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Summary 

Heat flow in heat exchange systems, operating at constant pressure, is 
considered in relation to the thermodynamical measure of entropy called by Keenan 
the availability. The ratio of the maximum attainable mechanical work from two 
systems (1) and (2) is shown to be equal to the ratio of the two availabilities or 
l:1B1/l:1Bg, and this reasonably approaches unity only when the exchanger involves 
countercurrent flow. The temperatures and temperature differences may be plotted 
against the linear dimension along the exchanger. The temperature difference will 
pass through one or more stationary values associated with a temperature T*. At 
such a pivotal point, we may define enthalpies, l:1H;, l:1H; and specific heats (c;, c;) of 
the two streams in which the following relations hold: 

yg/(h = c;lc; = l:1H1/l:1Hg = l:1H;Il:1H;, 

where Yl and gs are the mass flow rates of the two streams. 

1. INTRODUCTION 

Derivation of the maximum amount of mechanical work which can be obtained 
from a thermal source forms the basis of classical thermodynamics. However, it is 
not nearly as well realized that these derivations postulate inexhaustible sources or 
source in which a finite gain or loss of heat produces no temperature rise. As against 
this, the economic exploitation of fuels and other resources involves, in many cases, 
the use of exhaustible sources, in which a finite heat change produces a temperature 
change. Thus, in the internal combustion engine, energy exchange after the 
combustion of the fuel gases takes place under conditions of an exhaustible source. 
The heat change in steam systems, whereby steam is raised from combustion gas or 
from the products of a nuclear generator, also takes place under these same conditions. 
In these or similar conditions, energy is extracted from a source in which neither the 
temperature nor the entropy are maintained constant and thus none of four energy 
functions of classical thermodynamics are strictly applicable. Nevertheless, the 
source material giving up a quantity SQ of heat will travel through a definite thermal 
path determined by its specific heat and latent heats. If, in addition, the geometrical 
parameters or forces are prescribed, SQ becomes an exact differential and under 
isopiestic conditions is equivalent to dB, the differential of the enthalpy, or under 
isometric conditions becomes dU, the differential of the internal energy. Under 
isopiestic conditions, Keenan (1932, 1951), extending the earlier work of Gibbs (1931), 
has put forward an expression for the maximum amount of work derived from a ther­
mal source under these conditions which he has termed the "availability". Under 
this definition, availability becomes a metric quantity of the dimensions of energy. 
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In the second of the two papers cited above, Keenan has given a number of 
examples of the derivation of the maximum attainable work from physical and 
chemical systems, using the concept of availability. This and the following paper 
will be concerned with the exchange of thermal energy between two different bodies, 
and the efficiency of the exchange process will be evaluated in terms of the relative 
availabilities of the sources and sinks. The reactions will occur under approximately 
isopiestic conditions in practical heat exchange. The efficiency of the exchange 
process will be shown to be a simple generalization of the Kelvin efficiency. 

II. DERIVATION OF AVAILABILITY 

Let the exhaustible thermal source contain a quantity of heat at a temperature 
T 1, and let To be the temperature of the sink supposed to be inexhaustible in the 
sense that the addition of heat to the sink will not increase the temperature To. 
On the other hand, as heat is withdrawn from the source, its temperature, depending 
on the specific heat and latent heat in the temperature range To .-;;;; T .-;;;; T 1> will fall. 
Let an element of heat 8Q be withdrawn at the temperature T 1 . The maximum 
amount of work equivalent to this element of heat in any reversible cycle becomes 

8W = 8Q(T-To)/T 

= 8Q-To8Q/T. 

If the thermal exchange takes place at a fixed pressure p the value of 8Q becomes 
dE and we get 

(dW)2> = dH -To dE/T, (1) 

where (dW)2> is an element of mechanical work done at pressure p. The total amount 
of work done when all the enthalpy at temperature Tl is transferred to the temperature 
To becomes W2>' 

IT. IT. dH 
Wp= dH-To T 

To To 

= llH1-TollS1 , 

where llHI is the enthalpy change between the states at {p, To} and {p, T 1 } and llSI 
is the corresponding entropy change. 

