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Summary 

This paper develops a gauge-independent symmetry theory of non-relativistic 
quantum mechanical systems, in line with that previously considered in the context 
of classical mechanics. We first discuss at length the motivation for adopting the 
view that the invariance of a system K under a physical symmetry operation .<I' 
should be taken to mean invariance of the equation of motion of K under a certain 
gauge-independent unitary transformation U c( .<1'). The formal development of the 
theory is then carried through, and some detailed examples are presented. In parti­
cular, corresponding to every direction along which a system K happens to be transla­
tion invariant there exists a gauge-independent generator of translations which 
leaves K invariant but which is not, in general, a component of either the canonical 
or the kinetic momentum. The connexion between such invariant generators of 
translations and the so-called magnetic translation operators is referred to. 

L INTRODUCTION 

In a previous paper (Tassie and Buchdahl 1964) hereafter referred to as I, we 
considered, in the context of classical dynamics, the problem of defining in a gauge­
independent way the condition that a system be invariant under some symmetry 
operation. We now go on to consider this question in the context of non-relativistic 
quantum mechanics. 

If U is a time-independent (unitary) operator which leaves the Hamiltonian 
H(p, q, t) of a dynamical system K invariant, 

UHU-l = H, (1.1) 

then U is a constant of the motion. Therefore, writing 

U = eiG, (1.2) 

if U is an element of a continuous group, the observable G is conserved. One says 
that K has the symmetry Y, or admits the symmetry operation Y, of which U is 
the image in Hilbert space. It is therefore usually stated that the condition 

[U,H] = 0 (1.3) 

is a condition for the symmetry of K under Y. Now it is certainly true that the 
condition is sufficient. However, it is sometimes made to appear, at least by implica­
tion, that the condition is also necessary. Whether this is true or not depends on 
certain questions of definition, in the sense that one must first say what is meant by 
(i) the invariance of K under an operation Cn; (ii) "momentum". 
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(I) is to be regarded as a physical operation in which K is shifted rigidly in such a 
way that the initial coordinates Xk (k = 1,2,3) of any element of K become* 

Xk = akZ xZ+ak (1.4) 

as a consequence of (I). (Summation over repeated indices is implied.) Here akZ, ak 
are constants, the akZ being the coefficients of an orthogonal transformation, so that 

akm aZm = amk amZ = i'hz. (1.5) 

One may then lay down that the image U of (I) shall be such that if the Xk are now 
coordinate operators then 

UXk U-1 = Xk, (1.6) 

(1.4) being retained. Observe now that the effect of U on the "canonical momenta" 
Pk is not uniquely defined. All one knows is that the Xk,PI obey the canonical 
commutation relationst 

[Xk,XI] = 0, [Pk,PI] = 0, [Xk,PIJ = i8kl , (1.7) 

and likewise 

[Xk,xll = 0, [Pk,Pl] = 0, [Xk,Pl] = i8kl . (1.8) 

The necessary and sufficient condition for the compatibility of equations (1.4)-(1.8) 
is that 

pic = UPk U-1 = akz{PI+ af(x, t)/axz), (1.9) 

where the function f of the coordinates and of the time remains arbitrary.t To this 
extent the canonical momentum Pk is not uniquely defined; its precise nature 
depends in any particular case upon the "gauge function" f. 

That we do not now choose f = ° once and for all is no mere act of pedantry. 
Consider the case when K is a particle of mass m and charge** ce in an electromagnetic 
field whose potentials are A, cD, so that 

1 
H = 2m(p-eA) . (p-eA)+cecD. (1.l0) 

Then 

mXk = m[xk,H] = Pk-eAk. (1.l1) 

Suppose now in particular that the field strengths are zero and that (I) is an infinitesimal 
translation through E: 

Then 

akl = 8kl , ak = Ek. (1.l2) 

mXk = plc-eAk(xs+Es, t) 

= plc-e{Ak(xS' t)+Er aAk(xs, t)/axr}. 

* In the case of the parity operation this statement has to be interpreted appropriately. 
t h has been taken as unity. 
t Spin is here being disregarded. 

** That is, e is the electronic charge divided by the speed of light c. 
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One must surely require for a free particle that 

XTe = XIc, 

so that 

PTe-Pic = eEr oAIc/oxr = O(eErAr)/OXIc, 

since oAIc/oxr = OAr/OXic, and therefore here 

f= n:. A. 

III 

(1.13) 

(1.14) 

Of course, this conclusion is bound up with the fact that the potentials need not be 
zero even when the electromagnetic field ~, £ is zero, that is to say, with the gauge 
invariance of Maxwell's equations. 

