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INCLUDING TEMPERATURE EFFECTS IN THE STREAM
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[Manuscript received April 22, 1966]

Summary

The dispersion equation for cyclotron electromagnetic waves in a system
comprising a charged particle stream injected at an angle to the static magnetic
field of a magnetoactive plasma is derived for a general wave-normal angle § when
the temperature of the stream has been taken into account. The expression for the
growth rate is derived in general for all cyclotron waves.

I. INTRODUCTION

The radiative instability problem of a stream-—magnetoactive plasma system
has been studied by a number of authors during the past few years (Zheleznyakov
1960a, 19600; Stepanov and Kitsenko 1961; Neufeld and Wright 1964; Fung
1966a, 19660). The main features of these treatments have been that:

(1) The ambient plasma is taken to be cold and magnetoactive.

(2) The distribution functions of the stream considered are:

(2.1) a delta function distribution in momentum space for both components
of momentum p, and p, where p, # 0 and p, s 0 (here we assign
the direction parallel to the static magnetic field to be the longitudinal
direction and the one perpendicular to it the transverse direction);

(2.2) a distribution function where there is dispersion of particles over the
momenta p, and p,, and p} = 0 whereas p} is non-zero (p?, p¢ are
values of momenta where the distribution curve shows the maximum);

(2.3) as in case (2.2) but where p? + 0.

(3) The assumed emission or wave-normal angle § falls into three classes:
(3.1) strictly longitudinal propagation, that is, § = 0° or 180°;
(3.2) @ close to 0° or 180°;
(3.3) general 6.

Zheleznyakov (1960a, 1960b) considered the instability problem in the com-
binations (2.1), (3.1), and (2.3), (3.1). Neufeld and Wright (1964) developed and
interpreted the case (2.1), (3.1). Stepanov and Kitsenko (1961) discussed the case
(2.2), (3.2) and some particular cases of (2.2), (3.3). Fung (1966a) derived the growth
rate for the case (2.1), (3.3) (evaluation of the growth rate and application of the
theory has also been attempted by Fung (1966a, 1966b) for two different types of
emissions in radio astronomy).
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When the distribution function of the stream is as type (2.2), most radiating
particles in the system acquire zero or very small values of p, and hence the excita-
tion of cyclotron waves is not important in such a system. On the other hand, the
excitation of Cerenkov and longitudinal plasma waves will be more pronounced in
the system with such a “longitudinal stream’ (a stream being injected along the
static magnetic field). As far as excitation of cyclotron waves is concerned, the
combination (2.3), (3.3), that is, p} and p| non-zero, seems to be most important,
for it probably represents the practical situation. It is the purpose of the present
paper to derive the dispersion equation, thus leading to the calculation of the growth
rate, for the case (2.3), (3.3).

II. THEORY

We consider a cold magnetoactive ambient plasma being specified by the
collisionless Appleton-Hartree formula

a1 z(1—=zx)

! 1—2—3y2sin®0 T {3y’ sin®0+(1—a)% oo}t
where n; is the refractive index, x = wi/w?, y = whlw, w3 = 4mNe2/mo is the
angular plasma frequency squared,  is the angular wave frequency, wg = ZeHo/moc
is the angular plasma gyro frequency, 6 is the wave-normal angle, N is the particle
density of the plasma, e is the electronic charge, Z is the number of electronic charges
in the charged particle, mg is the rest mass of the charged particle, and ¢ is the speed
of light in a vacuum.

Instead of a strictly “monoenergetic” charged particle stream, we consider a
stream having momentum spread in both components p, and p,. p! and p| are
supposed to be the values of momentum components where the distribution curve
reaches its maximum. More precisely, the unperturbed particle distribution function
fo(P) of the stream is given by

1)

R 042 I
fo(p) dp — Z GXP . (_p ] 2p II) _ (pJ._ 2}}&) dp, (2)
a, a,

where 4 = 273/2 a% a Gy is the normalization constant of fo, a% = 2mo«T,, a} =
2mo kT, mg is the rest mass of the radiating particle,* « is the Boltzmann constant,
and T', and T', are the transverse and longitudinal temperatures respectively. For

the normalization constant

Go = fo gexp{_(g._go)z} df, where [ =2p, /ja, and o= P(i/ar

With an ambient plasma specified by (1) and a distribution function of radiating
particles as described by (2), we will now derive the dispersion equation for electro-
magnetic waves in the stream-magnetoactive plasma system, employing the method
used by Zheleznyakov (1960a, 1960b), Neufeld and Wright (1964), and Fung (1966a).

