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Summary 

The dispersion equation for cyclotron electromagnetic waves in a system 
comprising a charged particle stream injected at an angle to the static magnetic 
field of a magnetoactive plasma is derived for a general wave·normal angle () when 
the temperature of the stream has been taken into account. The expression for the 
growth rate is derived in general for all cyclotron waves. 

1. INTRODUCTION 

The radiative instability problem of a stream-magnetoactive plasma system 
has been studied by a number of authors during the past few years (Zheleznyakov 
1960a, 1960b; Stepanov and Kitsenko 1961; Neufeld and Wright 1964; Fung 
1966a, 1966b). The main features of these treatments have been that: 

(1) The ambient plasma is taken to be cold and magnetoactive. 

(2) The distribution functions of the stream considered are: 
(2.1) a delta function distribution in momentum space for both components 

of momentum P -L and P II where P -L =1= 0 and P II =1= 0 (here we assign 
the direction parallel to the static magnetic field to be the longitudinal 
direction and the one perpendicular to it the transverse direction); 

(2.2) a distribution function where there is dispersion of particles over the 
momenta P-L and PII' and pl = 0 whereas p~ is non-zero (pl, p~ are 
values of momenta where the distribution curve shows the maximum) ; 

(2.3) as in case (2.2) but where p1 =1= O. 

(3) The assumed emission or wave-normal angle 8 falls into three classes: 
(3.1) strictly longitudinal propagation, that is, 8 = 0° or 1800 ; 

(3.2) 8 close to 00 or 1800 ; 

(3.3) general 8. 

Zheleznyakov (1960a, 1960b) considered the instability problem in the com­
binations (2.1), (3.1), and (2.3), (3.1). Neufeld and Wright (1964) developed and 
interpreted the case (2.1), (3.1). Stepanov and Kitsenko (1961) discussed the cas~ 
(2.2), (3.2) and some particular cases of (2.2), (3.3). Fung (1966a) derived the growth 
rate for the case (2.1), (3.3) (evaluation of the growth rate and application of the 
theory has also been attempted by Fung (1966a, 1966b) for two different types of 
emissions in radio astronomy). 
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When the distribution function of the stream is as type (2.2), most radiating 
particles in the system acquire zero or very small values of p 1- and hence the excita­
tion of cyclotron waves is not important in such a system. On the other hand, the 
excitation of Cerenkov and longitudinal plasma waves will be more pronounced in 
the system with such a "longitudinal stream" (a stream being injected along the 
static magnetic field). As far as excitation of cyclotron waves is concerned, the 
combination (2.3), (3.3), that is, p1 and p~ non-zero, seems to be most important, 
for it probably represents the practical situation. It is the purpose of the present 
paper to derive the dispersion equation, thus leading to the calculation of the growth 
rate, for the case (2.3), (3.3). 

II. THEORY 

We consider a cold magnetoactive ambient plasma being specified by the 
collisionless Appleton-Hartree formula 

2 x(l-x) 
nj = 1- 2 2 4 4 2 2 2.' 

l-x-ty sin (;I =f {lY sin (;I+(I-x) y cos (;I} 
(1) 

where nj is the refractive index, x = wt/w2, y = wHjw, w~ = 47TNe2jmo is the 
angular plasma frequency squared, w is the angular wave frequency, WH = ZeHo/moc 
is the angular plasma gyro frequency, (;I is the wave-normal angle, N is the particle 
density of the plasma, e is the electronic charge, Z is the number of electronic charges 
in the charged particle, mo is the rest mass of the charged particle, and c is the speed 
of light in a vacuum. 

