp (ipt)
Smlv—i(e—p)] tite (14)
and
_Be _,d 3
_3—,,n C de [m] e tesseene ( 1 5)

Equations (12) and (15) can be derived directly by use of the method of free
paths (Huxley 1957b).

With electrons v=g/l becomes v=c/l.

(¢) Magnetic Deflection of an Electron Stream in a Gas
In equation (15) let p=0, then

. E d/ ¢ FEe d iw)e®
W=W,exp (‘9>=372°‘2az(m) AT [(‘viﬁ)z‘] - (16)

w=—DBe[m.
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Choose the axes of coordinates so that Oy is parallel to B and 40z to E, then
it follows from equation (16) that

W=W,+iW =W, (cos 0-+i sin 0).

—
W__Ee _zd( ve )’

3m  de\v2+w?
Ee d c3
Wx 3m mc—z‘%(v——2+w2)7 . (17)

tan G—VL‘—oyc‘z—(1 ¢ 0—2i v
W, dc(v2+0)2 de\v2+w?)

In laboratory experiments in gases at pressures of a few millimetres of mercury
and with fields B less than a few tens of gauss the condition «w?<v2 holds.

In this event, with electrons,

d (3 Fe )
ﬂ7 _>_ —2__ —2 2
3m dc( ) 3m’ dc(lc)
Ee o4 .,
Wiz @0 d_c(l 2 |
P . .. (18)
— e c—2— (]2 —2 2
tan 0=w-e¢ dc(l c)/c dc(lc )
d d WB
ey e =2 20 . o—2_— (]2 —2 =72y —_— "2
=w-C dc(l ¢)-¢ dc(lc )/ [c (lo )] x|

where

C =§ [c"?d%(lcz)] ? / 0—2 d (lzc),

a dimensionless factor. Thus
| W |— | tan 0 |.

Since tan 6 can be measured directly, W can be calculated if ¢ is known. The

value of ¢ depends upon the distribution function f(c) and the dependence
l=l(¢), of | upon c.

(§) High Frequency Conductivity of a Weakly Ionized Gas

An alternating electric field E,=X, cos (pt+«), in the directions +Oxz can
be resolved into two oppositely rotating vector fields as follows :

B,=3}X exp (ipt) +3X* exp (—ip?),
where X=X, exp (ia) and X*=X,exp (—ia).
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It follows from equation (15) that the components of W are given by
W AW =W W)+ (W +iW;)
— € o2 E{Os[X exp (ipt) , X* exp (—ipt)]}_ .. (20)

v—i(w—p)  v—i(w+p)
The associated current densities are J,=neW, and J,=neW,.

When the electric field also possesses components H,=Y cos (pt+£) and
E,=Z cos (pt+v) it can be seen that the complex current density J(J,,J )
whose real parts give the physical current density is

J, X X* )
()=1J, t=| o+ |1 ¥ | exp (ipt)+| o= |{ T* . exp(—ipt),
J, Z zZ*
in which
oy Oay O G GOy 0 |
| ot |= lo)s o © and |67 [= |6z o5 O |
0 0 of 0 0 9o
with X=X, exp (iz), Y=Y, exp (iB), Z=Z, exp (iy), and L. (21)
d ¢3
e R S 2 4
Oue= Oyy =10y = —lioy,=(ne?/6m)c & v=i(o—p)
Oz = Oyy=10py= —ic ;= (ne?/6m)c2 4 __ ¢
T v de v—i(w+p)
t g 4] ¢
0 =0 =03 do|vtip ||

III. DIFFUSION
(@) General

The agitational motion of the electrons or ions operates to diminish
inequalities in their concentration » and to disperse a group of electrons through-
out the gas. Across an elementary geometrical surface dS at a position where
grad » is not zero there is, due to diffusion, a net flux of electrons which is a
function of the components of grad n. In practice | grad » |/n is small and
this flux is accurately proportional to —grad n-dS when no magnetic field is
present. The coefficient of proportionality D is called the coefficient of diffusion.
The flux is therefore —D grad n-dS=nw-dS, where w is an equivalent con-
vective velocity that would give the same flux across dS were grad #n equal to
zero. The net transport of electrons across dS in time df, being the difference
between those that cross in opposite senses, is therefore

nw-dSdt= —D grad n-dSdi.

