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Summary 

Radiation-pressure forces developed within an acoustic system may be 
calculated from a detailed knowledge of the fields. It is shown that the time average 
of a generalized radiation-pressure force may be expressed in terms of quantities 
on an arbitrary mathematical surface enclosing the system. 

The resulting surface integral is related to directly measurable circuit-theory 
parameters involving the impedance, admittance, or scattering matrices of the 
system. These results are the same as those obtained previously for electromagnetic 
systems (Smith 1961, 1964). The system must be linear and free of energy loss 
mechanisms but there is no limitation to the frequency of excitation. 

I. INTRODUOTION 

Radiation forces exerted in the presence of radiant energy alone occur quite 
generally. Here we shall be concerned primarily with those resulting from sound 
fields. A recent review by Kanevskii (1961) discusses the general aspects of forces 
in sound fields including radiation pressures. A more specific review by Borgnis 
(1953) deals with acoustic radiation pressure particularly in relation to plane waves. 
Radiation pressures may be computed in any situation when the radiation field 
has been found. 

The calculation and observation of radiation pressures are of some practical 
importance. Lord Rayleigh (1878) examined the forces exerted on a small disk 
suspended in a sound field and derived an expression for the resulting couple by 
solving the field problem. A device based on the measurement of this couple became 
known as the Rayleigh disk. A feature of the Rayleigh disk is that it provides a means 
of absolute measurement of sound intensity since the radiation-pressure force is 
calculable. Before the advent of the electro-acoustic reciprocity techniques of 
microphone calibration, the Rayleigh disk was a widely used instrument for absolute 
calibration purposes (Hunter 1957, p. 318). Other instruments based on the 
measurement of radiation pressures in the ultrasonic region have been built (e.g. 
Gabrielli and Iernetti 1963). Westervelt (1951, 1957) has given a formula for 
computing the radiation force from an incident plane wave on a single scatterer 
in terms of scattering and absorption coefficients. This formula may be looked 
upon as the result of an application of the momentum conservation laws to the 
incident, absorbed, and scattered radiation. The formula expresses the radiation 
force for this particular situation in terms of parameters (scattering and absorption 
coefficients) which, although perhaps calculable only from a detailed solution of the 
field problem, are in principle directly measurable. 
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The present paper arrives at general expressions for radiation-pressure induced 
forces in terms of measurable scattering or impedance parameters. A time-averaged 
generalized force F x produced by radiation pressures is expressed in terms of an 
integral over a mathematical surface enclosing the system. This surface integral 
may be reduced to admittance, impedance, or scattering-matrix forms containing 
parameters which in principle are directly .measurable. Absolute calibration of an 
instrument which measures such a force may then be made. 

The results in terms of the impedance, admittance, or scattering matrix are 
identical to those obtained in an entirely different context for electrical radiation­
pressure forces (Smith 1960, 1961, 1964). It was in fact conjectured (Smith 1960) 
that the electrical results could be extended to the acoustic context. It appears 
that the results have even wider generality for wave motion, being of the form of 
energy conservation on the average. 

The results are obtained for an ideal fluid with classical boundary conditions 
in the usual acoustic region of infinitesimal velocities. No account is taken of 
viscosity or thermal conduction effects. These approximations are those of the usual 
linear, loss-free theory of sound. 

Sections II and III state basic equations required for describing the sound field. 
In Section IV the general surface integral form of the average generalized force F x 

is obtained. A description of the behaviour of the system in terms of impedance, 
admittance, or scattering matrices is introduced in Section V and used to reduce 
the general surface integral. Section VI discusses possible applications of the theory 
to the absolute calibration of intensity measuring instruments. Since the equations 
are formally the same as those of the electrical situation, procedures based on 
electrical formulae are possible. An extension of the technique of Cullen (1952) 
for the absolute calibration of microwave power meters is discussed. Some limitations 
are referred to in Section VII. 

