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Summary 

The paper discusses convection in a vertical tube closed at both ends in which the 
temperature of the walls is arranged to increase linearly with depth. For the purposes 
of the theory, the convective flow is assumed to be radially symmetrical about the axis 
of the tube. 

The temperature and velocity distributions in the pipe are found to be dependent 
on a non-dimensional modified Rayleigh number H. Experiments conducted at values 
of H between 90 and 30 000 agree with theoretical predictions for values of H below 
300 and above 3000. Negative temperature gradients occurring along the axis for 
values of H between 700 and 950 indicate that in this range the flow cannot be radially 
symmetric. This non-symmetric flow would develop first, as H is increased from zero, 
and it is suggested that the agreement between the experimental and theoretical results 
for H <300 shows that the critical value of H for the non-symmetrical flow does not 
differ greatly from the value (142) obtained theoretically for the symmetric regime. 
Presumably it is at values of H of 3000 and above that the flow takes an axially symmetric 
form. This higher range is appropriate to bores in the New Zealand thermal regions. 

1. INTRODUCTION 

Ever since the first bores were drilled at Wairakei, N.Z., for steam for power 
production, temperature measurements have been made using a geothermograph 
at 100 ft intervals down closed bores. These temperatures are one of the few 
physical measurements that can be made at depth in the field, but up to the 
present time there has been considerable doubt as to whether the temperatures 
measured indicate closely the temperatures of the surrounding ground at the 
same depth. It is probable that these temperatures will be related in some 
manner to the steady-state temperatures of the surrounding ground, but many 
man-introduced factors (e.g. bore history) may have a controlling influence. 

Since a bore is at a higher temperature at the bottom, it is probable that 
free convection will occur within it. This convective flow will have the effect 
of transferring heat from one region of the surrounding ground to another at a 
different level, thus temperatures measured in the bore are likely to be different 
from those that would exist in the ground originally, i.e. the temperature iso­
therms will be displaced in the vicinity of a bore. It will also cause some variation 
of temperature with radial distance. 

*Dominion Physical Laboratory, Department of Scientific and Industrial Research, Lower 
Hutt, New Zealand. 
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II. PREVIOUS WORK 

Ostrach (1957) reviews most of the available literature about convection 
phenomena in fluids heated from below. In the bibliography at the end of this 
paper it is seen that there is very little previous work on convection in vertical 
pipes. Ostrach (1952) discusses free convection in vertical channels (between 
parallel plates), which enables him to introduce some simplification not available 
when studying tubes. The few papers in existence concerning free convection 
in vertical pipes have arisen because of the problem of cooling turbine blades by 
free convection of the fluid in channels in the blades. Of these papers, only two 
have dealt with the theoretical side, Lighthill (1953) and Eckert and Jackson 
(1950). Both these papers deal with a vertical pipe at constant wall temperature 
fed at the top by a reservoir of cool fluid. The work of Lighthill has been verified 
experimentally by Martin and Cohen (1954). 

III. ASSUMPTIONS 

In order to build up a mathematical theory it has been necessary to make 
many assumptions that to some degree divorce the problem from that of a bore 
drilled in a thermal area. This is regrettable, but it is possible to obtain an 
indication of the parameters involved and the effect of the temperature and to 
design further experiments from which it may be possible to estimate empirically 
the effect in bores. 

The following assumptions were made : 

(1) A pipe of length h and radius a, closed at both ends, is so maintained 
that the temperature gradient at the wall is linear, the higher temperature being 
at the lower end. 

(2) There is a point on the axis at which the flow velocity is zero-this point 
is taken as the origin of coordinates. 

(3) The length of the pipe is much greater than the radius. 

(4) The kinematic viscosity, the thermal diffusivity, and the coefficient 
of volumetric expansion are all independent of temperature. 

(5) The law of variation of density with temperature is 

p-1 =po 1{1 +~(T -To)}, 

where p is the density at a temperature T, 
Po is the density at a temperature To, 
~ is the coefficient of volumetric expansion of water at To, 

To is the temperature at the origin. 

(1) 

(6) The boundary layer approximations apply, i.e. the gradient of a quantity 
along the tube is neglected in comparison with its gradient along a radius. This 
may be justified by the large length/radius ratio. 

(7) The flow is symmetrical about the axis. At the time when the theoretical 
approach was done this was felt to be a logical assumption. Some of the experi­
mental results, however, could only be accounted for by a non-symmetric flow 
pattern. A. McNabb (personal communication) has since shown from stability 
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theory that this non-symmetric flow regime would occur, as the controlling 
parameter H is increased from zero, before the axially symmetric flow regime. 

The non-symmetric flow regime is not discussed theoretically in this paper 
as it is outside the limits expected to be met in bores. 

