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Summary 

The invariance of a system under a given transformation of coordinates is 
usually taken to mean that its Lagrangian is invariant under that transformation. 
Consequently, whether or not the system is invariant will depend on the gauge used 
in describing the system. By defining invariance of a system to mean the invariance 
of its equations of motion, a gauge-independent theory of symmetry properties is 
obtained for classical mechanics in both the Lagrangian and Hamiltonian forms. 
The conserved quantities associated with continuous symmetry transformations are 
obtained. The system of a single particle moving in a given electromagnetic field is 
considered in detail for various symmetries of the electromagnetic field, and the 
appropriate conserved quantities are found. 

I. INTRODUCTION 

The symmetry properties of a system and the related conservation theorems are 
of great importance in both classical and quantum physics. In the usual treatment a 
system is taken to be invariant under a particular operation if the Lagrangian or the 
Hamiltonian is invariant in form under that operation. The momentum Pf, canonically 
conjugate to a Cartesian coordinate XI, is then the generator of translations along the 
Xi-axis and the component of canonical angular momentum If = XjPk-XkPj (i,j, k 
cyclic) is the generator of rotations about the Xl-axis. 

In general, the canonical momentum p and the kinetic momentum mv are not 
identical, for 

mv = p-eA/c. (1.1) 

Here A may be the vector potential of an electromagnetic field; but even when there 
is no such field the appearance of the second term on the right of (1.1) may be brought 
about by a gauge transformation. This means, however, that any symmetry of the 
system as,formally defined above may be destroyed by a gauge transformation. For 
example, if a Lagrangian is invariant under rotations about a certain axis then it 
will no longer have this property after the gauge transformation, 

A_A' = A+gradX, (1.2) 

has been made, whenever X is not invariant under rotations about the axis in question. 
(Whether a particle is charged or not is of no account in this context, since in the latter 
case e may simply be regarded as an arbitrary constant.) 
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Now a gauge transformation is a purely formal device which has no physical 
consequences. It would therefore surely be better to have a formalism in which the 
symmetry properties of a system are gauge-independent. When it is recalled that 
the transformation (1.2) is tantamount to the addition of a total time derivative to 
the Lagrangian, this formalism may be expected to centre around the freedom one 
has of adding a total time derivative to any Lagrangian without affecting thereby the 
equations of motion. After all, physically it is natural to think of invariance under a 
symmetry operation to mean, in the first place, invariance of the equations of motion. 
Proceeding along these lines it then turns out that the canonical momenta are not 
necessarily the generators of translations, nor are the canonical angular momenta 
necessarily the generators of rotations. 

The problem under consideration arises in classical as well as in quantum 
mechanics, whether of particles or of fields. Since its essential features already appear 
in the simplest case, namely that of classical particle mechanics, the present paper 
concerns itself exclusively with the latter. Sections II-IV deal with the Lagrangian 
and Hamiltonian formulations, whilst various explicit examples are provided in 
Section V. 

II. LAGRANGIAN FORMULATION 

A system shall be defined as being invariant under a particular transformation 
of the coordinates if the equations of motion are invariant under that transformation. 
Their invariance is assured if the change in the Lagrangian is the total time derivative 
of a function of the coordinates and the time. Thus, let the given transformation 
be written 

qk = Yk(q, t), (2.1) 

the inverse of which shall be 

qk = Yk(q; t). (2.2) 

Then if L(q,q,t) is the given Lagrangian, the function L(q',q',t) = L(g(q,t),y(q,t),t) 
shall differ from L(q,q,t) as follows: 

L(q',q',t) = L(q,q,t)+ W(q,t), (2.3) 

where W is an arbitrary function of its arguments, and a dot always denotes a total 
time derivative. In the usual symmetry theory the term W is absent from (2.3). 

Since in classical mechanics conserved quantities are associated only with 
continuous transformations, it suffices to consider infinitesimal transformations, 

qk = qk+EUk(q, t), (2.4) 

to find conserved quantities. In (2.4) the Uk are functions characterizing the given 
transformation and E is an infinitesimal parameter. If (2.4) is a symmetry transforma­
tion there must, by definition, exist a function F(q, t) such that 

L(q',q',t) = L(q,q,t)+EF(q,t). (2.5) 

From (2.4) 

qk = qk+euk. (2.6) 
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Inserting this into (2.5), it becomes 

where 

( 7JL ). :£ -Uk+PkUk = F, 
k 7Jqk 

Pk = 7JL/7Jqk. 

Since the motion satisfies Lagrange's equations Pk = 7JL/7Jqk, it follows that 

that is, the quantity 

is conserved. 