II. BASIC ACOUSTICAL EQUATIONS 

For the small departures from static equilibrium contemplated in the theory 
of sound the Euler equation, 

Dv/Dt = -(l/p)VP, (1) 

(with p the fluid density, P the pressure, v the velocity, and t the time) may be 
written in the linearized form 

ov/ot = -(l/po)V P, (2) 

where Po is the equilibrium density. 

The equation of continuity 

V. (pv) +op/ot = 0 (3) 

may also be written correct to first-order terms as 

PoV. v+op/ot = 0 (4) 
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(for simplicity it is supposed that Po is independent of position). A constitutive 
equation for the sound disturbances completes the system of equations. The 
constitutive equation is assumed to be of the loss-free form 

P = P(p), (5) 

shear components of stress being zero. The boundary conditions are those of classical 
hydrodynamics, that is, 

v.n =0, (6) 

with n a unit normal on a rigid boundary surface. 

The condensation s is defined by 

p= Po(l+s). (7) 
To first-order 

Pos = (P-PO)/c2, (8) 

where c is the sound velocity given by 

c2 = P'(Pol, (9) 

the subscript 0 denoting an equilibrium value. Equations (2), (4), (7), and (8) lead 
to the wave equations 

{V'2-(I/c2)o2/ot2} [;] = o. (10) 

For calculating the sound fields, quadratic terms are neglected and the resulting 
equations are linear. The radiation-pressure forces are quadratic in the sound field 
amplitudes and the linear approximation is adequate for finding the dominant 
contribution to these quadratic effects. This linearity allows the synthesis of a 
general time dependence from a superposition of single Fourier components by 
way of Fourier theory. For the present, a single Fourier component with time 
dependence exp(iwt) will be considered. Equations (2), (4), and (8) become 

iwpou = -V'p, 

(iPoc2/w)V' . u = p, 

PaZ = p/c2, 

(ll) 

(12) 

(13) 

where p, u, and z are the complex r.m.s. amplitudes associated with P-Po, v, and s, 
that is, 

P-Po = ~·h/2.peiwt), 

v = ~ . (-v'2 . ueiwt) , 

S = ~.(v'2.zeiwt). 
} (14) 
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Equations (ll), (12), and (13) will be taken as the basic set. Elimination of p or u 
in (ll) and (12) gives 

(V 2+W2/C2) [~] = o. (15) 

III. MOMENTUM FLUX DENSITY TENSOR 

For computing radiation-pressure forces some form of radiation stress tensor 
is required. For our purposes it will be satisfactory to make use of the following 
momentum integral of the Euler equation (e.g. Landau and Lifshitz 1959, Section 7) 

(a/at) I I I pVj dT = I I IIjk dAk, (16) 
V S 

with 
IIjk = Pojk+pVjVk' (17) 

where Vj are Cartesian components of v, dAk are Cartesian components of surface 
area enclosing the volume V (inward normal, positive), Ojk is the Kronecker delta, 
and the usual summation over repeated subscripts is assumed. IIjk may then be 
interpreted as a momentum flux density tensor relating to the rate of transport 
of momentum across a surface. 

The time average IT jk of the II jk obtained from the sound field may be regarded 
as giving rise to radiation stresses, leading to the Brillouin radiation pressure tensor 
for a plane wave. This tensor will also include any contribution from any mean 
velocity (sonic wind). Post (1960) has discussed some alternative stress tensors. 
A similar problem arises in electromagnetic theory where the Maxwell stress tensor 
is normally used although other tensors have been proposed from time to time 
(e.g. Livens 1929). The differences are important only when considering details of 
the volume distribution of forces. For the present purposes only forces on rigid 
boundaries will be required and there is no difficulty. Because of the boundary 
conditions (6) only the first term of (17) contributes to the integral in (16) so that 

for computing forces on boundaries POjk is sufficient, i.e. an isotropic pressure 

P. (p - Po) is known as the excess pressure in acoustic theory. 

IV. GENERAL EXPRESSION FOR THE AVERAGE FORCE 

In this section a general expression for the time-average generalized force 
F", will be found initially for sinusoidal excitation. The acoustic system to be 
considered is supposed to be excited from external sources. F", is the average 
generalized force corresponding to a generalized coordinate ·x relating to the con­
figuration of the system. As a simple practical example suppose x is an angle 
specifying the orientation of a vane, then F", is simply the average torque acting 
upon the vane. 