IV. THEORETICAL DISCUSSION 

Inside the pipe in the vicinity of the origin, the equations of conservation 
of mass, momentum, and heat which apply to the liquid for steady axi-symmetrical 
flow, and with the boundary layer approximation, are (Lighthill1953) : 

oU oV V 
oX+oR+:R=o, 

oU oU 1 op (02U IOU) 
UoX+V oR=-g- P oX+v OR2+:R oR ' 

op 
oR=O, 

oT oT (02T lOT) 
UoX+ V oR=(X OR2+.R oR ' 

where X is the vertical distance measured upwards from the origin, 
R is the radial distance, 
U is the axial velocity upwards of the liquid, 
V is the radial velocity of the liquid, 
g is the acceleration due to gravity, 
p is the density of the liquid, 
p is the pressure, 
v is the kinematic viscosity (viscosity/density) of the liquid, 
(X is the thermal diffusivity of the liquid. 

The boundary conditions are: 

. U=O, V=O, 
U=O, 
T=T.(X), 
T=To, 

at R=a,} 
at X=O, 
at R=a, 
at X=O. , 

(2) 

(3) 

(4) 

(5) 

(6) 

From the boundary conditions, since at R=a, U =0, V =0, equation (3) 
reduces to 

1 op (02U IOU) 
O=-g- Ps oX+v OR2+.R oR R=a ; (7) 

hence allowing for the variation of density (1), and substituting for op/oX, 

(8) 
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It is possible to reduce the equations and boundary conditions simultaneously 
to a non-dimensional form by the following substitutions: 

The equations become 

U =(rJ.h/a2 )u, 
V =(rJ./a)v, 
R=ar, 
X=hx, 

T -To = -(vrJ.h/~ga4)6, 

Ts(X) -To = -(vrJ.h/~ga4)6s(x), 

and the boundary conditions are 

u=o, v=O, 
u=O, 
6 =6s(x), 
6=0, 

at r=l'} at x=o, 
at r=l, 
at x=O. 

The equations (10), (11), (12) may be integrated over a cross section to give 

I: rudr =0, 

a II (afJ) -a rufJdr = -a ' x 0 r r=1 

II _ 1 (au a2u) 
r6dr -"2 -a - ~a 2 • 
orr r=1 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Since experimental measurements were made only at the wall of the pipe 
and along the central axis, equations (10), (11), and (12) may be simplified to 
read 

(17) 

(18) 

(19) 

and these equations, (17), (18), and (19), together with (14), (15), and (16), are 
the equations for which a solution is required. 
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As throughout the pipe es(x) =Hx, where H is the modified Rayleigh number, 
~ga4(T2-TI)/VIXh, TI and T2 being the temperature at top and bottom of the 
pipe respectively, the solution for e and u in the vicinity of the origin must be 
linear with respect to x. Hence e and u may be replaced by 

e =X(rxo+IXlr2 +IX2r4+rxar6) +Hx, 
u=x(~O+~lr2+~2r4+~3r6). 

(20) 
(21) 

Then from the boundary conditions (13) and the equations (14), (16), (17), 
and (19), 

rxo + IXI + IX2 + rxa =0, 
~O+~l +~2+~3=0, 

12~o+8~1 +4~2+3~3=0, 
12IXo+81X1 +4IX2+3rxa+12H = -12(8~2+24~3)' 

IXI +4IX2+9rxa=0, 
IXo= -(16~2 +36~3)' 

Solving for all the unknowns in terms of rxo, IX}) and H, 

CI_ ( + 2 9IXo+ 81X1 4+4rxo+3IXI 6) +H v -x rxo IXlr - 5 r 5 r x, 

x 
u=1440 {( -66rxo+68IXI +240H) +(126rxo-153IXI-540H)r2 

+( -36rxo+153IXI +540H)r4+( -24rxo-68IXI-240H)r6}, 

and substituting in (18) 

{5760-68(rxo+H)}IXI =( -66rxo+240H)(rxo+H) 
and in (15) 

rxo(I'239IXo-2 . 439IXI -8 . 614H) 

(22) 
(23) 
(24) 
(25) 
(26) 
(27) 

(28) 

(29) 

(30) 

+IXI( -1·258rxo+l·5351X1 +5 . 414H) = -1152(3rxo+IXI)' (31) 

From (30) it is possible to obtain a unique value of IX}) in terms of rxo and H which 
may be substituted in (31) to give 

{68(IXo+H) -5760P(I-239IX~-8 -614IXoH +3456rxo) 
+{68(IXo+H) -5760} (66IXo-240H)(rxo +H)( -3 -697rxo+5 -414H +1152) 
+(66rxo-240H)2(IXO+H)2 xl-535 =0_ (32) 