The relativistic expressions of dielectric tensor components for growing
electromagnetic waves in the stream are (Fung 1966a)

* For simplicity, we consider one species of radiating particles only.
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where B = (om—k, p,—smown); w§ = 4wN'Z2%2|my is the square of the angular
plasma frequency of the stream; m = (mg-+p?/c2+p?/c2)t is the relativistic mass
of the particle in the stream, m being the rest mass of the charged particle; N’ is the
particle density of the stream; k,, k, are wave vector components along and per-
pendicular to the static magnetic field respectively; s is the harmonic number;
Js, J;, J are Bessel’s function, its first derivative, and its second derivative with
respect to its argument respectively, the argument being a = k, p, /mowy; and
fo is given by expression (2). The integration with respect to p, is carried out from
0 to oo and that with respect to p, is carried out from — o0 to + co.

It should be noted that for normal Doppler waves, the term smowg is positive
in the Doppler relation (wm—k,p,—smowg); for a negatively charged radiator,
e and hence wy are negative, and s must also be negative in this case. When we
consider anomalous cyclotron waves, the sign of s is opposite to that for normal
cyclotron waves.

Let ¢ = (p,—p)lay,
B = {wii—k, p} —swnmo}lk,a,, (4)
3(ppy) =8 ¢) = —{om—whi—k (p,—p))}k, a,,
where the superscript ~ indicates that the corresponding value is taken at the
point p, = p{, p, = p;. Note that the present quantity ¢ is equivalent to the

quantity ¢ defined by Zheleznyakov. This is in order to distinguish it from the
normalized frequency ¢ = w/|wg|, which is introduced later.

Let us now consider an integral of the form

(&, Dexp(—¢?) .,
I(L,By) = f J e . 5)
") ey (

The contour of integration runs along the real axis of p, from — co to + oo, bypassing
from above or below the singularities of the integrand.

The integrand of the above integral will have singularities at two points lying
on the real axis specified by & , such that

Bi—8(f1,2,0) =0, (6)
or w(m§+pﬁ /cz—f—joi/cz)*—klI p,—swgmy=0.

Note that we have changed the variables in (4) in order to deal with the denominator
in (3); in fact, equation (6) is equivalent to R = 0, which is the Doppler equation

It has been pointed out (Zheleznyakov 1960b) that when |¢'| < 1 and [L—2o] <
we have

I/gf| > |8(§’, C)l’ lfi,2| > If,l > (7)

and the integral (5) can be simplified to
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—im

with an accuracy up to terms of order 1/8%. In this expression §; = +1 if the contour
of integration in (5) bypasses the singularity ¢ from below, and §; = —1 if the
contour bypasses the singularity &; from above.

The mass of the radiating particle can be expressed in terms of ¢, { as
: 2 P y |
m(E,{) = m{l “”’" Tl “2“252+ “L“’(a zo)+ T?(c co) } )

Let us assume that m(¢’, {) changes little in the range |¢'| <1, [{—{o| <1
We can now express m(¢£’, {) in the form
2
z(z—:o) } (10)
Moc

It is easy to see that the angular plasma frequency can be written as

0
m(f’,i):ml+“~"p"gf+ “" §+%C0C o)+
m202 m

2, -2 a,p), d 2 a’ b a’ 2
wo(§, ) ~ o)l — -5 §— —5 87— Py {—bo)——535\ b (11)
M

2m°c 2m°c

In writing down expressions (10) and (11), we have taken

2

= L1 12)

| 0
a,p, aLCO

~2 2
mc

L1 L1,

Since the denominators B = wm—Fk, p,—smowy in the equations (3) can be
written as k, a,{B;—8(¢', )} and the quantities wo and m are expressed as functions
of ¢ (given in (10) and (11)), all the integrals in (3) fall into the type specified by
(5), when integration is carried out with respect to £'. Let us note that, on account
of the inequalities given in (7), the integral I({, B;) can be approximated

esy~p [ aeremehae, (13)