We continue in terms of the present example. It is commonly stated (e.g. 
Messiah 1962, p. 652) that "I: . P is the generator of translations", i.e. of the infinitesi­
mal displacement I: (U = l+il: . pl. Presumably one has to understand here that 
H(p,x, t) is given and the operators p in U are the same as these which occur in H. 
The mistake here lies in referring to I: . P as the rather than as a generator of transla­
tion. For clearly UpU-l = p, which is at variance with (1.9) and (1.14). Indeed, 
granted (1.10) and (1.13) one has to take I: . (p-eA) as the appropriate generator 
of translations. . 

In short, granted that a free particle (i.e. one on which no forces are acting) is 
to be regarded as a system invariant under translations, the generator of translations 
is I: . (p-eA). Note that (i) p-eA is the kinetic momentum mx; (ii) p-eA, but not 
p, is conserved; (iii) in general neither p nor p-eA commute with H and, in general, 
they are not conserved. We are now ready to consider the general problem, and this 
will be done in the following sections. 

II. SYMMETRY OPERATIONS 

By considering the special case of translations we saw that it is not desirable 
to take invariance of a system K under a symmetry operation Y to mean simply 
the invariance of the Hamiltonian H under some unitary transformation U which 
is the image of Y in Hilbert space. On the contrary all that is necessary on physical 
grounds is that the equation8 of motion of K 8hall be invariant under Y. This, then, 
is the answer to one of the questions asked above. Only rarely is the sufficiency of 
this condition recognized explicitly; but even when it is (Messiah 1962, p. 661) its 
relevance to gauge independence does not appear to have been adequately pursued. 
It is true that by a suitable choice of gauge one can arrange H to be invariant under 
the unitary image of any selected one-parameter continuous subgroup of a given 
r-parameter (r > 1) continuous group ll7 of operations. One cannot, however, always 
achieve the invariance of H for more than one subgroup at a time. On the contrary, 
one has to re-gauge on proceeding from one subgroup to the next. This is incidentally 
the situation one has when the manifest covariance of electrodynamics is destroyed 
by adoption of the Coulomb gauge. The theory is still (manifestly) covariant with 
respect to spatial rotations, but one has to go over to a new gauge after the perfor­
mance of every Lorentz transformation. Again, a particle travelling in a homogeneous 
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magnetic field.?lt' must surely be regarded as a system invariant under rotations about 
any axis parallel to.?lt'. Yet if A is symmetric about one such axis it will not be 
symmetric about any other. In every case the conclusion is the same, namely, that 
one should have a gauge-invariant definition of symmetry. We turn now to the 
formal aspects of the problem. 

III. INVARIANCE OF THE EQUATION OF MOTION 

In the Schrodinger picture the equation of motion of K is 

HI> = i dl>/dt. 

Under an arbitrary canonical transformation U this becomes 

H*I"> = idl*>/dt, 

(3.1) 

(3.2) 

where 1*> = UI>, and the transformed time displacement operator H* is given by 

H* = UHUT +ioUUt . 
ot 

(3.3) 

Now if U is any particular chosen image of the operation (I) to which (1.4) and (1.6) 
relate, then we know from Section I that any other image of (I) must have the form 
au, where 

a = ei/(x,t) (3.4) 

is a unitary operator which is a function of x and t only. 

If (I) is in fact a symmetry operation g, it must be possible to choose a such 
that H* is identical with H. With thi8 choice of a we write 

Ue = au. (3.5) 

Accordingly, formally replacing U by Ue and H* by H in (3.3) it follows that we must 
have 

oUe +i[H, Ue] = O. 
ot . (3.6) 

Evidently Ue is conserved. Using (3.4), equation (3.6) may be written in the form 

of +e-i/Heif = iOUUt+UHUt . 
ot ot (3.7) 

Thus, if a function f(x, t) can be found which satisfies (3.7) then the equation of 
motion of K is invariant under the transformation (1.4). Amongst all possible operators 
which have the common property that they induce (1.4), Ue occupies a special 
position for (i) it is the true symmetry operator corresponding to g in the sense that 
it leaves the equation of motion of K invariant; (ii) it is conserved. Ue may be 
called the invariant image of g; and if g is an element of a continuous group one has 
the corresponding invariant generator of g. 
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IV. TRANSLATIONS, ROTATIONS, INVERSIONS 

(a) Translations 
Take 

G= E.p (4.1) 

as a generator of an infinitesimal translation E. The lack of uniqueness of G is now 
irrelevant since our results must be independent of any particular choice from amongst 
all possible generators. Although there is great formal similarity between the classical 
and the quantum mechanical results we shall reconsider the examples of I in some 
detail. 