(b) Formula for the Coefficient of Diffusion D
Let the direction of grad n be that of the coordinate axis +Oz so that
WW=nW,= —Don[0x, w=—(D[n)on/dx. Let w(c) and n, refer to the electrons
with speeds between ¢ and ¢+de. Then w(c)=—(D(c)/n,)on,|dx.
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Consider a volume bounded by surfaces of unit area normal to Oz and a
distance do apart. The mean momentum of the electrons (or ions) with speeds ¢
within this volume is n,;mw(c)da and, according to equation (3), the rate at which
momentum is destroyed within the volume is nmw(c)g/ldx, where

1=lo/[M|(M +m)—a] =(ly+8),

where S is defined in equation (5) and g is the mean velocity of an electron (or
ion) with speed ¢ relative to a molecule. When w(c) is constant this momentum
is restored by transport of momentum across the boundaries. Let the unit
boundary surfaces lie at positions # and #-+dx on Ox. The mean momentum
transported in time d¢ by electrons with speeds ¢ in the direction 4Oz into the
volume, across the unit boundary at =, is inmuldt=3%nmc?dt. The same
quantity of momentum leaves the volume in time df in the direction —Ox and
by Newton’s third law there is an equal gain of momentum to the volume in the
direction +Ox. Thus the total gain of momentum is inmec?dt in the direction
+O0zx. Similarly, the gain of momentum in the sense +Ox across the boundary
at x+de is —¥me2dt{n,+(dn /do)dr}.
The total gain of momentum in the sense -+Ox is therefore

—ime2(dn, [do)dedt= —(0p, | Ox)dxdt,

where p, is the partial pressure of the electrons (or ions) with speeds ¢. Thus
the condition that w(e) should not change with time is

—n,mw(e)g/l —ime?dn, [dr=0,

or
—D(e) ‘%—w __l*1 dn,
n, de (€)= 3g m, dz’
from which it follows that
Dokl sod D=DOI =) ... (22)
With electrons, g=¢ and D=1(le).

When a magnetic field B is present, the free paths of the ions or electrons are
changed from straight lines between encounters to helices whose axes are parallel
to B and about which they move with angular velocity = —Be/m. The effect
of the field is to reduce the coefficient of diffusion in directions normal to B to
some value D,<D, whereas that parallel to B retains the value D. It is
necessary to obtain a formula for Dj.

Let | grad n |=dn/dz, and consider the situation where B is parallel to
+0y. The Lorentz force on an electron or ion moving with velocity w across
a magnetic field B is F=ew x B, consequently the direction of w in the presence
of a magnetic field B does not in general coincide with that of —grad n. In the
present instance w has components w, and w, whereas grad » has the single
component dn/dx.

The equations of dynamic equilibrium in this case become

n{ —mw_(c)g/l+w,(c)eB} =0,
—nmw,(c)g/l —nw_(c)eB —mc*dn, /dz=0.

-t
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Write, as before, w=—eB/m, then
le? 1 dn
w,(0)=—w,(¢c)l/g and nw,(c)=— 3 MFolg W@
whence
e 1 _1 2T
T3¢ M+o®gf]” 3 1+wl®

D g(e)

where T'=Il/g=1/v. The coefficient of diffusion is therefore
Dp=3cT[[1+62T2]. ettt (24)

With electrons g=¢ and T'=Il/c=1/v.

Also,
= —6Tw,=0TDAn[ds.  .....ooviieieniann... (25)

The more general case of diffusion in the presence of a magnetic field with B
directed along --Oy and grad n arbitrarily directed is expressible in matrix
notation as follows (o= —Be/m) :

w, D, 0 oTD,) (on/ox
—mw, =14 0 D 0 onfoyr. .... (26)
w) —wTD, 0 D, ) (on/o

IV. THE DISTRIBUTION FUNCTION f(c)
Consider first the interchange of energy in a collision between an electron
(or ion) and a molecule of the gas.

r’

Fig. 4

(@) Losses of Emnergy in Collisions
Let ¢ and C (Fig. 4) be the velocities respectively of an electron (or ion)
and a molecule before the encounter and ¢’ and C’ the velocities following
the encounter. The velocity G=mc+MC/(m-+M)=mc’+MC'/(m+M) of the
centroid X of m and M is unchanged by the encounter but the velocities r and R
relative to X become r’ and R’.
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The following relations hold :

c=G+r, c¢'=G+r’,
whence
AE=G2 1121 2G T, 2=@+r242G T, [ --e- (27)

2—c?=2G-(r—r')+r2—r'2

Further progress requires special assumptions.

(i) Perfectly Elastic Collisions between Smooth Rigid Spheres.—r?=r"%; all
directions of r’ about X are equally probable and the mean value of G-’ is zero.
Then,

2 2 - c
2—c'2=2G r_z( I M\c —Q),
which, after reduction, gives
2M
2__o'2— 2__ M(O2 —
c:—c = M)z[mc MC2+(M —m)c-C].