A small arbitrarily slow change in the system is considered to be generated 
by a change ox in the parameter x. The total mechanical work done by the system 
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on the boundaries during this (adiabatic) change is to be computed and equated 
to the work done by the average generalized force F "'. The displacements contemplated 
are displacements of surfaces on which the boundary conditions (6) apply. 

Preliminary Results 

(i) From equation (11) with ow = 0, 

iwpoou· = V(op·). (18) 

Therefore 
ou·. Vp = {lj(iwpo)V(op·)}. Vp. (19) 

Further use of (11) gives 

ou·. Vp = -u. V(op*). (20) 

(ii) Similarly from equation (12) 

op· = (-iPoc2jw)V . (ou·) (21) 
and 

op·V . u = (-iPoc2 jw)V. (ou·)V. u. (22) 

Further use of equation (12) gives 

op·V . u = -pV . (ou·). (23) 

Equations (20) and (23) embody the dissipationless character of the system 
and are vital to the proof. 

Suppose the system is enclosed by a mathematical surface consisting perhaps 
of some boundary surface 8 0 together with a surface 8. The interior of 8 and 8 0 

will in general contain further closed boundary surfaces 8 1 , 8 2, •.• 

Consider 

f f pu*.dA, (24) 
S, SOJ Sb 8", ... 

using the convention that the positive direction for the vector element of area dA 
is inward for 8 0 and 8 and outward for 8 1 , 8 2, •••• Because of the boundary 
conditions (6) on 8 0, 8 1 , 8 2, ... 

f f pu· .dA = f f pu· .dA, (25) 
B S, 80, Sb 8", ... 

= - f f f V.(pu·)dr, 
v 
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by Gauss's divergence theorem, where V is the volume enclosed by 8 and 8 0 excluding 
the interiors of 81> 8 2, •••• 

Then 

I I pu' .dA = - I I I (u·. Y'p+pY'. u*)dT 
s V 

= iw I I I (PoU·. u-pp*jc2po)dT, 
V 

by use of equations (11) and (12). 

(26) 

(27) 

In the above equation the first term on the right in the integrand is twice the 
average kinetic energy density of the wave motion and the second term is twine the 
average potential energy density (thermodynamically, the internal energy density 
for the adiabatic conditions of sound compression). 

A small variation 0 of equations (26) and (27) is now considered. Ow is supposed 
zero, the system being excited from outside V at a fixed angular frequency. [A 
variation of equation (27) with Ow -=1= 0 and the left-hand side zero leads to the 
resonator action, or adiabatic theorem 

o(Tjw) = 0, 

where T is the total energy of the free oscillation of the resulting resonator.] 

Then 

(28) 

o I I pu*.dA =iw I I I (pou.u*-pp*jc2po)dT- I I Io(u*.Y'p+pY'.u*)dT, (29) 
s av V 

where the integral over oV accounts for movements or deformations of the surfaces 
8 0 , 81> 8 2 , ••• generated by ox. 

Further 

I I I o(u*. Y'p+pY'. u*)dT = I I I {u·. Y'(op)+ou·. Y'p + opY' . u· +pY'. (ou*)}dT (30) 
v v 

= I I I {u·.Y'(Op)-u.Y'(Op*)+OpY'.u·-Op*Y'.u}dT (31) 
v 

= If I Y'. (opu' -op'u)dT 
V 

= I I (uop' -u·op).dA, 
s 

using (20) and (23), 

(32) 