The maximum amount of work done at constant pressure is defined by Keenan 
as the increment in the availability, llB1, where 

llBI = llHI-TO llSI" (2) 

The ratio of the availability to the enthalpy at the same temperature has been 
called the availability ratio .91 (Bosworth 1954). Thus, 

.911 = llBI/llHI = I-To llSI/llHI' (3) 

Since the ratio 6.H1/6.S1 is the heat loaded average of the temperature we can put 

1'1 = llHl/llSl. 
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The availability ratio then becomes the ratio of two temperatures 

$'1 = (TI-To)/tJi;.· (4) 

Had the source been inexhaustible (or the transfer of heat been infinitesimal m 
comparison with the enthalpy content), TI would then become TI and 

$'1 = (TI-To)/TI' 

or the availability would become the Kelvin efficiency of the heat transfer between 
single temperatures TI and To. The property of the availability for an exhaustible 
system may thus be regarded as the generalization of the Kelvin efficiency to an 
extended range of sources and sinks. 

This concept of efficiency in terms of availability may be extended to pairs 
of interacting thermal systems. If a hotter body hands enthalpy !::.H 1 t,o a second 
cooler body, which gains an equal amount of enthalpy !::.H2, then 

!::.HI = -!::.H2· 

Normally the hotter body will be subject to a fall in temperature which may take a 
mean value TI while the cooler body is subject to a temperature rise in which its 
mean value, on the basis above is T2 . If heat is required to flow naturally in the 
required direction, then 

TI > T2 , 

so that 

(TI-To)/TI > (T2- T O)/T2' 

where To, the sink temperature, is less than T 2 • The efficiency 7] of the operation of 
transferring heat is then the ratio of the maximum work done by the two systems or 

Wp2 !::.H2- T O!::,S2 
7]=-= 

WpI !::.HI-To!::,SI 
!::.B2 
!::.BI 

1\(To-i\) 
T 2(TI -To)' 

(5) 

where the subscript 1 refers to the hotter body and the subscript 2 to the cooler body. 

7] -+ 0 only when process 2 takes place isothermally at To and 7] -+ 1 only 
when T2 -+ TI . 

III. HEAT FLOW IN A COUNTERCURRENT EXCHANGER 

To allow heat to flow naturally from a body A to another body B, it is first 
necessary that the temperature of A should be greater than that of B. To get a 
highly efficient operation, in the sense already discussed, the temperature of B should 
be as little below the temperature of A as possible. Now, as the heat exchange proceeds, 
the temperature of A falls and that of B rises. The condition of a small temperature 
difference between the two bodies concerned can only be maintained if the two 
bodies are fluids and are caused to flow in opposite directions. Stream B in the 
early stages and at a low temperature is in thermal contact with stream A at a later 
stage and thus also at a low temperature. At the same time stream B in the later 
stages and thus at a higher temperature is in thermal contact with A at early stages 
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and at a higher temperature. Such a thermal contacting system constitutes the 
well-known countercurrent heat exchanlJer. 

The mean temperature difference is, as we have seen, reciprocally related to the 
efficiency of the exchange, which thus depends on the overall heat transfer coefficient 
and on the transfer area. As the transfer area increases, the mean temperature 
difference falls, but even if the transfer area is increased without limit, the temperature 
difference is still limited by inequalities in the thermal properties, which have been 
termed by Schack (1933) and by others, the water equivalents of the two streams. 
The water equivalents are the products of the mass flow rates by the specific heats. 
If the bodies are subject to phase changes at the temperatures and pressures of the 
exchange, the effective specific heats will be infinite. The temperature difference 
between the two streams can only be maintained vanishingly small throughout the 
exchanger if the water equivalents of the two streams are maintained constant at 
all points along the exchanger. 

