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Summary 

By using the technique of summing an i,"finite series of non-relativistic 
graphs, accurate integral equations are obtained for the three-particle interaction 
amplitudes. 

A method of solving the problem of interaction of three particles is proposed 
in this paper. An accurate integral equation for the three-nucleon interaction 
amplitude is obtained using the method, which is based on non-relativistic field theory. 

The only assumption made in the work is that two-body forces are essential. 
However, this does not limit the proposed method, which allows three-body nuclear 
forces to be taken into account. The method employs the two-body interaction 
Hamiltonian 

V(t) = ~ a*(k,t)a*(p-k,t)V(k,k/)a(kl,t)a(p-k',t), 
k,k,p 

(1 ) 

where t is the time, a*(Te, t) and a*(p-Te, t) are creation operators for nucleons with 
momenta Te and p -k, and a(Te', t) and a(p -Te', t) are annihilation operators for the 
nucleons with momenta Te' and p-Te', and 

V(k, Te') = J exp[i(Te-lC/)r] V(r)dr, (2) 

where V(r) is a potential of interaction between particles. In this case, as was shown 
in previous papers (Komarov and Popova 1963a, 1963b) the accurate three-particle 
amplitude can be represented as a sum of contributions from an infinite series of 
non-relativistic perturbation theory Feynmann graphs corresponding to the process 
under study (Fig. 1). The entire sum of the diagrams in the right half of Figure 1 
can be represented in the form of Figure 2, since the iteration of this last equation 
makes it possible to reconstitute the aggregate of diagrams shown in Figure 1. In 
fact, because the three particles are identical, there is a sum of three diagrams 
which differ only in the permutation of the particles in the final state. 

Thus an accurate integral equation for the three-particle interaction amplitude 
contains half the number of variables compared with the corresponding Schrodinger 
equation for an arbitrary potential. For the sake of simplicity the equations are 
derived for the zero-spin particles. The equations can be generalized for real non­
zero-spin particles without any essential difficulties, and the method applied in 
Komarov and Popova (1963a, 1963b, 1964) can be used for this purpose. 
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By determining the contributions from the separate graphs of Figure lone can 
obtain in analytical form the integral equation for the amplitude of the reaction 
under study. It is clear from the figure that the main elements of these graphs 
are the two-nucleon scattering blocks B, C, and D, the vertices A corresponding 
to the decay of a dinucleon into two nucleons and nucleon propagation lines. As 
indicated by Komarov and Popova (1963a) the contribution from the nucleon­
nucleon scattering block is 

i(47T/m) a(f,/" E), 

where a(/,J', E) is a Green's function of two scattering nucleons, I and I' are the 
particle relative motion momenta before and after scattering and E is the relative 
energy of these particles. In Komarov and Popova (1963a) the graph summation 
method was used to obtain the integral equation for the function a(I,J', E) analogous 
to the SchrOdinger equation 

a(/,J', E) = (m/47T) V(/,J') + (m/87T) I V(/, q) a(q,J, E)(mE -q2-iT)-ldq. (3) 
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Fig. I.-The infinite series of perturbation theory Feynmann graphs corresponding to three­

particle interaction. 

In the case fro < 1 (f = (mE)i), i.e. in the zero and linear approximations 
in the range ro of nuclear forces, the 8-wave part of the Green's function fpr the 
scattering nuoleon pair only depends on the relative energy E. Hence the oontribution 
from the two-partiole soattering blook is proportional to the nuoleon-nucleon scat­
tering amplitude on mass sheet. In the zero-order approximation in ro the contribution 
from the scattering block is 

a(f) = -l/(a+if), (4) 

where a is the triplet scattering nucleon-nucleon length. In the linear approximation 
in r 0 the contribution is 

a(f) = !ro-(I +aro)/(a+if). (5) 

The value dj12N corresponding to the vertex of the deuteron decay into two 
nuoleons and depending on relative motion momentum /" can be determined by the 
residue of the pole part of the Green's function Orpol(/",E), 

dll2N = (i/m)[87TaResOrpOl(/",E)/E = EoJI, 

where Eo = a 2/m is the deuteron binding energy. In the zero-order approximation 
in ro and in the linear approximation in ro the deuteron decay vertex has the form 
respectively: 

~"'2N = (i/m)(87Ta)i, 

G~2N = (i/m)[87Ta(1 +aro)]l. 

(6) 

(7) 
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The nucleon propagation line in the non-relativistic graphs corresponds to 
the function 

y(p) = i/{EI-E(p)}, 

where El is the kinetic energy of the virtual nucleon obtained from the equation 
for the total energy conservation at the vertex and E(p) = p2/2m, where p is the 
momentum of the given virtual line calcuiated from the equation for the momentum 
conservation at the vertex. 