(33) 
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using Gauss's theorem and the fact that u is tangential on 8 0, 8 1 , 8 2, ••• because 
of the boundary conditions (6). The combination of equations (33) and (29) gives 

f f (p8u*+8p·u).dA =iw f f f (pou.u*-pp*/c2po)dr. (34) 
S av 

The right-hand side of equation (34) may be expressed in terms of the work 
done by radiation-pressure forces on the boundaries. In Section III it was shown 

that the average isotropic pressure P is operative as a radiation pressure on boundary 

surfaces. We now compute P by averaging the Euler equation (1) correct to terms 
of second-order in the sound amplitudes. Including the uniform equilibrium pressure 
Po we have 

V(p-Po) = -<pDv/Dt) (35) 

= -<pV(lv2)-<p iJv/iJt)-<pv X curl v). (36) 

Now consider contributions to second-order in the right-hand side of equation (36). 

The first term becomes 

-POV(t(v2») = -V (lPo<v2»). (37) 

The second term is 

-Po<iJv/iJt)-po<s iJv/iJt). (38) 

However, v is sinusoidal to first-order at least, thus 

Po<iJv/iJt) = 0, (39) 

to second-order. 
Also 

Pos = (P-PO)/c2, (40) 

to first-order, 

and iJv/iJt = -(l/po)V(P-Po), (41) 

to first-order. 
Therefore (38) becomes 

<p iJv/iJt) = -«P-Po)V(P-Po)/Poc2 , (42) 

to second-order, 

= -V {< (P - P 0)2) (2Poc2}. (43) 

The third term of equation (36) vanishes to the order considered since 

<pv X curl v) = Po<v X curl v) (44) 

and v is proportional to V(P-Po) in the linear approximation (eq)Iation (ll)), 
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that is, v is irrotational in the linear theory. 

Therefore 

<pv x curl v) = 0 

Equation (36) finally becomes 
to second-order at least. 

V(F-po) = V{t<(p-PO)2)(Poc2-iPo<v2)}, 
from which 

P-Po = i<W-PO)2)(Poc2-iPo<v2). 

(45) 

(46) 

(47) 

An equivalent of equation (47) is obtained by Landau and Lifshitz (1959, Section 64) 
by use of a different method. 

Now 
<v2)=u.u· 

and 
«P-PO)2) = pp*, (48) 

therefore 

P-Po = iPP*(Poc2-ipou. u*. (49) 

Equation (34) may then be written 

J J (pou*+op·u).dA = -2iw J J J (P-Po)dT. (50) 
S BV 

However, J J J CF-Po)dT represents the work done by the radiation pressure on 
BV 

the boundary surfaces during the adiabatic displacement ox. This work is to be 
equated to the work done by the generalized force F x namely, 

Fxox = J J J (P-Po)dT. 
BV 

Combining (51) with (50) gives 

2iwFxox = - J J (pou*+op·u).dA 
S 

= J J (p*ou+opu*).dA. 
S 

(51) 

(52) 

(53) 

Equation (52) or (53) is the general result expressing the average force for sinusoidal 
excitation in terms of a surface integral over S. Reductions to forms suitable for 
practical application will be carried out in the next section. It follows from Parseval's 



AVERAGE RADIATION-PRESSURE FORCES 397 

formula of Fourier analysis that the average forces from individual Fourier com­
ponents are additive, since the right-hand side of equation (53) is quadratic in the 
amplitudes. 

It is of interest to observe that equation (53) is the sound field version of a 
similar result in electromagnetic theory (Smith 1961) namely, 

2iwF",8x = I I (E* x8H+8ExH*).dA, 
s 

(54) 

with pu' (Landau and Lifshitz 1959, Section 64) playing the role of complex energy 
flux vector in a similar way to the complex Poynting vector Ex H*. The primary 
difference is that the sound field is a scalar field whilst the electromagnetic field 
is a vector field. 