No matter how we may alter the shape of the exchanger and no matter how 
we treat the interacting streams, conditions of continuity demand that, in unit 
time, the same mass of interacting fluid passes all points along the stream. If IJI is the 
mass flow of stream 1, the quantity IJI will be a stream characteristic independent 
of the point considered or of the effective exchange area at that point. 

IV. EQUATIONS OF HEAT EXCHANGE 

The temperatures of the two interacting streams are best specified by denoting 
the temperature of an arbitrary point in the lower stream by T, while the corres­
ponding temperature of a point in the upper stream is denoted by (T +0), with 0 
the temperature difference. Further, let To be the entrance temperature of the 
lower stream and let Too be the entrance temperature of the upper stream (Fig. 1). 
Let 00 and 000 be the corresponding temperature difference at the low and the high 
temperature ends of the exchanger. The values of the temperature differences of 
00 , 000 , and 0 (at an arbitrary point in the exchanger) are controlled by the thermal 
properties of the streams and by the flow rates. 

Let the upper (or hotter) stream be characterized by the following parameters: 

Mass flow rate IJI 

Heat capacity at constant pressure C1 

Density PI 

Thermal conductivity ki 

Stream thickness Yl 

and let the corresponding parameters of the lower stream be 1J2' c2, P2' k2' and Y2 
respectively; let h be the heat transfer coefficient per unit width of the surface 
and let x be the coordinate along the stream. 

The heat flowing from a volume Yl dx of the upper stream per unit width of the 
exchange surface and to the volume Y2 dx of lower stream in unit time becomes 

h dx.O. 
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The time taken for the upper stream to pass the length element dx amounts to 

(YIPlirh)dx. 

The heat lost through dx in this time is 

(MYIPl/gl)(dx)2, 

and the heat lost per unit mass of the upper stream becomes 

(M/g1)dx. 

Falls in the temperature of the upper stream are produced both by conduction 
along the stream and by exchange to the other stream. That due to conduction in 

To 

--------- DISTANCE X .. 

Fig. 1 

the time (YIPI/gl)dx amounts to 

.!:l. d 2( T +11) . PIYI dx 
PICI dx 2 gl 

or 
~.d2(T+II) 
clg1 dx2 Yl dx. 

The total temperature drop in the length dx due to both causes then becomes 

d(T+II) = _1 {M k d 2(T+II)} 
dx C g + IYl dx2 • 

I 1 
(6) 

The corresponding temperature rise in the lower stream amounts to 

d2T} dT = _1 .. _ {M+k2Y2dx2 . 
dx c2g2 

(7) 
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In equations (6) and (7), gi and g2 measure the magnitudes only and not the 
directions of flow. The quantities gi and g2 are treated as positive. The quantities 
CI and C2 refer to specific heats at the distance x along the exchanger; if HI and H2 
are specific enthalpies at the corresponding points of the two streams, then 

( OHI ) 
Cl = o(T+O) p' 

(OH2) 
c2 = aT p' 

Line conduction along the streams in equations (6) and (7) tends to smooth 
out temperature differences produced by heat exchange and in turn tends to reduce 
the efficiency of the exchange process. Maximum exchange efficiency can only be 
obtained after a minimization of the line conduction and this in turn can be reduced 
without limit by making the exchange areas as large as possible. The first term in 
equation (6) becomes much larger than the second term, which is neglected, and 

d(T+O)jdx = hBjClgl ;> 0, 

dTjdx = hBjC2g2 ;> O. 

From this equation we may deduce 

dOjdT = C~2jClgl-1, 

and 

dO jd( T +0) = l-Cl gl jC2g2. 