In the expressions for the dielectric tensor components, it has heen pointed
out (Fung 1966a) that the largest terms are the ones containing (wm—k, p, —smowp)2
and the number 1. Confining ourselves to this approximation, the integration with
respect to & can be performed readily on substituting (4), (5), (10), (11), and (13)
into (3).
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where Z = exp{—( C—Co)2} .

r(14)

As the argument of the Bessel function and its derivative a = &k, p, fmowy =
k, {ja, mown is a function of {, all the J,, J;, and Ji have to be kept inside the

integrals. In (14), we define

Ry =1—a?/4&%", Ry =a®{om’%®, Rs=a’2m%*
1 342 5 p® 2 (1 2
Ry=——L_ _ =L 1201 and Ry = —=|-4=L
2 8w 4w’ aﬁ mece\2 aﬁ

L

> (15)

Following Fung’s (1966a) method, the dispersion equation for electromagnetic
cyclotron waves in the stream-magnetoactive plasma system can be expressed as
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AE 2 A2,
w w
where A = ez sin20+ezz cos20+2eu sinfcosd,

B = 25in 0 cos O(ezy eyz— €yy €x2) +ebe —emmez
—00320(€yy ezz—}-e?,z )—sinze(sm e,,y+e§y) ,
C = exlesseyy+eay ) Feaneye +2eay ye cxe—eyy a5
and € are given by (14).
Employing the real —k approach, we write
w =&+, with |w| > 18], (17)

where @, the ‘“‘characteristic frequency”, is real and &’ is complex; the imaginary
part of 8’ gives us the growth rate. Let us define

8 =0a. (18)

After some lengthy calculation, the coefficients in (16) are found to be

A =1-U,/8%,
B = —2-+(Us/8%)+(Us/8"), (19)
C = 1—(Ua/8)+(Us/8*)+(Us/8%),

where Uy = Te+2Tsinfcos§ —T5 cos0 —T, sin®0 R

Ug = T3+2Tgsinfcos§ +T, cos’0 +Te sin%0 s
Us = By sin’0 +H,, cos’0 +2T'gsinfcos b,
Us = To+E,

Us = T7+Te Bz,

Us =TrE:,

Ur = Us+By—T5,

US = - Uﬁ —Exx Egljz+ 2T8 Exyz R6 Ré )

and Ty = Bay(Rs Ri—Ro R3), Ty = B,
T3 = Exx‘l‘Ezz, T4 = Eyy+Ezz,
Ts = Eyy B+ Ey, To = Epat+Eyy,

T? = Exx Ew‘*‘Eéy s T8 = Exz ’
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with
2.2,02 ’ 2 ’ ’
v B, W w |14
xx:%—“’Rs, Eyy :at—ﬁ R77 EzzszRQz
tan"0 (£-+ps) mc c
2.2 2 502 112 2 02 /2
, sya w , a w”_,
By = —— 2y JéB“ 2R§’ By = — Léuz 2 R,
m ¢ tan 0 (§-+ps) m°c
__SiBYW g s BTW
Xz — 8> Yz — .2 92 3
tan 0 (¢4 7s) m ¢ tan 0 (€4 ps)
wr _ TACK o' =1) 94{(&93)2_ 1}
3 &l g,

Also, in the above expressions, o = (density of stream)/(density of ambient plasma),
A = wBwl, € = oflon|, 7= 1—BF—BP)}, By, Bl = p;/ic, p![iic respectively,
and