V. REDUCTION OF THE SURFACE INTEGRAL EXPRESSION FOR 11'", 
Suppose there exists a set of independent complex fields Pr> Ur' (r = 1, 2, ... ) 

representing incoming sound waves of angular frequency w. Pr and Ur may be 
expressed in terms of a scalar complex velocity potential <Pr by 

Ur = 'il<Pr' } (55) 
Pr = -iwpo<pr> 

which ensures that Pr and ur satisfy the basic field equations (ll) and (12), provided 
<Pr is a solution of the wave equation (15). Boundary conditions appropriate to the 
exterior of S and So must be imposed, together with a condition at large distances 
to correspond to incident waves. Then 

Ur = - 'il<Pr> } (56) 
Pr = -iwpo<Pr> 

will represent outgoing wave solutions for the exterior of S and So. A general 
solution must include the superposition of the fields (55) and (56). We suppose 
that a superposition of the fields (55) and (56) provides a complete description and 
that the individual partial fields are selected to be orthonormal in the following sense, 

I I Pru;.dA = 8rk · 

s 
(57) 

The actual P and U occurring on the surface S may then be written as linear com­
binations of the Pr' ur on S, that is, 

P = ~ VrPr, 
r 

U = ~ lrur. 
r 

(58) 

(59) 
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The Vr and Ir above are not independent. Provided special characteristic 
values of ware avoided, the Helmholtz theory of the scalar wave equation for the 
interior of 8 and 8 0 gives a complete solution as soon as the normal component of 
the velocity u or the pressure p is specified over the surface. Thus the Vr and Ir 
of equations (58) and (59) are not independent but are linearly related, that is, 

or in matrix notation 

where 

and 

Vr = }:; Zrklk, 
k 

V =ZI, 

V~rnI~m 
Z = [Zrk]. 

(60) 

(61) 

(62) 

(63) 

Z is the impedance matrix of the system referred to the set Ur, Pro Reciprocity 
(Rayleigh 1878) results in the symmetry of Z, that is, 

ZT =Z, (64) 

where index T denotes the transposed matrix. Further, using (57), (58), and (59) 
(t denoting Hermitian conjugate) 

f f pu*.dA = ltV (65) 
s 

= ItZI from (61), (66) 

which is equal to the purely imaginary form (27). Therefore Z is purely imaginary 
(loss-free condition). The inverse relationship to equation (61) is 

I =YV, (67) 

with 

Y = Z-l = [Yrk]. (68) 

Y is the admittance matrix of the system and is symmetric and purely imaginary 
since Z is so. By analogy with electric circuit theory V, I, Z, and Y may be regarded 
as "terminal parameters" for the enclosed system. 

The general result (53) for the average force Fre may now be expressed in 
terms of these terminal parameters. Using equations (58) and (59) in (53), 
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2iwF ",I)x = f f (~ V; P; ~ 1)] kUk + ~ I) VrPr ~ IZuZ) . dA 
s r k r k 

(69) 

= VtI)I+ItI)V 

= It(Zt +Z)I)I+ItI)ZI 

= ItI)ZI, 

since Z is symmetric and purely imaginary. 

Therefore 
2iwF", = It(oZjox)I. 

Equation (53) may similarly be reduced to 

2iwF", = vt(oYjox)V. 

using (57), (70) 

by (61), (71) 

(72) 

(73) 

(74) 

Equations (73) and (74) are the same impedance and admittance matrix forms as 
obtained for average forces in electrical systems (Smith 1960, 1961). From (70) 
they may be written alternatively as 

where 

2iwF", = (oWjoxh, 

2iwF", = (oW·jox)v, 

W = f f pu' . dA = ltV, 
s 

(75) 

(76) 

(77) 

is the complex power flowing from the sources. The terminal parameters above 
are by no means unique. Linear transformations of the Pr and U r which leave 
equations (57) and (64) unchanged give other sets of terminal parameters. Sets of 
Pr> U r which satisfy equation"(55) are basic in that unit impedance corresponds to 
the propagating fields of (55). For example, unit impedance for a plane wave corres­
ponds to an actual pressure to longitudinal velocity of poe, i.e. the intrinsic wave 
impedance of the medium. 

Another reduction of equation (53) in terms of a set of scattering parameters 
or scattering matrix may be made along the lines of the method used in the corres­
ponding electromagnetic case (Smith 1964). The total sound field is divided into 
an incident and a scattered field. The incident field is a sum of fields satisfying 
equations (55), and the scattered field is a sum of fields satisfying eq~ations (56). 
The total field may then be written . 