(7a) 

(8) 

(8a) 

The quantity 0, which is never negative, may vary with Tor (T+O) along the 
exchanger and may pass through one or more minimal values. At any particular 
minimum of 0 let the temperature T take the value T*. Then at T = T* 

dOjdT = 0 and d 20jdT2 > o. (9) 

This last condition is equivalent to 

d2(T+0)jdx 2 > d2Tjdx2, 

which is only possible if 

1 dC2 1 dCl -'- > -.~=-"---;;-:-
c~g~ dT cM d(T+O)" 

(10) 

Let the values of CI and C2 at T* be c; and c;, and let the corresponding temperature 
coefficients of these heat capacities be c; and c;. Conditions (8) and (9) reduce to 

C2g2jCtgl-1 = 0 at T = T* , 
or 

c;jc; = g2jgl> (11) 

and from condition (10) 

c;jc; > c~jc~. (12) 
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The total quantity of heat delivered from the upper stream in falling from the 
entrance temperature Too becomes 

fT OO 

gl dHI , to be called glLlHll 
To +80 

and this must be equal to the total heat received by the lower stream entering at 
To, namely, 

From this equality 

fToo - 8oo 

g2 dH 2, to be called g2LlH 2' 
To 

*/ * LlHI/LlH2 = g2/g1 = ci c2' (13) 

irrespective of whether the temperature T* defined by this equation describes a 
minimum or maximum value of 8, or whether it is a single-valued or multiple-valued 
quantity. At least one minimum value is attained if condition (12) obtains, whereas 
a maximum value is obtained if the logarithmic temperature coefficient of the thermal 
capacity of the upper stream (CI/CI) is greater than that of the lower (C2/C 2). 

By making the rate of heat exchange and the surface area sufficiently large, 
it is possible to arrange for the value of 8 at the minimum, if such a minimum exists, 
to be arbitrarily small. We may now integrate equations (8) and (Sa) to give 

and 

8 = fb. fT ~ dT-T+T* :> 0, 
gl T* CI 

fT+8 

8 = (T+8)-T*-fh. ~ d(T+8) :> 0, 
g2 T* C2 

on the condition that, at T = T*, 

C;/C; > c;/c;. 

(14) 

(14a) 

The actual value of 8 at any particular temperature T and the temperature T* at 
which 8 vanishes, will both normally vary with the ratio g2/gl' A diagrammatic 
example of two interacting streams in which both C1 and C2 are continuous functions 
of the temperature throughout the range of the exchange in which the inequalities 
(12) holds is given in Figure 2(a). 

If the inequality (12) does not hold for any temperature within the range of the 
heat exchanger, then it is impossible to have a true mathematical minimum 8. If 

C;/C; < c;/c;, 
there may be found a T = T* at which the stationary value of 8 becomes a maximum. 
We denote this maximum value, which is always positive, by 8*. Physical conditions 
of operation (flow rates) can then be adjusted so that this value of 8 shall be as 
small as possible and consistent with the condition that no value of 8 shall become 
negative. A diagrammatic representation of the temperature distributions in the 
exchanger is given in Figure 2(b). 
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heat exchanger, then it is impossible to have a true mathematical minimum e. If 

there may be found a T = T* at which the stationary value of e becomes a maximum. 
We denote this maximum value, which is always positive, by e*. Physical conditions 
of operation (flow rates) can then be adjusted so that this value of e shall be as 
small as possible and consistent with the condition that no value of e shall become 
negative. A diagrammatic representation of the temperature distributions in the 
exchanger is given in Figure 2(b). 
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Equations (14) and (14a) may now be modified to take into account the possible 
existence of fJ* and become 

and 

(a) 

(c) 

fJ = rt!fP ~ dT-T+T*+fJ*;>O, 
(II p* C1 

(b) 

(d) 

--------------DISTANCE ... 

Fig. 2 

fJ = (T+fJ)-T*-Yl c1 d(T+fJ) ;> O. fp +o 

Y2 p*+o* c2 

Finally, if c;/c; = c;/c;, there is no true maximum or minimum (see Fig. 2(e)). 