Since ¢ C is zero in the mean, all directions of C being equally probable, it follows
that the mean loss of energy in an encounter is, when ¢ is given,

bmet—jmo— o ﬁf%z[mcz—woﬂ ........ (28)

(ii) Scattering Elastic but not Isotropic.—In this case r'=r, but with ¢ and G
given the mean value of the projection of r' on r is not zero but equal to fr
where B is a function of .

Thus, ¢2—¢'2=2G-(r—r’)=2(1—B)G r, and it follows as above, that

2M

=(—m(1 —B)me2—MC*—(M —m)c-C]

c? —c'2

50 that when C is given all directions and magnitudes

et —jme=(1 B, ]f[{f’”)z[%moz IMOF, ... (29)

in which B is the mean value of the projection of the velocities r’ upon ¢, which,
according to Section II (e), is the same as a=cos 6.

(b) Derivation of the Distribution Function f(c)
According to equations (2) and (3) the general form of the distribution
function with a uniform and constant electric field E is,
Eel u df
F(C,u')—f(c) mg 7}‘ (T(-} .............. (30)
In a steady state of motion the number of electrons with speeds between ¢ and
¢--de is 4nF(c,u)ctde and the mean population of this group is constant. The
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mean rate at which energy is supplied to the group is nHEeuF(c,u)-4nc?de averaged
over all values of » with ¢ constant and is equal to

E2e*le df,
3mg d—04-rw de

The group transfers energy to the molecules at the same rate, otherwise its
population would change.

Consider first the case in which the molecules are at rest (C2=0) and their
encounters with electrons (or ions) resemble those between smooth rigid spheres
(2=0). The rate at which the group loses energy in encounters is

2Mm g

2 . .1 2J

(47?3 fde)n (0 Tm) me i,
with ly=MI/(M +m) (Section II (e)).

It follows that
2
—y(Bnrdr__vrdf_ me o (31)
mg) de 3 de (M +m)

whence

m ¢ 3ede
fle)=Const. exp— 72— f . (32)

where V=Eel/myg.

In order to infer the form of f(c) when } M (2 is not zero use is made of the fact
that f(c) reverts to Maxwell’s distribution fle)=exp (—3mec?/2MC?) when V—>0.
In this condition .

dffde=—@3me/MC?)f, .............. (33)

and the appropriate form of equation (31), when 31 MC? is not zero, may be
inferred to be

M \df me
%(V2+ = +m02)a}_— s e (34)
Thus
_ 3m ¢ cde
f(e)=const. exp—m J —;_r
(ot
M +m
=const. exp—fc __mede ... (35)
MO (M +m)V?)
=const. exp— ’ mode
T oA f T3 Fm) V>

J

For electrons M +m~M, g->¢, V=FEel/me, and the expression for f(e) is
equivalent to that given by Chapman and Cowling (1952, p. 350).

The problem of the distribution function f(¢) has been considered by many
investigators and references to their work will be found in the treatises of Chapman
and Cowling (1952, p. 346) aud of Loeb (1955, Ch. IV).
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Equation (31) may also be derived as follows. The acceleration Ee/m in
ordinary space corresponds to a constant velocity Ee/m in velocity space with
a radial component (Ee/m)(u/c). This radial component produces in the distribu-
tion given by equation (2) outward flux of representative points over the spherical
surface with radius ¢, of amount

E%? 1\df
—dme (3m g)dc

’

and in a permanent distribution this outward flux is balanced by an inward
flux brought about by losses of energy in encounters. Let the encounters be
gimilar to those between rigid smooth spheres, then the mean loss of speed
Ac=c¢—¢ in an encounter is to be obtained from ¢2—¢'2=2Mme?/(M +m)?,
it being supposed that the molecules are at rest. When Ac/e<1 it follows that
Ac~Mme[(M +m)2. The inward flux over the surface with radius ¢ is equal to
the number of collisions in unit time that are made by all electrons in the velocity
range ¢ to ¢+Ac, namely,

g . 2.M= g . gp2_ MO
nflo 4me (0L +m)? nfl 4me E
from which it follows that
_yfBe N2 me
m g M +m

which is equation (31).

Equation (34) may also be derived with greater rigour as follows. As
discussed above, the acceleration Ee/m in ordinary space becomes a velocity
Ee/m of a representative point in velocity space with a radial component Eeu/me
at the surface of a sphere with radius ¢. This radial component is associated
with an outward flux of representative points over the sphere equal to
4me2nF (c,u)Eeu/me where the average is taken with respect to » with ¢ constant.