Write 
j= Eg, (4.2) 

where E is the magnitude of E. Then from (3.7), if K is to be invariant under the 
translation E, Eg must satisfy the equation 

[EO. p+g,HJ+i og/Ot = 0, (EO = E/E). (4.3) 

Using (1.10) this becomes explicitly 

1 [ ( dA )] d<1> og - (p-eA), e-- + gradg -ce-- + - = 0, 
2m ds + ds ot 

where d/ds denotes spatial differentiation along the direction of E, whilst for any two 
vectors C and D 

[C,DJ+ == C. D+D. C. (4.4) 

The factor multiplying p must vanish, and so 

gradg = -edA/ds, og/ot = ced<I>/ds. (4.5) 

These are integrable if, and only if, 

M'/ds = d.)IF/ds = 0, (4.6) 

that is, r! and .)IF Il.lust not vary along the direction of the translation. When these 
conditions are satisfied (4.5) give the total differential of g, and one may proceed 
as in 1. Thus 

dg = eEo . (- dA+ Jf' X dx-c@"dt), (4.7) 

which may be integrated along any convenient contour. The result is of the form 

g = Eo. (-eA+g), 
with 

9 = e I (.Y! X dx-c'!dt). 

The invariant generator of translations is therefore 

r = E . P+Eg = E . {(p-eA)+g} 

= E. (mx+g). 

(4.8) 

(4.9) 

(4.10) 

The gauge invariance of r is evident on inspection. Note that, in general, this is 
neither the canonical nor the kinetic component of momentum in the direction EO. 
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Accordingly it will, as in I, be called a component of symmetry momentum. It should 
be carefully observed that, the terminology notwithstanding, it is defined only 
when (4.6) is satisfied. 

If K is invariant under translations along two different directions, one essentially 
doubles the number of equations above. Formally one need only supply the symbols 
&, g, and s with alternative subscripts 1 and 2. In particular & and £' must not vary 
along the direction of &1 or &2. It should be noted that an electromagnetic gauge trans· 
formation can be arranged so as to make one of the invariant generators a component 
of canonical momentum. In general one cannot, however, make both invariant 
generators canonical. The detailed discussion of this case, or the case of invariance 
along three distinct directions, is much the same as that given in 1. 

(b) Rotations 

It suffices to consider rotations a bout the z·axis. The generator of an infinitesimal 
rotation through the angle E is 

G = ELz = E(XPy-ypx). (4.11) 

As in the case of (4.1) the lack of uniqueness of this is irrelevant. We take the case 
referred to at the end of Section II, i.e. that of the homogeneous magnetic field 
.~ = (0,0, £'), g = 0. In particular, one can certainly choose the gauge so as to make 
the Hamiltonian invariant under rotations about any particular axis along the 
direction of ;/(; but then it will not be invariant under rotations about any other 
axis parallel to the first. 

The equation corresponding to (4.3) is 

[Lz+g,H]+iog/ot = 0. (4.12) 
Explicitly this reads 

- 2~{[PY' Ax]+-[Px, Ay]++[p, DA]+} 

1 . e2 2 0 
+ -2 [(p-eA), gradg]++ceD<I>+ -2 DIAl + ..i = 0, 

'm m ot 

where D stands for y%x-x%y. The factor multiplying p must vanish, and so 

og/ox = e(DAx-Ay), 

og/oz = eDA z, 

og/oy = e(DAy+Ax), 

og/ot = -ceD<I>, (4.13) 

where the last equation has been simplified by means of the expression for gradg 
provided by the first three. The integrability conditions on (4.13) are satisfied, and 
one finds easily that 

g = e(yAx-xAy)+t£'(x2+y2). (4.14) 

The invariant generator of two· dimensional rotations is therefore 

r = E(Lz+g) = E{x(py-eAy)-y(px-eAx)+g}, (4.15) 
with 

9 = t e£'(x2+y2). (4.16) 
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The conservl'ld observable is thus r/E, that is, the (component of) symmetry angular 
momentum 

P . 1 ""'( 2 2 z = m(r X r)Z+2edl x +y ). (4.17) 

Once again it should be carefully noted that P z is neither a canonical nor a kinetic 
component of angular momentum; and that it does not necessarily commute with 
the Hamiltonian. 

(c) Inversions 

Inversions, that is to say the parity operation, correspond to the choice 

akl = -Ski, ak = ° (4.18) 
in (1.4). Thus 

UrU-l = -r. (4.19) 

From (4.19) it does not follow that 

UpU-l = -p, (4.20) 

as we know from Section I. (In the literature it is generally made to appear (e.g. 
Merzbacher 1961; Kur~unoglu 1962) as if one were forced to lay down (4.20) as well 
as (4.19).) However, in our gauge-independent formalism (4.20) may be adopted 
without anything thus being lost, provided one adheres to that definition of the 
symmetry of K under U which follows equation (3.7). 