Multiplying this out and substituting 

[1.= IXo/H, 
then 

4 -177[1.4+(12 -180 -21-585 xl03H-I)[1.3+(11-771-10 -017 xl03H-1 
+3 -104 X 106H-2) [1.2 +(3 -708+22 -883 Xl03H-I+I-838 xl0 6H-2 

(33) 

-0 -115 X 109H-3) [1. +( -0 -060+11-317 )('103H-l---"!-593 Xl0 6H-2) =0 (34) 

is obtained_ 

From this it is possible to obtain solutions for [1. for various values of H. 
For the axially symmetric flow regime considered, convection would have the 
effect of reducing the temperature gradient and hence rxo would lie in the range 
O>IXo> -H_ Thus only solutions for [1. in the range 0>[1.> -1 are considered_ 
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V. RESULTS 

Table lllsts the value of Il, 0C0, and the non-dimensional axial temperature 
gradient for various values of the non-dimensional wall temperature gradient H. 

TABLE 1 
THEORETICAL RELATIONSHIP BETWEEN WALL AND AXIAL TEMPERATURE 

GRADIENTS 

Wall 
-Temperature 
Gradient H 

0 
142 
250 
500 
750 

1000 
1250 
2000 
2500 
5000 
7500 

10000 
25000 
50000 
75000 

100000 

------- 1-0 1- 1-
Z Z 
OJ OJ 
00 « « 
'" '" o-s 
C> C> 
OJ OJ 

'" '" :::J :::J 

~ ~ 0-6 

'" '" OJ OJ .... 
::; ::; 

0-4 OJ OJ 
1- 1-

-' -' « -' 
X « 
~ 0-2 

0 
j: 
« 
'" 0-0 

-0-2 
10 

All units are non· dimensional 

!L 

0 
0 

-0,177 
-0·332 
-0·366 
-0,391 
-0·405 
-0,420 
-0·422 
-0,395 
-0·345 
-0·293 
-0·112 
-0,046 
-0·024 
-0,014 

o 
8 o 

• 
a> 

1X0 

0 
0 

-44 
-161 
-275 
-391 
-506 
-840 

-1055 
-1975 
-2588 
-2930 
-2800 
-2280 
-1830 
-1350 

Axial 
Temperature 

Gradient 

0 
142 
206 
339 
475 
609 
744 

1160 
1445 
3025 
4912 
7070 

22200 
47700 
73200 
98700 

x GLYCERINE 
o 80% GLYCERINE 

20% WATER 
11 WATER 

-THEORETICAL CURVE 

Fig. l.-Comparison of theoretical and experimental results. 

The ratio of the non-dimensional axial temperature gradient to the non­
dimensional wall temperature gradient is plotted against H in Figure 1-
experimental results are displayed on the same graph. 
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COPPER 

INNER TUBES \\:--:.;.~~~~ 

HOT WATER IN 

THERMOCOUPLE 
LEADS 

HOT WATER 
OUT 

COLD WATER 
IN 

SEAL FOR WIRES 

Fig. 2 (a).-The experimental apparatus, lengthwise central 
section. 

Fig. 2 (b).-The experimental apparatus, section per­
pendicular to axis. 

VI. EXPERIMENTAL PROCEDURE 

535 

The convection pipe used in the experiment consisted of a copper tube 
36 in. long and of internal diameter 1 in., closed at both ends by a copper plate. 
Temperatures were measured by thermojunctions arrayed along the axis of the 
tube and along the wall. Holes were provided for filling the tube. The arrange­
ment is shown in Figure 2 (a). 

GG 



536 1. G. DONALDSON 

This tube was sealed within a larger brass tube, also 36 in. long, but 2 in. 
in diameter, the intervening space being filled with dry sand. Two layers of 
plastic hosing, l in. internal diameter, were close-wound about the outer tube. 
Hot water from a constant temperature, constant flow reservoir was fed upwards 
through the inner coil, and cold water from another controlled reservoir was 
fed downwards through the outer coil. The hot water was therefore cooled 

TABLE 2 

EXPERIMENTALLY DETERMINED RELATIONSHIP BETWEEL WALL AND CENTRAL TEMPERATURE 

GRADIENTS 

I 
I 

Convecting 
Non·dimensional I Non·dimensional 

Run No. Wall Temp. Grad., Central Temp. Difference 
Fluid 

(H) ! Grad. 