Re = Ry R;—RoRg—Rs Ry, Ri = Rg— (a2 [2A%%)G
R; = R1Gy—RyG5—R3Gs, Rg= R1G1—RsG>—R30s,
Rg = Rg—(d?|2°¢%)Gh, Ry = RqGh— (o R5Go—}R5 Gy,

where Gr=Go' f: Ji Lexp{—({— o)} dL,
G = Go' f: J3 {(Z— Lo) exp{—({—Lo)} AL,
Gs = Go* fo " IRt exp{— (L Lo A2,
Ga = Go' fow I3 Cexp{—({— L)} AL,
Gs = Go' fow J3* (L — Lo exp{—({— o)} dL,
Go = Go' f:o 0L o) exp{—({— L)} AL,
o = 6 [ aoi el -ty at,
Gs = Gél f: JsJ5 L(L— Lo) exp{—({— L)} AL,

Gy = Go* L J5J5 84— Lo exp{—({— o)}y AL
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The dispersion equation for electromagnetic waves in the ambient plasma
alone is given by
(Fpla = c2k2—a2n; (@)% = 0.

Expanding (Fp)e in a Taylor series about &, we have

(Fp)o =~ QFp/dw)z 8'+(Fp)a

= (0Fp/dw)s &', (20)
where
. 4
(EB) _ _2w+wp[ 2A(B—— sm20 ——D*)—B: 24 L s1n20 —%D—*(— 51n40
do /5 »E 2¢ o8  a¢ 513
2 2 2 .2 -2
n 44B c;)s 9 2B czs 0)}] (B— s1n20 —Di) ’
¢ 13 2¢
B=1—A4/&,
and D = }ysin0 +(1—2)%% cos’0.
Writing
P = & Fpow)s (dimensionless), @1)

we can simplify equation (16) into the following form.

Wyt Wo 88+ Wy 8+ Wy '+ W5 8+ We 8+ Wy =0, (22)
where W, = P2, We = P2 Us,
W3 = P(Up—2U3), Wy = Up—Us—Uy,
Ws = PU;, We = U+ Us,
W7 =

Solving (22) for complex § = §'/&, one can calculate the growth rate |Tm(8')].

ITI. DiscussioN

Taking only terms containing (wm—Fk,p,—smowg)~2 and the number 1 in
the dielectric tensor components and other assumptions as stated, the dispersion
equation has been derived (equation (16)). Using perturbation theory, we have
expressed the dispersion equation as a polynomial in 8§ = §'/& (equation (22)), where
8’ = w—@& is complex. All that remains, therefore, is to solve equation (22).

Before attempting to solve (22), which is complicated as it stands, we consider
the case of strictly longitudinal propagation, that is, § = 0° or 180°. Moreover, we
confine ourselves to the first harmonic only, so that s2 = 1. It is found that when
sinf =0, Wo= Wy= W5= Wg= Wy =0, while
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2 ’
Ws = P(Up—2U5) — %’Z—Z(Rl G@—Rzas—Raaé), (23)
2G077LC
o0
where Gy = f Cexp{—({— )7} dL,
0

G = fo (L~ Lo) exp{— (L — Lo’} AL,

0
and G = fo (Lo exp{—(L— o)’} AL
The dispersion equation now reads
2 ’
84 —“JZE—Z(RI Gy— R, G5—Rs G(’;) =0. (24)
2PGQ77L (9

After some simple manipulation it may be seen that equation (24) agrees with
Zheleznyakov’s (1960b) result (equation (2.12)), if the following assumptions hold:

(1) @l Gy/Go > af,

(2) G4fGo> |(B1—1)G{|Go— R G5/Go— Ry Gg/Gol .
(3) terms containing exp(—¢;%) are negligible, and
(4)

4) terms containing (wi—k, p}—sywpm)~! are small in comparison with
the terms containing (wm—Fk, p§—sywy )2

We now consider the validity of the above four approximations. If the spread
in p, (specified by a?) is of the order of the spread in p, (specified by a%), we have
@,/Go > 1 in cases when the spread in p, is not too large. More precisely, we want
Lo = p3ja, > 1 (the least value of { should be about 3) in order that approximation
(1) above is valid. Approximations (2) and (3) are also taken in Zheleznyakov (1960b),
and approximation (4) is the well-known assumption in the radiative instability
problem of a stream-plasma system when the growth rate is small (that is, |w| > [8']).