Since T d
Fea) =0~ )'s &

it follows that the outward flux of points (in unit time) is

—4me? (Ee\? 1 df
3 m) g ac

In a steady distribution this outward flux is cancelled by an equal and
opposite inward flux that arises from the losses of speed in encounters. First
suppose that the molecules are at rest. In Figure 5, OA=c is the velocity of
an electron (mass m) that collides with a molecule at rest (mass M). OX is
the velocity G=mc/(M +m) of the centroid of m and M, and G<<c. Let the
velocity of the electron after the collision relative to the centroid be r'=XQ,
then the total velocity is ¢'=0Q. Since r'=XA, it follows that ¢’ <c¢ and all
representative points ¢’ lie within the sphere with radius ¢. If the initial velocity
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is OB with a speed ¢+, where #=AB, then the representative points after
collision lie on a sphere whose centre is at X’, where
, . m me
0ox =Mim (c+x)~ U w

and whose radius r=X'B. This sphere intersects the sphere with centre O
and radius ¢ in a circle on which lies the point P. Thus the representative
points that lie on the spherical cap PBP’ lie outside the sphere with centre O
whereas those on the complementary arc lie within. Let c2dw be an element
of surface on which A4 lies. The number of velocity points within an element of
volume ¢’dwdx at B is nfc?dwdz and the corresponding number of encounters

@ ‘ ®) ©

Fig. 5

in unit time is p=c*dwnf(g/ly)dr. Let the angle D’OP =0, then if the scattering
is isotropic the number of encounters that give velocity points within the sphere
of radius ¢ is §p(1—cos 0) in unit time. When the scattering is not isotropic
this number becomes
¢(0)(1 —cos 6)
P 2

From the figure, c*=72+0X'2—20X".r cos 6 with OX'={me/( (M +m)}(c+x)
and r={M/(M +m)}(¢c+x), and it can be deduced that

(lyl[n_l_ )2(1+GOSO) dw=—(M+ m)E sin 0d6.

The number of encounters in unit time for which the initial velocity points lie
within the element of velocity space ¢2dw.4D and whose final points fall within
the sphere ¢ is therefore

, with } f " o(0) sin 60 =1.
0

g (P
nfetd o 9(0)(1 —cos 8)dr=

g nfetdwg  Mme fﬂ (1 —cos 6)¢p(0) sin 6d6

20, (Mmpf,
_(1—cosb)  Mme

T VM mp
=_Jme_, c?do,

UM +m)

nfc*d o

H
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‘where, in accordance with equation (3), I=l(M+m)/M(1 —cos 0). The
inward flux of points across unit area in unit time is therefore {gme/l(M +m)}nf.
To estimate the influence of the molecular motions, consider Figure 5 (b). When
the molecules are at rest the velocity of the centroid is OX=mc/(M +m)=G;
G<ec. An encounter transforms c into ¢’=G"r’. When the molecule has a
velocity C, G=O0X becomes G=0X', ¢'>c"=G'+r", with r'~r'. As C
assumes all possible directions, the end points of ¢” lie on the surface of a sphere
about P and with radius {M/(M +m)}C. Thus, in velocity space (Fig. 5 (¢))
the points which originally lay within an element of volume now become dis-
persed over a sphere centred on the volume and with radius MC/(M +m). The
spherical dispersal of velocity points about such elements of volume lying between
two spherical surfaces with radii ¢4+ MC/(M +m) give a flux of points inwards
across the spherical surface with radius ¢. If | y | <MC/(M +m) is the distance
of an elementary volume from the surface with radius ¢, then it is readily shown
that the flux of points inwards across unit surface of the sphere ¢ is

(1 c0s 6) g J‘MC/(M +m) ( df)d
%% | o smst 1Y DV HYG)

_(1—cos )M gMC? n(y_ gMC*  df
=3 tm)l, (M+m)"de” 3UM+m) de

The mean flux for all values of C is

ng _MC df
3l (M +m) d¢’

In a steady distribution of speeds ¢ the total flux across any sphere in velocity
space is zero, thus,

EBe\* 1 df g m of — gMC? Qf_o
_(Tn) 3¢ dc 1 (M+m)’ 3UM+m) de '

or

M A2 df_ me
) dc—-mf, ......

—%(V2+M+m0

which is equation (34) whose solution is equation (35).