Having determined the contributions from separate elements of the graphs 
of Figure 1 we can calculate with the aid of the techniques used in Komarov and 
Popova (1963a, 1963b) the accurate integral equation for the amplitude t(Teo, a, Te,J) 
of nucleon-deuteron inelastic scattering with the production of two interacting 
nucleons 1 and 2 in the final state with the relative momentum J; Teo denotes the 
relative momentum of the nucleon and deuteron in the initial state and Tc that of 
the nucleon 3 and two interacting nucleons 1 and 2. 
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Fig. 2.-The accurate graph equation corresponds to the integral equation 
for the three-particle interacting amplitude t. 

In this equation the contribution from the pole graph to is a free term given 
by the product of the contributions from the deuteron decay vertex A, the nucleon­
nucleon scattering block B and the nucleon propagation line. It is clear from 
Figure 1 that the contribution in the pole graph from the deuteron decay vertex 
depends on the momentum 1" = Tc-1Teo of the relative motion of nucleons produced 
in the deuteron decay and has the form 

d;l22N = (ilm)[87TaResapOI(1",E)!IiI = IiI.]*. 

The propagation line contribution in the case under study is 

y(Tco, Tc) = im[ a 2 +tk2 -!k~ +!(Teo -Te)2]-1, 

and the nucleon-nucleon scattering block contribution depends on the momenta J 
and!' of the relative motion of nucleons issuing from the block and entering it, 
as well as on the relative energy E, which equals, in the case under study, the quantity 
f2lm, and hence must have the form 47Tia(J,J') 1m. 

Thus the contribution from the entire pole graph to or the Born term in the 
integral equations is 

to(Teo, a, Te,J) = (8/3)G<J22Na(J,J')y(Teo, Te). (8) 

The integral term in the desired equation for the nucleon-deuteron inelastic scat­
tering amplitude is given by the contribution from the graph tINT of Figure 2. 
Obviously the contribution from this term can be determined by investigation of 
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the rectangle graph tl . The contribution from the rectangle graph tl is given by the 
integral over the momentum g and energy € of the virtual particle 1. 

tl(fo,a,f,j) = ;;Jd€J(~3a(/,j~)a(Te"Te",E')G~-12N[€-i~ +iT]-l X 

[ k5 a2 (fo-g). ]-l[k2 f2 (f-iJ)2 . ]-1 ----€----+IT --€-r-----+IT . (9) 
4mm 2m 4m m 2m 

The expressions in the square brackets in this equation are the contributions 
from the propagation lines 1, 2, and 4 respectively (Fig. 1, tl)' a(f', f", E') is the 
scattering amplitude of the virtual nucleon 2 and real nucleon 3. This value defines 
the contribution from the block "0" of the tl . The value of the relative energy 
E' = f'2jm of the particles 2 and 3 can be determined from the equation 

E' = !k5jm-a2jm-tq2jm-€, (10) 

and the relative momenta of the incoming and issuing particles f' and Te" are equal 
to fo-til and f-til respectively. a(/',j) is the scattering amplitude for particles 1 
and 4 and corresponds to the contribution from the block "D" of the tl , where f' 
and / are relative momenta of the particles before and after scattering. The relative 
energy of the particles 1 and 4 is equal to f'2jm and can be determined from the 
equation 

f'2jm = !k5jm-a2jm-!k2jm; Ii'I = Ig-ifl· 
Now it is important to investigate the integrand of equation (9). It contains as 
function of the fE three poles in the complex plane when 

€ = €l = !q2jm-iT, 

€ = €2 = tkgjm-a2jm-!(fo-iJ)2jm+iT, 

€ = €3 = tk2jm+f2jm-i(f-iJ)2jm+iT. 

Besides that, the integrand contains singularities in €-plane arising from singularities 
of the function a(f', f", E'). As function of energy E' this function contains a pole 
when E' = a2jm, a right cut from E' = 0 to +00 along the real axis, and a left cut 
from E' = -tfLjm to -00 along the real axis on the physical sheet. Here fL has 
a value Ijro of the order of magnitude of the pion mass. The fE-plane and E'-plane 
are connected by equation (10). If this is borne in mind it can be seen that all 
singularities on the €-plane will be as follows. 

In Figure 3 the E'-pole is in the point 

€' = Ik3jm-tq2jm, 

the E' right cut is from the point 

€z = !k5Jm-a2jm-tq2jm 

to -00, and the left E' cut is from the point 

€r = Ikgjm-a2jm-iq2jm+ifL2jm 

to +00. 
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If the function a(k', k", E') has been defined on the upper sides of the cuts in 
the E'-plane, this function is defined on the lower sides of those cuts in the ,,-plane. 
In this case it is possible to move the integral contour over" into the lower half-plane 
forming a distance of is between the contour and real axis and enclose it round the 
lower half-plane having the "I-pole inside the contour. Because the integrand decreases 
when " increases, the calculation of the integral over " reduces to the calculation of 
the residue of the integrand function at the point"1 = tq2/m . It is clear that the same 
meaning of the integral over" can be obtained if the function a{iC', k", E') had been 
defined on the lower sides of the cuts in the E' -plane. 

where 
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Fig. 3.-Singularities in the £-plane. 