P = ~ (ar+br)Pr> (78) 
r 

U = ~ (ar-br)ur, (79) 
r 
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where an br are r.m.s. amplitudes for the incident and scattered waves respectively. 
The resulting linear relationship between the ar and br may be written 

b =8a, (80) 
where 

a= raIl fbll la, ,b~ b:' (81) 

The matrix 8 is the scattering matrix for the set Pr' u r . 8 is symmetric for 
reciprocal systems, and for the loss-free systems considered in this paper it is unitary 
also, that is, 

8 T =8 (82) 
and 

8t8 = U, (83) 
where U is a unit matrix. 

Equation (82) is the equivalent of (64) and (83) corresponds to the purely 
imaginary character of Z. The equivalences follow from a comparison of equations 
(78) and (79) with (58) and (59), which gives 

1= a-b, } (84) 
v =a+b, 

from which the usual expressions for the scattering matrix in terms of impedance 
or admittance matrices (Montgomery, Dicke, and Purcell 1948) follow, 

or conversely, 

8 = (Z+ U)-I(Z-U), 

8 = (Y + U)-I(U - Y), 

Z = (U+8)(U-8)-1, 

Y = (U+8)-I(U-8). 

} 
} 

(85) 

(86) 

Substitution for p, u, as given by equations (78) and (79), in the force equation 
(53) gives 

2iwFx8x = I I {~(a;+b;)p; ~ (8ak -8bk )Uk + ~ (8ar+8br)Pr~ (a;-b;)u;}.dA, (87) 
s r k r k 

= ~ {(a; +b;)(8ar-8br) + (8ar+8br)(a; -b;)} (88) 
r 

by equation (57), 

that is, 
iwFx8x = at8a-bt8b. (89) 
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Using equation (SO), equation (S9) may be written 

iwF.,8x = at(U-StS)8a-bt8Sa, 
that is, 

iwF.,8x = -bt8Sa, 
hence 

iwF., = -bt(oS/ox)a. 

401 

(90) 

(91) 

(92) 

Equation (92) is the required scattering matrix expression and is identical 
to the result obtained for electromagnetic systems (Smith 1964). Equation (92) 
may also be obtained by substitution from (S4) and (S6) into (73) or (74). 

VI. APPLICATION 

An important aspect of the theory is its possible application to the absolute 
calibration of sound intensity measuring instruments which depend on radiation 
pressures for their operation. The Rayleigh disk, which is an instrument of this type, 
is calibrated by a calculation of the field distribution. The present theory in principle 
enables an absolute calibration to be made in terms of a measurement of scattering 
matrix elements. Moreover, there is no frequency limit and the instrument com­
plexity may be such that a field distribution calculation is impractical. The situation 
has been discussed in further detail in the electrical context (Smith 1960, 1961, 1964) 
and the same considerations apply. For the single scattering produced by a single 
obstacle in a plane wave field the theory of Westervelt (1957) would suffice, but the 
present theory, since it does not relate to wave momentum conservation, covers much 
broader possibilities. In the audible frequency range reciprocity calibrations of 
microphones have supplanted absolute instruments of the Rayleigh disk type. 
However, it is interesting to note that reciprocity calibrations are not fundamentally 
absolute since they refer acoustic quantities to electrical quantities. In practice, 
convenient absolute electrical standards are readily available but their establishment 
involves some instrument for which the electrical analogues of the present theory 
could be applied (e.g. current balance, electrostatic voltmeter). 