Instead of a strictly "monoenergetic" charged particle stream, we consider a 
stream having momentum spread in both components P 1- and P II' P 1 and P ~ are 
supposed to be the values of momentum components where the distribution curve 
reaches its maximum. More precisely, the unperturbed particle distribution function 
io(p) of the stream is given by 

io(p) dp = ~ exp{ _ (p II -:~ )2 _ (p 1-~f~)2} dp, 
all a1-

(2) 

where A = 27T3/2 a~ a II Go is the normalization constant of io, a~ = 2mo KT 1-' a~ = 
2mo KT II' mo is the rest mass of the radiating particle, * K is the Boltzmann constant, 
and T 1- and T II are the transverse and longitudinal temperatures respectively. For 
the normalization constant 

and 

With an ambient plasma specified by (1) and a distribution function of radiating 
particles as described by (2), we will now derive the dispersion equation for electro­
magnetic waves in the stream-magnetoactive plasma system, employing the method 
used by Zheleznyakov (1960a, 1960b), Neufeld and Wright (1964), and Fung (1966a). 

The relativistic expressions of dielectric tensor components for growing 
electromagnetic waves in the stream are (Fung 1966a) 

* For simplicity, we consider one species of radiating particles only. 
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where R = (wm-knPIl-smOwH); w~ = 47TN'Z2e2/mo is the square of the angular 
plasma frequency of the stream; m = (mij+pi/c2+p~l/c2)1 is the relativistic mass 
of the particle in the stream, mo being the rest mass of the charged particle; N' is the 
particle density of the stream; k II' k -L are wave vector components along and per­
pendicular to the static magnetic field respectively; s is the harmonic number; 
J 8 , J~, J; are Bessel's function, its first derivative, and its second derivative with 
respect to its argument respectively, the argument being a = k -LP -LImo WH; and 
10 is given by expression (2). The integration with respect to P -L is carried out from 
o to 00 and that with respect to P II is carried out from - 00 to + 00. 

It should be noted that for normal Doppler waves, the term smo WH is positive 
in the Doppler relation (wm-kIlPIl-smOwH); for a negatively charged radiator, 
e and hence WH are negative, and s must also be negative in this case. When we 
consider anomalous cyclotron waves, the sign of s is opposite to that for normal 
cyclotron waves. 

Let 

(4) 

where the superscript ,......, indicates that the corresponding value is taken at the 
point P -L = p1, P II = p~. Note that the present quantity f is equivalent to the 
quantity g defined by Zheleznyakov. This is in order to distinguish it from the 
normalized frequency g = wllwHI, which is introduced later. 

Let us now consider an integral of the form 

(5) 

The contour of integration runs along the real axis of P II from - 00 to + 00, bypassing 
from above or below the singularities of the integrand. 

The integrand of the above integral will have sIngularities at two points lying 
on the real axis specified by gi,2 such that 

(6) 

or 2 2/2 2/ 2 t k w(mo+PII C +P-L C) - IIPII-swHmO = O. 

Note that we have changed the variables in (4) in order to deal with the denominator 
in (3); in fact, equation (6) is equivalent to R = 0, which is the Doppler equation. 

It has been pointed out (Zheleznyakov 1960b) that when WI ~ 1 and 1'-'01 ~ 1 
we have 

(7) 

and the integral (5) can be simplified to 



CHARGED PARTICLE STREAM IN MAGNETOACTIVE PLASMA 493 

. "" 0 g( tl) exp( - d) 
-17T "-' 01 , (8) 

H,2 (aD/ani 

with an accuracy up to terms of order 1/ f3T. In this expression 01 = + 1 if the contour 
of integration in (5) bypasses the singularity tl from below, and 01 = -1 if the 
contour bypasses the singularity tl from above. 

The mass of the radiating particle can be expressed in terms of f, ~ as 

(9) 

Let us assume that m(g',~) changes little in the range If I :(; 1, I ~ - ~ol :(; l. 
We can now express m(g', 0 in the form 

It is easy to see that the angular plasma frequency can be written as 

w~(g',~) ~w~{1- a~I:; g'- ~~ 2g'2- ~;~~(~-~o)- ~L(~_~O)2}. (ll) 
me 2m c me 2m c 

In writing down expressions (10) and (ll), we have taken 

I 0 I I~{~I <{ 1; 1::~21 <{ 1; 1~2~~1 <{ 1; 1:~21 <{ 1. 
(12) 