For another example, we consider the stream to be cold, that is, a, =a, =0,
and we have a delta momentum distribution for the particles in the stream. In this
case, where the wave-normal angle f assumes general values, we have in equation
(22) Wy = W5 = W¢= W, = 0. This equation therefore reads

824 (W W1)8+(W3[W1) = 0. (25)

In this particular case,

We _J?aAB(,),2cos20((s;7—|—§)2 _1)
e (e P

and
Ws UA((8?+§)2 )( 12,02 | 12 02(8)7+£sin20)2) _1
== = | = ISR+ B ——— | P,
Wi 2\ gR¢ LTy (374 £)?sin8
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and we see that this equation is in fact exactly the one derived by Fung (1966a,
equation (5), article (1)). We may thus conclude that the dispersion equation derived
in the present investigation agrees with that obtained by Zheleznyakov on transition
from a general 8 to 8 = 0° or 180° (under the approximations stated), and, when the
temperature of the stream is taken as zero, the dispersion equation (22) is simplified
to the one derived by Fung.

When the coefficients of the dispersion equation (22) in the case of the v.1f.
emission in the terrestrial magnetosphere are evaluated, the results (not shown
here) indicate that only the first three terms are significant, i.e. the dispersion equation
can be approximated to

85 (Wo/ W1)8+(Ws/W1) = 0. (26)

This is of the same form as the dispersion equation for the case of a strictly
helical beam in a cold magnetoactive plasma as derived in Fung (1966a). Hence,
if the dispersion equation of the system considered can be approximated to the form
of equation (26), we can readily obtain an exact solution for & by Cardan’s method;
otherwise, equation (22) must be used to calculate complex numerical solutions.

Under different conditions, electromagnetic waves generated by normal or
anomalous cyclotron radiation processes by particles in the stream may grow in the
stream-magnetoactive plasma system and the power of the wave may be amplified
enormously. This radiative instability may in fact happen in many natural radio
emissions in radio astronomy. The study of such instability problems will help us
to understand various phenomena in plasma radiation. Assuming a delta momentum
distribution, the theory has been applied to terrestrial v.1.f. emissions and decametric
emissions from Jupiter (Fung 1966a, 1966b). However, a perfect monoenergetic
stream of charged particles is unlikely to occur in nature. As far as cyclotron radia-
tion is concerned, the distribution function of the stream considered by Zheleznyakov
(1960b) and in the present investigation seems to be a more realistic and important
one. We note that the theory presented here is a linearized one. When the growth
rate becomes large so that an appreciable amount of energy is transferred from the
stream to the electromagnetic wave, the non-linearized theory has to be employed.

IV. ACKNOWLEDGMENT

The author wishes to thank Professor G. R. A. Ellis, Physics Department,
University of Tasmania, for his critical reading of the manuscript and for his helpful
interest.

V. REFERENCES

Funa, P. C. W. (1966a).—Planet. Space Sci. 14, 335.

Fune, P. C. W. (1966b).—Excitation of cyclotron radiation in the foreward subluminous mode
and its application to Jupiter’s decametric emissions. Planet. Space Sci. (in press).

NEUFELD, J., and WricET, H. (1964).—Phys. Rev. 135, A1175.

Stepavov, K. N., and KitseNko, A. B. (1961).—Sov. Phys. tech. Phys. 6, 120.

ZHELEZNYAKOV, V. V. (1960a).—Izv. vissch. ucheb. Zaved. Radiofiz. 3, 57.

ZHELEZNYAKOV, V. V. (1960b).—Izv. vissch. ucheb. Zaved. Radiofiz. 3, 180.







 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 1.53, 644.61 Width 458.26 Height 13.75 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         Both
         1
         AllDoc
         34
              

       CurrentAVDoc
          

     1.5275 644.6145 458.2617 13.7478 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     0
     12
     11
     12
      

   1
  

 HistoryList_V1
 qi2base