Consequently, the contribution from the graph tI is 

-+00 

", @ 

tI(ko, a, k,J) = (8/3)2417 f(:~3 !G<j12Na(/;,.f)a(k', k", E') X 

[a~+(tko-q)2]-I[ -f2+(tk-q)2]-1, (ll) 

E' = !kg/m-a2/m-!q2/m. 

It is possible to pick out from the integrand of expression (ll) the part 

(8/3)G<,/12Na(k', k", E') [a2 +(tko-q)2]-1, 

which is equal to the contribution (8) from the pole-graph to (ko, a, q, k") where the 
deuteron and nucleon with the momenta ko and -ko respectively are the incoming 
particles and three nucleons are the emerging particles, k" denotes the relative 
momentum of two of these nucleons and momentum q denotes their onward 
movement. 

Thus the contribution from the rectangle graph tI can be rewritten in the form 

tI(ko, a, k,.f) = (8/3)417 f (:~3 to(ko, a, q, k")a(/,.fD. y(k, q), (12) 
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where 

y(fc, ij) = [-f2+{!iC-ij)2J-l. 

Hence the integral term in the equation for the desired amplitude has the form 
(after replacement in the expression (12) for tl of to(fco, a, ij, k") by the accurate values 
of this amplitude, t(fco,a,q',k")) 

tINT(fco, a, fc,f) = (8/3)% I (~3' t(ko, a, ij', fc")a(J,f;)y(k, ij). (13) 

Now the contribution from the pole graph to (equation (8)) and from the integral 
term tINT (equation (13)) has been obtained, and the total integral equation for the 
three-particle interaction amplitude describing the reaction in which there are a 
deuteron and a nucleon in the initial state and three interacting nucleons in the final 
state can be presented in the form 

t(ko, a, fc,f) = (8/3)G</12N a(J,f')y(ko, k) +81T I (~3 t(fco, a, ij, fc")a(j,f;). y(fc, ij). (14) 

In the' case of fro 4{, 1, i,e. in the zero or linear approximation in ro, equation (14) 
must become much simpler since the contributions from the scattering blocks and the 
-deuteron decay vertex must be proportional to the scattering amplitude of two 
nucleons on mass sheet. 

It is easy to obtain the zero-approximation for the integral equation (14) 
using the meanings of deuteron decay vertex and nucleon-nucleon scattering block 
in this approximation. Equations (4) and (6) give 

t(O)(ko, a, k,f)= (8/3)(81Ta)f(a+if)-ly(fco, fc) +871' I(~3tD(fc, a, ij, fc")(a+if)-ly(fc, ij). (15) 

This equation coincides directly with the Skornyakov-Ter-Martirosyan (1956) 
equation obtained from the investigation of the Schrodinger equation for the non­
relativistic three-body problem in the above approximation. It should be noted 
that obtaining equation (14) for the arbitrary approximation on the basis of the 
Schrodinger equation by the method proposed in Skornyakov and Ter-Martirosyan 
(1956) is impossible, and equation (15) follows as a particular case (under the 
assumption of zero range of nuclear forces) from the accurate integral equation (14) 
derived in this paper. 

In the linear approximation in ro, equation (14) has the form (the expressions 
(5) and (7) for the block and vertex are used now) 

1 - - j [1 +aro] { 1 Tc-tf. )(ko,a,k, ) = (8/3) tro- a+if [81Ta(l+aro}] .y( o,k)+ 

31T I (:~3 tf.1)(Tco, a, ij, Tc")y(Tc, ij) }. (16) 

As indicated above, equation (14) was obtained under the assumption that two 
nucleons 1 and 2, with relative momentum j, interact in the final state. Since the 
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interaction of nucleons 1 and 3 or 2 and 3 is also possible in the final state the total 
nucleon-deuteron inelastic scattering amplitude is 

T(Teo, a, Te,/) = t(Teo, a, Te,/) +t(Teo, a; -tTe-J, lTe-tf) +t(ko, a; -!k+/, lTe+th (17) 

Obviously, the above method can be used to obtain the integral equation for the 
nucleon-deuteron elastic scattering amplitude t'(Teo, a, Te, a), where ITeol = ITeI and the 
integral equation for the scattering amplitude of three free nucleons t"(Teo,/o, Te,/), 
where /0 is the relative momentum of a pair of nucleons scattered in the initial state, 

, f: f: _ 2 (I") 2 - - J dij , - - (f~') --t (ICO' a,IC,a) - a7T[Gd->2N] y(ko,k)+(3j?T) (27T)3t (ko,a,q,a)Gd->2Ny(k,q), (18) 

ttl (Teo'/o, Te,/) = i7Ta(/o,J")a(/'/')y(/o, Teo, Te) +27T2 J (~3 t"(Teo,/o, ij, Te")a(/,/~)y(/, Te, ij), 

(19) 

where Y(/o, Teo, Te) = [-f~+(tTeo-Te)2]-1, and y(j, Te, ij) = [-J2+(!k-q)2]-1. 

The obtained accurate integral equations (14), (18), and (19) are valid for the 
description of every kind of three-particle interaction, for example, (d,a), (d,t), and 
others. 
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