Since the denominators R = wm-kIlPIl-smOwH in the equations (3) can be 

written as kll a II {f3j-D{t, ~)} and the quantities wo and m are expressed as functions 
of g' (given in (10) and (ll)), all the integrals in (3) fall into the type specified by 
(5), when integration is carried out with respect to f. Let us note that, on account 
of the inequalities given in (7), the integral I(~,f3j) can be approximated 

I(~,f3j) ~-f3I foo g(g')exp(-g'2)dg'. 
j -00 

(13) 

In the expressions for the dielectric tensor components, it has been pointed 

out (Fung I966a) that the largest terms are the ones containing (wm-k ll PII-smowH)-2 

and the number 1. Confining ourselves to this approximation, the integration with 

respect to f can be performed readily on substituting (4), (5), (10), (11), and (13) 

into (3). 
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EXX = 1- iyw~ W{RI r"" J; ~Z d~-R2 r"" J; ~(~-~o)Z d~ 
k:D2Go Jo Jo 

-Ra L"" J; ~(~_~0)2 Z d~}, 

Eyy=l- _~:~ {RI r""J;2~aZd~_R2 r""J;2~a(~_~0)Zd~ 
m D Go Jo Jo 

-Ra L"" J;2 ~3(~_~0)2 Z d~}, 

2 W { 1"" 1"" Ezz = 1- _~II 2 R4 J;~Zd~-~oR5 J;~(~-~o)Zd~ 
mDGo 0 0 

-!R5 LW J; ~(~-~d Z d~}, 

Exy = _ ismow::~.l W{RI r"" JsJ;~2Zd~-R2 r"" JsJ;~2(~-~0)Zd~ 
k.lm D GO Jo Jo 

-Ra L"" JsJ; ~2a_~0)2 Z d~}, 

Exz = - smo~:p2~ W{(RI_ ~L) r"" J; ~Z d~-R2 r"" J; ~(~-~o)Z d~ 
k.l m D GO 2m e J 0 J 0 

-R3 LWJ;~a-~0)2Zd~}, 

=ia.lp~ W{(R -~) 1"" J Jfy2Zd Y_R 1"" J J f y2(y_y )Zd Y Eyz 2 2 I 2 2 s S '0 '0 2 s s '0 .. '00 '0 
m D Go 2m e 0 0 

-Ra LW J8J;~2(~_~0)2Zd~}, 
2 where Z = exp{ -(~- ~o) }. 

(14) 

As the argument of the Bessel function and its derivative a = k.lp.llmoWH = 
k.l ~/a.l mo WH is a function of ~, all the J s, J~, and J; have to be kept inside the 
integrals. In (14), we define 

_2 2k2 2 1 2 2 W = wo(e II -w ) we, 

D = w-k ll VII-SYWH, 

R 2/2 _22 3=a.l me, (15) 

2 ( 02) R = ~ !+~ 
5 _2 2 2 2 

me all' 

Following Fung's (1966a) method, the dispersion equation for electromagnetic 
cyclotron waves in the stream-magnetoactive plasma system can be expressed as 
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(16) 

where 

and €ik are given by (14). 

Employing the real -k approach, we write 

w = w+S', with Iwl ~ 18'1, (17) 

where w, the "characteristic frequency", is real and S' is complex; the imaginary 
part of S' gives us the growth rate. Let us define 

S=S'/w. 

After some lengthy calculation, the coefficients in (16) are found to be 

where 

and 

A = l-U1/S2 , 

B = -2+ (U2/S2) + (Us/S4) , 

0= 1-(U4/S2)+(Us/S4)+(Us/S8), 

U1 = T2+2TlsinOcosO-T5COs20-T7sin20, 

U2 = Ts+2Ts sin 0 cos 0 +T4COS20 +Ts sin20, 

Us = Exxsin20+Ezzcos20+2TssinOcosO, 

Ua = T7 Ezz, 

U7 = U5+E~z-T:, 

2 T2 = Exz , 

Ts = Exz , 

} 
(18) 