!(fPkUk-F) = 0, 

G(q,q,t) = 'E PkUk-F 
k 
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(2.7) 

(2.8) 

(2.9) 

It remains to determine how the generalized momenta transform under the 
transformation defined by (2.1) and (2.3). Write, for convenience, 

7Jgt!7Jqj = aij, 7Jgd7Jqj = btj , :£ aijbjk = :£ ajibkj = l3ik. (2.10) 
j j 

Then 

Pk = ~{L(tj',q"t)} = :£ bjk ~L(q,q,t)+ W(q,t)}. 
7Jqk j "qj 

Since 

. 7JW 7JW. 
W = Tt+ 7 7Jqj qj, 

one has 

7J W /7Jqj = 7J W /7Jqj, 

so that 

, ~ ( 7JW) ~ 7JW(g,t) Pk = .<oJ bjk pj + -:;- =.<oJ bjkPj + ,. 
j "qj j 7Jqk 

(2.11) 

III. HAMILTONIAN FORMULATION 

Although in classical mechanics symmetry properties are treated more simply 
in the Lagrangian formalism, it is still worth considering the Hamiltonian formalism 
in this context, as this provides a guide to the treatment of symmetry properties in 
quantum mechanics. 

A canonical transformation can be specified by a generator O(q,p', t), namely, 

Pk = 7JO /7Jqk, qk = 7JO /7JPk, (3.1) 

the transformed Hamiltonian being given by 

H'(p',q',t) = H(p,q,t)+7JO/7Jt. (3.2) 
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If the transformation is to be the mere transform,ation of coordinates (2.1) the 
generator C must have the generic form 

C = ~ Pk(Jk(q, t)-w(q, t). 
k 

(3.3) 

A system whose Hamiltonian is H is invariant under a coordinate transformation 
qk --+ qk = (Jk(q, t) if there exists a generator C of the form (3.3) such that 

H(p',q',t) = H(p,q,t)+iJC/ot. 

When such a generator exists (3.2) and (3.4) together imply 

H'(p',q',t) = H(p',q',t), 

(3.4) 

(3;5) 

so that the canonical equations of motion written in terms of the primed variables 
are exactly the same as those written in terms of the unprimed variables. Accord­
ingly, the problem of determining whether a system is invariant under (2,1) is tant­
amount to finding out whether there exists a function w(q, t) such that (3.3) and 
(3.4) hold. 

From (3.3) and the first member of (3.1) 

~ , ow 
Pk = ~ ajkPj- ;-. 

j "qk 

Multiplying throughout by bkt and summing over k, 

Pt = t bkt(Pk+ ~:). (3.6) 

Comparison with (2.11) then shows that· 

w(q, t) = W(q, t). (3.7) 

If one wants to remain within the Hamiltonian framework, w(q, t) may be obtained 
by using (2.1), (3.6), and (3.3) to get expressions for the derivatives of w from (3.4). 
In general it is probably easier to find w from equations (2.3) and (3.7). 

Then 

IV. INFINITESIMAL CANONICAL TRANSFORMATIONS 

Any infinitesimal transformation can be written as 

Pk = Pk-€~G(P,q,t)}, qk = qk+€~G(p,q,t)}. 
UPk 

H'(p',q',t) = H(P,q,t)+€~G(P,q,t)}. 

If J(p, q, t) is any function associated with the motion 

J(p',q',t) = J(p,q,t)+€[J,G), 

(4.1) 

(4.2) 

(4.3) 
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where on the right the Poisson bracket is as usual defined as 

[J,G] = ~(oJ oG _ ~~). 
k Oqk OPk OPk Oqk 

(4.4) 

If the canonical transformation is a coordinate transformation (2.4), the generator 
will be 

G = ~PkUk-F, (4.5) 
k 

for with this, equations (4.1) correctly give the new momenta in terms of the old. 
Invariance under this infinitesimal canonical transformation requires that (3.5) 
should hold, and therefore that 

H'(p',q',t) = H(p,q,t)+€[H,G]. 

Comparison with (4.2) gives 

(oG/ot)+[G,H] = (j = O. 

Thus, the system is invariant under the infinitesimal coordinate transformation 
generated by (4.1) and (4.5) if the generator Gis a constant of the motion. This result 
is in harmony with the result embodied in equations (2·8) and (2·9). 

V. EXAMPLES 

(a) Invariance under Translations 

r( = x, y, z) shall be the position vector of a particle of charge e moving in an 
external electromagnetic field whose potentials are A, <1>. The Lagrangian is, with 
v=r, 

L = tmlvI2+(e/c)v.A-e<1>. (5.1) 

Consider an infinitesimal translation along the x-axis, x' = x+€. 