The general case in which electrons make both elastic encounters and
inelastic encounters in which a large proportion of their energy is lost, does not
appear to lead to a simple formula for the distribution. Nevertheless, when
electrons move in diatomic gases and their mean energies are not greater than
about five times that of the gas molecules, the inelastic losses of energy in
encounters are associated with changes in the rotational states of the molecules.
Moreover, these transitions are produced by those electrons with energies appreci-
ably greater than the mean energy. Let AQ be the energy absorbed by a molecule
in changing from one rotational state to a neighbouring state. Suppose that in
such collisions AQ/ime*<1. Since ¢®—c¢'2=2AQ/m, AC~AQ[me. Let a pro-
portion of encounters in which the speed is ¢ and losses AQ occur be z(c). It
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follows that the inward flux of points over the sphere of radius ¢ in velocity
space now becomes, with ly=IM /(M +m),
zg AQ

nf[(Mi_ﬁm(l —ax)g/l +E %] 47:02d0=nf[(1 —x)+ (

M —(—m)2 wAQ] me

2,
m Mec? (M+m)47w do,

from which it follows that

__.%(Eel)2 gj:[l_”"l‘(M,:m)z wAQ] me §

mg) de MC?| M +m
_1 me f
“a? (M +m)"?

where a? is the reciprocal of the guantity in the square bracket. Which, when
modified to allow for the influence of the agitational motions of the molecules
to give Maxwell’s formula when E=0, becomes

‘ MCZ1df  me
1 2 4a_
3 [(aV) +]1/[ +m] de” M +m’’
whence .,
f=const. exp—fc Smedo —. .. (36)
(M +m)(aV):+MO?

In practice x<1; m/M<1; 1/a?=1 +MxzAQ/(me)?,

f=const. exp—fc ﬂcdc___ ............ (37).
M[(aV)*+C?]
Suppose that #(c)=0 when ¢<e¢,, then
¢ 3mede
f=const. exp— m, c<cy. . . (a), .
3mede - (38)

= st. —|°
f=con gxp f a1

-—am, 0>01. P (b),/

when ¢,;>¢, the distribution, except.for.the. groups with large-energies, is the
same as if all collisions were elastic (a=1, z=0).

When ¢ exceeds ¢;, (M/m)xAQ soon exceeds 1 and a—me[(x MAQ)?2,

3mAQ (¢ xede
(Ee)? T >0 (39)

f—const. exp—

(¢) Limiting Form of Equations (35) and (38)

When V2> (C? and ¢;>C the speeds of most electrons are distributed according
to the law '
f(c)=const. exp -—fc 3—”;',0%‘0, ............

where V==FEel/me.
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When I(c)ocer equation (40) reduces to the form

4mc*f(c)de= exp (—c*foar)de, ... (41)

4c*
o3I (3/m)
where « is a speed and n=4—2r. Also
©
4th fle)etde=1.
0
It follows from the standard integral

o 1 (m+1
J exp (—y”)y'”dy=;b1‘(7ﬁni)

0

that the mean value of the sth power of the speeds ¢ is
-c—8=ocsl"(§%3) TG e (42)

The form of the distribution function in a high frequency field is obtained if ‘V2
in equations (37) and (40) is-given the value

Ee\? 1 1
Vz:(%) [v2+(w—p)2+v2+(m+p)2]’
as follows from equation (14). ‘

V. Ratio W/D
From the expressions for the velocity of drift W and the coefficient of
diffusion D (equations (7) and (22)) it follows that

W Ee , 4 (lc® :
= d—c(?)/(—g—). .............. (43)

In the speuial cases in which the speeds ¢ are distributed according to
Maxwell’s formula (equation (1)) the factor

d /ic® 4 @© d /lc®
—2 4 . —c?fa?
¢ dc( 3 ) “3\/“fo e dc(g)dc
8 [ let
— —c?lat
0(5'\/1'Cf0 N g de

:2(?_‘

3 (le?
()

Consequently, in this case, equation (43) becomes

w 3( Ee )_Ee ENgye

<
\—/

<

E_:E %—W}_—-Z —x_17= ﬁ,", ............

where N, is Avogadro’s number (per mol), » Boltzmann’s constant, and E the
gas constant.
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The same formula results in the special case in which locg (inverse fifth power
law of interaction).

When ions move in gases their agitational speeds are distributed according
to Maxwell’s law (unless E/p is very large) and equation (44) is satisfied, but the
motions of electrons in an electric field in a gas do not conform to equation (43)
in general. The complete expression in this case becomes (with g=c¢)

w Ee
ﬁz(%m?)p’
with i e (45)
Y
—02 =2 T (]p2
F=cc dc(lc )/2(le).

The value of F' is determined both by the law of distribution of the speeds ¢
and the dependence I=I(c). When loc¢ equation (44) is valid, but when the
law of distribution assumes the more general form of equation (43) the values”of
F that correspond to values of n=2, 4, and 6 are F=3/2, 1 -312, and 1.
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