Glycerine 1 51 51 0 
2 49 49 0 
4 72 72 0 
5 37 37 0 
6 50 50 0 

I 

73 73 8 
I 

0 
9 55 

! 
55 0 

10 43 ! 43 0 
12 49 49 0 
13 62 

I 

62 0 
14 84 84 0 
15 78 I 76·5 -1·5 

'I 

685 
i 

7 I -678 80% Glycerine 18 i 
20% Water 19 685 20 -665 

20 775 -80 -855 
21 650 

I 

58 -592 
22 860 -89 -951 
23 945 

I 

-19 -963 

Water 24 25900 20700 -5170 
25 27350 21900 -5464 
26 14 500 10900 -3430 
27 17800 13500 --4300 
28 14200 11600 -2600 
29 23300 20500 -2800 

30} 
31 

290 233 -57 

321.. 550 275 -275 
33J 

34} 35 970 145 -835 

36 

371.. 990 200 -790 
38J 
391.. 910 -45 -955 
40J 
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as it ascended and by this means it proved possible to create temperature gradients 
ranging from 0·4 degC to 24 degC per 3 ft of pipe. .A cross-sectional view of the 
arrangement is shown in Figure 2 (b). 

Eleven thermojunctions were set at equal spacing along the wall of the 
inner tube and 11 others were arranged along the axis of the inner tube, matching 
those in the wall. 

By the use of glycerine, water, or a mixture of the two it was possible to 
adapt the modified Rayleigh number H to a wide range of values, between 40 
and 3 xl04. 

45 

40 

U 
g. 
W 
II: 
:J 
I-
< 
II: 
W 
a. 
~ 
w 
I-

35 

30 L-__ -----' ___ ----'-____ ---LI ___ -,J"L-__ --'" 

o 0'2 0-4 0'6 0·8 1·0 

DEPTH (TOTAL DEPTH = 1 UNIT) 

Fig. 3.-Typical profiles, -- along wall and - - - - along 
axis for large values of H. This case is run No. 26 with 
H = 14500. Here the flow is believed to be axially 

symmetric. 

VII. EXPERIMENTAL RESULTS 

The experimental results are given in Table 2. 
The H values are the product of the temperature gradients and the physical 

constants of the liquid. .As these physical constants have been taken at the mean 
temperature of the fluid, based on the thermocouple readings, the H values are 
only approximate. The axial temperature gradient is estimated in the central 
section of the pipe, around the point where the axial and wall temperatures 
are equal. 

Figures 3 and 4 show typical results. 
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VIII. CONCLUSION 

For H less than 300 and greater than 3000 the theoretical results appear to 
agree with the experimental ones as closely as would be expected taking into 
account the approximations involved. Between these values the experimental 
results differ considerably from those calculated from the theory. In particular 
at values of H between 700 and 950, negative temperature gradients occur on 
the axis. Figure 4 illustrates this regime. Such a flow cannot have radial 
symmetry. The fluid must be rising up one side of the pipe and descending on 
the other. As mentioned earlier, McNabb (personal communication) states 

55'0 

52·5 

u 
o 
~ 50·0 
w 
0:: 
:J 
I-
< 
0:: 
W 
Q. 

~ 47·5 
I-

45·0 

/ 
0/ 

-0-_0 ,-
--0; 

42'5 '--__ --' ___ --L ___ --,L ___ -:-L-__ ~ 
o 0'2 0'4 0·6 o·e 1·0 

DEPTH (TOTAL DEPTH", 1 UNIT) 

Fig. 4.-Typical profiles, -- along wall and - - - - along 
axis for medium values of H. Here the flow is believed to 
be up one side of the pipe and down the other. This case 

is run No. 20, for H =775. 

that, according to instability theory, this non-symmetric flow would develop 
fir~t, as H is increased from zero, and that the radially symmetric regime discussed 
here would occur at higher values of H. It would appear that the experimental 
results support this view. The agreement between the experimental and 
theoretical results for H below 300 indicates that the critical value for this non­
symmetric flow is not greatly different from that determined theoretically for 
the radially symmetrical flow (i.e. 142). 

It is seen that the temperature effects (and thus the velocity and heat flow 
effects) are controlled by the value of the modified Rayleigh number 

~ga4(T2-Tl) 

wxh 
H 
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Thus by determining this for the various bores we are able to determine the 
~ffects inside the bore, although not as yet in the ground surrounding it. For 
the bores, in almost all cases, H is greater than 105• Thus we see from the theory 
that, for the section under consideration, the temperatures measured in the bores 
will be a good indication of the temperatures at the wall of the bores, within 
2 degC for H =10 6, but not necessarily of the temperature in the ground at the 
,same depth. For H as large as 106, however, it is possible that turbulent flow 
might occur within the bore. In this event the temperature difference between 
the measuring instrument and the wall of the bore will be very small, and the pipe 
.and the convecting fluid may be regarded as a very good conductor. The 
author, in an earlier paper (Donaldson 1959), determined the effect of a metal 
probe inserted into the ground on the temperatures in the ground. For a 3000 ft 
long probe, 10 in. in diameter, having a thermal conductivity of 8·4 
joule cm-1 sec-1 degC-l (about twice that of copper) embedded in ground in 
which the temperature increases by 250 degC in 1000 ft, the maximum temper­
ature discrepancy would be approximately 0 ·75 degC. 
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