Then 

L(v',r',t) = L(V,r,t)+€e(!v. oA _ ~<1». 
c oX uX (5.2) 

Invariance under this translation requires the existence of a function F x(r, t) such that 

( 1 oA _ 0<1» = dFx = oFx +v . gradFx. 
e cV ' oX oX dt ot 

Thus one requires, with e' = e/c, 

of x/ot = -eo<1>/ox, gradF x = e'oA/ox. (5.3) 
These entail 

oH/ox = o(curlA)/ox = 0 (5.4) 

and 

oE = _ ~(grad <1>+! oA) = o. 
OX ox c ot 

(5.5) 
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When equations (5.4) and (5.5) are satisfied, equations (5.3) give the total differential 
ofF 

dF ' (oAx d + OAy d + oAz d 0<1) dt) 
x = e oX x oX y ~ Z-~ 

= e'(dAx+Hzdy-Hydz+cExdt). (5.6) 

Integrating in y, z, t space along a continuous curve which consists of straight segments 
joining the points (0,0,0), (y, 0, 0), (y, z, 0), (y, z, t) one gets F x in the form 

Fx(x,y,z,t) = e'{Ax(X,y,z,t)+ f: HZ(Yl,O, 0) dYl 

- J: Hy(y,Zl,0)dz1+c J: Ex(y,z,t1)dt1} 

= e' Ax+ffx(Y, z, t), (5.7) 

say, the argument x having been omitted from the field strengths since these do not 
depend on x. (See also the remark following equation (5.12).) The conserved quantity, 
which is also the generator of translations along the x-axis leaving the system 
invariant, is 

Gx = Px-Fx = mi-ffx. (5.8) 

When one has invariance under translations along both the x-axis and the y-axis, E 
and H must be independent of both x and y, and then Hz is constant (independent of 
x, y, z, t). Proceeding as before, one now has two conserved quantities 

where 

Gx = Px-Fx = mi-ffx, Gy = py-F y = my-ff y, 

ffx = e'{HzY- J: Hy(Zl,O)dzl+C f: Ex(z, tl) dt1}, 

ffy = e'{-Hzx+ J: Hx(Zl, 0)dz1+c J: Ey(z, tl) dtl}' 

(5.9) 

(5.10) 

Evidently simultaneous invariance under translations along all three axes requires 
that E and H are constant everywhere and at all times. One then has three conserved 
quantities 

--+ 
G = p-F = mV-ff, (5.11) 

with 
--+ 
ff = e'(rxH+cEt). (5.12) 

--+ 
ff is the time integral of the Lorentz force. Note that if the integrations in (5.7) and 
(5.10) are carried out along the world line of the particle, instead of as described earlier, 
then ff x and ff yare the time integrals of the x and y components of the Lorentz 
force acting on the particle. 
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..... 
For a free particle .fF = 0 and the conserved generators of translations along 

the coordinate axes are (mi;, my, mi) = mv. This vector is sometimes called the 
kinetic momentum, to distinguish it from the canonical (or generalized) momentum p, 
that is to say, from 

p = mv+e'A. (5.13) 

In the presence of an electromagnetic field the situation is not so simple. Interest 
centres not so much around generators of translations in general (i.e. generators 
which merely take x into x+ E, etc.) but around generators of translations under which 
the system is invariant. Such a generator will be called an invariant generator of 
translations; and it will be recalled that it is conserved. As has been seen, the number 
of invariant generators one can have in any particular case depends upon the configura­
tion of the field. An invariant generator, when it exists, need be neither a kinetic nor a 
canonical component of momentum. Accordingly it will also be referred to as a com­
ponent of symmetry momentum. This terminology notwithstanding, when the system 
is not invariant under translations along a certain axis the corresponding component 
of the symmetry momentum is not defined. 

It may be worth returning to the case when one has invariance under transla­
tions along just two axes, which were above taken to be the x-and y-axes. Then, 
whatever the initial gauge may have been, one can choose a new gauge so that the 
invariant generator for translations along one of the axes becomes the component of 
canonical momentum along that axis. If, for instance, the latter is the x-axis one 
need only choose X in (1.2) to be such that 

e'ox/ox = -.fF x. (5.14) 

It is not always possible, however, to choose the gauge so that both invariant generators 
are the corresponding components of canonical momentum. If this were to be possible 
one would have to have, in addition to (5.14), 

e'ox/oy = -.fF y, 
that is, the condition 

o.fF x/oy - o.fF y/ox = 0 (5.15) 

would have to be satisfied. In view of (5.10) the left-hand member of (5.15) has the 
value 2e'Hz. The required end can therefore be achieved only if Hz = O. Alter­
natively, the same conclusion follows from the fact that 

[Gx,Gy] = -e'Hz, (5.16) 

whereas if Gx and Gy were both canonical components of momentum their Poisson 
bracket would have to vanish. 