(15) 

(15a) 
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V. ANALYSIS OF RESULTS 

We have assumed so far that the heat capacities have varied continuously with 
the temperature. However, if phase changes occur in the exchanger, either or both 
C1 and c2 may become unbounded at certain temperatures. If c1 becomes infinite 
within the operating range of (T+8) then, according to equation (7a), the (T+8) 
versus x curve shows a horizontal step. This is represented in Figure 2(c). Similarly, 
if C2 becomes infinite in the operating range, the T versus x curve will show a 
horizontal step as illustrated in Figure 2(d). In either case, real values of T* with 
vanishing values of 8* exist: in Figure 2(c) T* occurs at the right-hand side of the 
(T+8) step and in Figure 2(d), at the left-hand side of the T step. In these instances, 
the value of 8 is not a function of the flow rate, g2/g1' 

In systems in which phase changes occur in both streams the dominating step 
will be the longer one. If the hotter stream passes a larger fraction of its total enthalpy 
in the form of latent heat of transition then the exchange characteristics will be 
similar to the curve of Figure 2(c), but if the acceptor stream exchanges a larger 
fraction in the form of latent heat, the T curve will control the value of T*. 

Finally, consideration must be given to exchange systems in which d8/dT may 
vanish over a range of values of T. If the ratio C1/C2 is constant at all values of 
temperature within the range of the exchanger (a simple example occurs when both 
heat capacities are temperature independent), then equation (8) may be satisfied 
for any value of the temperature by a suitable flow rate. The (T+8) versus x and the 
T versus x curves will be parallel (Fig. 2(e)). We cannot, however, superimpose the 
T and (T +8) curves, since these, as implied by equation (7 a), would be horizontal 
and there would be no heat exchange. The distance between these parallel lines may 
be made vanishingly small by increasing the value of h or the exchange area. 

The curves of (T +8) and T may also be made parallel and sensibly superimposed 
if the two streams exchange latent heats with only an infinitesimal temperature 
difference (Fig. 2(f)). A specific example occurs if the exchanger is used to boil water 
from heat delivered from steam at an infinitesimally elevated pressure (multiple-effect 
system). At the end of the exchanger, however, where one or both of the streams 
become a single-phase system, the relevant specific heats will change from infinite 
to finite values. Such a change, according to equation (7a) is possible only if the value 
of 8 changes from infinitesimal to finite. The upper stream must thus change com­
pletely to the high-temperature phase earlier than the lower stream, and, at the 
opposite end of the exchanger, completely to the lower-temperature phase later 
than the lower stream. In Figure 2(f) the upper stream is shown entering the system 
at a temperature above the transition point, while the lower stream enters at a 
temperature below the transition point and is discharged at the transition point. 

In discussing the performance of a heat exchanger in terms of the minimum 
attainable temperature difference, we must therefore distinguish between three 
different classes, two of which include subclasses. 

Class 1, in which a unique T* exists.-This class consists of two subclasses: in 
one, illustrated in Figure 2(a), the T* is sensitive to flow rate and in the other, 
illustrated in Figures 2(c) and 2(d), the T* does not depend on the flow rate within a 
certain range. 
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Class II, in which T* is associated with a maximum 8*.-This is illustrated 
in Figure 2(b). 

Class III in which a range of T*'s exist. This is illustrated in Figures 2(e) 
and 2(f). 

VI. THERMODYNAMICAL PROPERTIES OF MiNIMUM TEMPERATURE DIFFERENCES 

In classes I and III, in which at least one value of T* exists, the temperature 
dill'erence between the two streams becomes infinitesimal and at this point (or points), 
the streams are in thermal equilibrium. We accordingly may write 

P' IP' 
gl I C1 dT = g2 C2 dT. 

P.+8. p. 
(16) 

The integrals in this equation, since the exchanger operates under approximately 
isothermal conditions, are the enthalpy changes proceeding from the terminal points 
to the pivotal temperature T*. These we denote by M; and ~H; respectively and 
equation (16) becomes 

gl M; = g2 M;, 
but, since equation (13) yields 

• • 
glc1 = g2c2' 

we have· 

(16a) 

c;/c; = M;/~H;, (17) 

which, in effect, defines the value of 80 in terms of the pivotal properties. 

The quantities ~H; and ~H; have perfectly definite meanings for class I systems. 
For class III systems, the values of these quantities are arbitrary within certain 
ranges. However, at a specified value T:, in the acceptable range of pivotal tem­
perature, we may define an enthalpy change 

P: I C1 dT as ~H;a· 
P.+8. 