If F(r, t) is any function of r, t, we shall take F _ to mean F( -r, t); whilst 
occasionally F(r, t) itself will be written as F + for emphasis. Recalling (3.4), equation 
(3.7) now reads 

tm{lp+eA-- gradfI2-lp-eA+12}+ce(<D_-<D+)-of/ot = 0, 

which, in the usual way, requires 

gradf = e(A++A_), 

of/ot = -ce(<D+-<D_). 

The integrability conditions on (4.21) are 

Yf'_ = .Ye+, iff _ = -iff +. 

(4.21) 

(4.22) 

When these are satisfied f may be determined from (4.21). The true parity operator 
("true" in the sense indicated at the end of Section III) is then 

Uc = eifU, (4.23) 
and this is conserved. 

V. CONCLUDING REMARKS 

The program outlined in Section I has been illustrated by the preceding 
examples, and it remains only to recapitulate the main point. It is this: the idea 
that invariance of a system K under a physical symmetry operation ,cr' means 
invariance of the Hamiltonian H of K under some particular image U(!/') of !/' in 
Hilbert space is in general too narrow, since this "inv:ariance" could be destroyed 
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by a physically empty gauge transformation. We have therefore taken invariance 
to mean invariance of the equation of motion of K, in which case one is led to a 
gauge-invariant image of Y, whenever K is in fact invariant under Y' in the sense now 
adopted. 

It may be apposite to enlarge these remarks somewhat with regards to the 
special case of translations. If K is invariant under translations in the direction EO, 

then there exists a corresponding component of symmetry momentum f (see equation 
(4.10)), which is the invariant generator for this symmetry operation. If one has 
translation invariance along two distinct directions E01 and E02, then there exist the 
two corresponding invariant generators f1, f 2. Further, f1 and f2 will, in general, 
fail to commute. It follows incidentally that these generators do not form a repre­
sentation of the translation group,* but only a ray-representation, i.e. a representa­
tion to within a phase factor. If one has invariance along three linearly independent 
directions, one has a set of three invariant generators and these then form a ray­
representation of the full translation group. 

In this special situation the invariant generators have been previously defined 
by Brown (1964) who, however, uses a special gauge. In the presence of a homogeneous 
magnetic field he chooses a gauge such that 

A=tdfxr. (5.1) 

He then defines what he calls "magnetic translation operators" which, transcribed 
into the present terminology, correspond to taking 

r = E . (p+eA). 

Without any particular choice of gauge, on the other hand, we have from (4.9) 

r = E. (p-eA+e.#' X r), 

and this naturally reduces to (5.2) when (5.1) is adopted. 

(5.2) 

(5.3) 

A final remark concerns the behaviour of expectation values under a symmetry 
operation Y. The point at issue is sufficiently illustrated by considering the specific 
case of a rotation!7l. One normally understands V 1, V 2, V 3 (= V) to be the com­
ponents of a vector operator if under (!Jt they transform according to 

- -t 
UVj U = Rjk Vk, (5.4) 

where a is a unitary image of!7l. Then the expectation value of V transforms as a 
vector under spatial rotations. Making the definite choice a = Uc we see that r, for 
instance, is a vector operator. However, in general 

UCpjU/ -# RjkPk, 

(see equation (l.9)) so that p is not a vector operator according to the usual definition. 
A particle velocity v on the other hand is a vector operator, for v = im-1[H, r] in 
which r is a vector operator, whilst H goes into itself under transformation by Uc. 

* Here, the group of plane translations in the direction of aEOl + bEo2, with arbitrary a 
and b. 
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All this amounts to saying that covariance under g> is to be required only for gauge­
invariant dynamical variables, whilst canonical momenta or other gauge-variant 
variables are covariant only to within gauge transformations. 

VI. REFERENOES 

BROWN, E. (1964).-Phys. Rev. 133: AI038. 
KUR:;;UNOGLU, B. (1962).-"Modern Quantum Theory." Ch. VI. p. 164. (W. H. Freeman: 

San Francisco.) 
MERZBAOHER, E. (1961).-"Quantum Mechanics." Ch. 15. p.368. (John Wiley: New York.) 
MESSIAH, A. (1962).-"Quantum Mechanics." Vol. II. Ch. XV. pp. 652. 6n1. (North Holland: 

Amsterdam. ) 
TASSIE, L. J., and BUOHDAHL, H. A. (1964).-Aust. J. Phys. 17: 431. 