(b) Invariance under Rotations 

Let a particle be moving in a uniform magnetic field (constant in time), the 
direction of which may, without loss of generality, be taken to be along the z-axis. 
Then the equations of motion are invariant under rotations about any axis parallel 
to the z-axis. The gauge may be chosen so that the Lagrangian will be invariant under 
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rotations about any particular one of this set of parallel axes but then it will not be 
invariant under rotations about any other axis of the set. 

In an arbitrary gauge the Lagrangian is again given by (5.1), where now 

grad<P+! oA c ot = 0, curlA = H = (O,O,H). 

For an infinitesimal rotation about the z-axis 

x' = X-€y, y' = y+€X, z' = z. 
Then 

llL = L(v',r',t)-L(v,r,t) 

, { (. oAx + . oAy + . oAz) ( . oAx + . oAy + . oAz) =e€xx-- y-- z-- -yx-- y-- z--
oy oy oy oX oX oX 

+iAy-YAx+c(y o<P -x o<P)}. 
oX oy 

Keeping equations (5.17) in mind one confirms without difficulty that 

llL = e'€1t{(XA y-yAx)-IH(x2+y2)}. 

The transformation (5.18) is of the form (2.4) with 

Ux = -y, U y = X, Uz = 0. 

Evidently the function F in (2.5) is here 

F = e'{(xA y-yAx)-IH(x2+y2)}. 

According to (2.9) the quantity 

Gz = -(YPx-xpy)-F 

is conserved. Explicitly 

Gz = x(py-e'A y)-y(px-e'A x)+le'H(x2+y2), 

or 

Gz = m(rxv)z+le'H(r2-z2). 

Gz is obviously gauge-invariant. 

(c) Inversions 

Consider inversions through the origin, i.e. the transformation 

r' = -r, 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

for a charged particle moving in an electromagnetic field. There is of course no 
corresponding infinitesimal transformation, and the problem is to construct the 
generator C of inversions under which the system is invariant, the prescription being 
such that it holds independently of the gauge. 
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For illustrative purposes the problem in hand will be solved within the 
Hamiltonian formalism. Because of (5.23) one has here bik = -Sik, so that (3.6) gives 

p' = -p- grad w(r, t). 

According to (3.3) and (5.23) the generator 0 has the form 

o = -p' . r-w(r, t). 

Since 

H(p,r,t) = (tm)jp-e'AI2+e<l>, 

(5.24) 

(5.25) 

equations (5.23) to (5.25) and (3.4) then give the relation from which the derivatives 
of w may be read off 

(tm){lp+ grad w+e'A( -r, t)12-lp-e' A(r, t)12}+e{<I>( -r, t)-<I>(r, t)} = -ow/at. 

The factor multiplying p must vanish, and so 

gradw = -e'{A(r,t)+A(-r,t)}, 

ow/at = e{<I>(r, t)-<I>( -r, tn. 
From (5.26) and (5.27) one confirms easily that w exists if, and only if, 

H(-r,t) = H(r,t), E( -r, t) = -E(r, t). 

(5.26) 

(5.27) 

(5.28) 

In other words equations (5.28) are the conditions for the integrability of the four 
equations (5.26) and (5.27). From (3.1), (5.25), and (5.26) 

p' = -p-e'{A(r,t)+A(-r,t)}. (5.29) 

To integrate (5.26) and (5.27), let their right. hand members be denoted by d and 
do respectively. Proceeding as in Section V(a), choose as path of integration a curve 
composed of straight segments, so that 

W = 1'1: dx(Xl,Y,Z, t) dXl+ J: dy(O, Yl,z,t) dYl+ J: dz(O,O,zl,t)dzl. (5.30) 

There is no integral with respect to t since d 0(0,0,0, t) = O. One could alternatively 
integrate along the world line 7T of the particle. Then one merely recovers the result 

W(= w) = L LlLdt. (5.31) 

One might indeed start with this since, by hypothesis, the value of the integral is 
independent of the path, and the latter may be deformed into that used in equation 
(5.30). 

VI. DISCUSSION 

It has been shown that statements which are valid in any gauge can be made 
about the symmetry properties of a system. An interesting result of this treatment 
is that the invariant generators of infinitesimal translations are in general not com· 
ponents of the canonical momentum. 