The specific heats at T: now become unbounded and equation (17) becomes 

M;a/~H;a = g2/g1· 

In the case of class II systems, there exists at T* a value of 8 which attains a 
maximum, say, 8*. Accordingly, the two streams cannot be brought into thermal 
equilibrium at any point within the exchanger, in spite of the fact that there is 
instantaneously no net flow at T = T*. 

The condition 
gM; = g~H; 

can only be established by the equality of the definite integrals 

PO+8" 
~H; = I ~dT, 

P.+8. 
po 

~H; = I C2 dT. 
p. 

COUNTERCURRENT HEAT EXCHANGE SYSTEMS 35 

Class II, in which T* is associated with a maximum 8*.-This is illustrated 
in Figure 2(b). 

Class III in which a range of T*'s exist. This is illustrated in Figures 2(e) 
and 2(f). 

VI. THERMODYNAMICAL PROPERTIES OF MiNIMUM TEMPERATURE DIFFERENCES 

In classes I and III, in which at least one value of T* exists, the temperature 
dill'erence between the two streams becomes infinitesimal and at this point (or points), 
the streams are in thermal equilibrium. We accordingly may write 

fT' fT' 
gl C1 dT = g2 C2 dT. 

T.+8. T. 
(16) 

The integrals in this equation, since the exchanger operates under approximately 
isothermal conditions, are the enthalpy changes proceeding from the terminal points 
to the pivotal temperature T*. These we denote by M; and ~H; respectively and 
equation (16) becomes 

gl M; = g2 M;, 
but, since equation (13) yields 

we have· 

(16a) 

c;/c; = M;/~H;, (17) 

which, in effect, defines the value of 80 in terms of the pivotal properties. 

The quantities ~H; and ~H; have perfectly definite meanings for class I systems. 
For class III systems, the values of these quantities are arbitrary within certain 
ranges. However, at a specified value T:, in the acceptable range of pivotal tem­
perature, we may define an enthalpy change 

T: f Cl dT as ~H;a· 
T.+8. 

The specific heats at T: now become unbounded and equation (17) becomes 

M;a/~H;a = g2/g1· 

In the case of class II systems, there exists at T* a value of 8 which attains a 
maximum, say, 8*. Accordingly, the two streams cannot be brought into thermal 
equilibrium at any point within the exchanger, in spite of the fact that there is 
instantaneously no net flow at T = T*. 

The condition 
gM; = g~H; 

can only be established by the equality of the definite integrals 

TO+8" 

~H; = f ~dT, 
T.+8. 

TO 

~H; = f c2 dT. 
T. 



36 R. C. L. BOSWORTH AND C. M. GRODEN 

VII. REFERENCES 

BOSWORTH, R. C. L. (1954).-"Transport Process in Applied Chemistry." pp. 335-40. (Horwitz: 
Sydney.) 

GIBBS, J. W. (1931).-"Collected Memoirs." (Longmans, Green and Co.: New York.) 
KEENAN, J. H. (l932).-Mech. Engng. 54: 195-204. 
KEENAN, J. H. (1951).-Brit. J. Appl. Phys. 2: 183-91. 
SCHACH, A. (1933).-"Industrial Heat Transfer." (Wiley: New York.) 

36 R. C. L. BOSWORTH AND C. M. GRODEN 

VII. REFERENCES 

BOSWORTH, R. C. L. (1954).-"Transport Process in Applied Chemistry." pp. 335-40. (Horwitz: 
Sydney.) 

GIBBS, J. W. (1931).-"Collected Memoirs." (Longmans, Green and Co.: New York.) 
KEENAN, J. H. (1932).-Mech. Engng. 54: 195-204. 
KEENAN, J. H. (1951).-Brit. J. Appl. Phys. 2: 183-91. 
SCHACH, A. (1933).-"Industrial Heat Transfer." (Wiley: New York.) 