The particular case of a two-port transmission power meter may be examined 
in some detail. The input is supposed to be a single wave travelling in an input 
channelL The energy flows through the instrument which has a pointer indicating 
a deflection x, and out of an output channel 2 to a load (non-reflecting termination). 
A previous discussion based on equation (92) for the electrical case (Smith 1964) 
is immediately applicable. The average deflection force may be expressed as 

iwF., = -P2{(OS12/0X)/S12-(S22/Si2)(OSll/OX)} , (93) 

where P 2 is the acoustic power flow. Further, equation (93) leads to a formula 
obtained by Cullen (1952) for the calibration of microwave transmission power 
meters 

11'., = -(P27T/Aw){(OX2/ox)x.=o+(ox2/ox)x.=N4}, (94) 

where A is the wavelength in the output channel. The. derivatives (ox2/ox) are 
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defined in terms of a measurement which preserves the standing wave pattern in 
the input channel as the position of a fully reflecting termination at a distance X 2 

along the output channel is changed. The type of fully reflecting termination, e.g. 
u = 0 or p = 0, does not matter. Cullen's formula (equation (94)) is thus applicable 
to acoustic systems. 

The simplest transmission power meter measures the total tension in the 
channel boundaries. Let x be a coordinate specifying the length of a section of the 
channel. In equation (93) 

and 

giving 

811 = 0 

8 12 = exp{iO-27TixjA}, 

(8 a real constant) 

Fre = P2jC. 

} (95) 

(96) 

This same tension occurs in electromagnetic transmission lines and waveguides. 
It is half the tension exerted by total reflection. The force is independent of 
frequency, a condition making for an ideal instrument. 

VII. LIMITATIONS 

The development leading to equation (53) has been based on the linear loss-free 
theory of sound. The restriction to the linear theory is not important for the usual 
range of sound amplitudes encountered. However, the effects of the loss-free 
approximation are probably more serious and more difficult to estimate. The equation 
of state (5) and the Euler equation (1) ignore any effects of viscosity or thermal con­
duction. The boundary conditions on the rigid walls have been taken to be those 
of classical hydrodynamics. The forces calculated are consequently those relating 
to a highly idealized system. A similar idealization in electromagnetic theory is 
often warranted, but the validity of this procedure for acoustic systems has not 
been demonstrated. Generalizations to more general elastic systems which include 
solids and inhomogeneous media might be expected to follow. However, when defor­
mations of the transmitting medium are generated by ox, the choice of the correct 
momentum flux density tensor for the wave motion is most important. 

VIU. REFERENCES 

BORGNIS, F. E. (1953).-Rev. Mod. Phys. 25: 653. 
CULLEN, A. L. (1952).-Instn. Elect. Engrs. Monograph No. 24. Proc. Instn. Elect. Engrs. IV 

99: 112. 
GABRIELLI, I., and IERNETTI, G. (1963).-Acustica 13: 175. 
HUNTER, J. L. (l957).-"Acoustics". (Prentice-Hall, Inc.: New Jersey.) 
KANEVSKII, J. N. (196l).-Sov. Phys., Acoustics 7; translation of Akusticheskii Zhurnal 7: 3-17. 
LANDAU, L. D., and LIFSHITZ, E. M. (1959).-"Fluid Mechanics". (Pergamon Press: Oxford.) 
LIVENS, G. H. (1929).-"Theory of Electricity". (Cambridge Univ. Press.) 
MONTGOMERY, C. G., DICKE, R. H., and PURCELL, E. M. (1948).-"Principles of Microwave 

Circuits". (McGraw-Hill: New York.) 



AVERAGE RADIATION-PRESSURE FORCES 403 

POST, E. J. (1960).-Phys. Rev. 118: 1113. 
RAYLEIGH, LORD, (1878).-"The Theory of Sound", Dover Edition (1945). (Dover Publications: 

New York.) 
SMITH, \V. E. (1960).-Instn. Elect. Engrs. Monograph No. 366M. Proc. Instn. Elect. Engr·s. 

e 107: 228. 
SMITH, W. E. (1961).-Aust. J. Phys. 14: 152. 
SMITH, W. E. (1964).-Aust. J. Appl. Sci. 15: (in press). 
WESTERVELT, P. J. (l951).-J. Acoust. Soc. Amer. 23: 312. 
WESTERVELT, P. J. (1957).-J. Acoust. Soc. Amer. 29: 26. 