(19) 
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with 
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-R02 W' 
E - SYI"II R' xz - s, 

tan 8 (g+'jis) 

2W' 
Eyy = a ~ 2 2 R 7 , 

me 

2 02 ,2 
E' __ a..LfJlI W R,2 

yz - _22 6 , 
me 

- 2 R02W,2 
E _ sya ..L1"1I 

xyz - 2 2 ' 
me tan8(g+'jis) 

Also, in the above expressions, a = (density of stream)f(density of ambient plasma), 
A = w~fw'i, g = WflWHI, 'ji = (1-fJ~12-fJ12)i, fJ~, fJ1 = p~ fmc, p1fme respectively, 
and 

where 

R6 = RIR7-R2RS-R3R9, Rs = R6-(a~f2m2e2)G7' 

R7 = RIG4-R2G5-R3G6, Rs = RIGI-R2G2-R3G3, 

Rs = R8-(a~f2m2e2)Gl' R9 = R4Gl-~oR5G2-tR5G3, 

G1 = G01 Loo J:~exp{-a-~0)2}dL 

G2 = G01 Loo J: ~(~-~0)exp{-(~_~0)2} d~, 

-1 roo 2 2 { r 2 
G3 = Go Jo Js ~(~-~O) exp -( .. -~O) } d~, 

G4 = G01 LOO J;2~3exp{_(~_~0)2}dL 

G5 = G01 LOO J;2 t(~-~0)exp{-(~_~0)2} dL 

G6 = G01 LOO J;2 ~3(~_~0)2exp{_(~_~0)2} dL 

G7 = G01 LOO JsJ;~2exp{-(~-~d}dL 

Gs = Go1 LOO Js J; ~2( ~ - ~O) exp{ - (~- ~0)2} dL 

G9 = G01 LOO JsJ;~2(~-~0)2exp{-(~_~0)2}d~. 
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The dispersion equation for electromagnetic waves in the ambient plasma 
alone is given by 

(Fp){j) = c2k2-w2nj(w)2 = 0. 

Expanding (Fp)Q) in a Taylor series about w, we have 

where 

and 

Writing 

(Fp)Q) ~ (oFp/ow){j) 8' + (Fp){j) 

= (oFp/ow)w 8', 

B = l_A/g2 , 

D = ty4 sin40 + (l_x)2y2cos20 . 

(dimensionless), 

we can simplify equation (16) into the following form. 

WI 88 + W2 86+ W3 85+ W404+ W5 03+ W6 02 + W7 = 0, 

where 

W3 = P(U2-2Ua) , 

(20) 

(21) 

(22) 

Solving (22) for complex 0 = o'/w, one can calculate the growth rate IIm(o')I. 

III. DISCUSSION 

Taking only terms containing (wm-kIlPII-8mOwH)-2 and the number 1 in 
the dielectric tensor components and other assumptions as stated, the dispersion 
equation has been derived (equation (16)). Using perturbation theory, we have 
expressed the dispersion equation as a polynomial in 0 = 0' /w (equation (22)), where 
0' = w-w is complex. All that remains, thereforp" is to solve equation (22). 

Before attempting to solve (22), which is complicated as it stands, we consider 
the case of strictly longitudinal propagation, that is, 0 = 0° or 180°. Moreover, we 
confine ourselves to the first harmonic only, so that 82 = 1. It is found that when 
sinO = 0, W2 = W4 = W5 = W6 = W7 = 0, while 
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where 

and 
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Wa = P(U2-2U3 ) 

G4, = 110 
S3 exp{_(S-SO)2} de 

G5 = foOO s3(~-~0)exp{-(~_~0)2} d~, 

G6 = foOO ~3(~-~0)2exp{-(~-~d} d~. 

(23) 

The dispersion equation now reads 

(24) 

After some simple manipulation it may be seen that equation (24) agrees with 
Zheleznyakov's (1960b) result (equation (2.12)), if the following assumptions hold: 

(1) a~ G4/GO ~ a~!, 

(2) G4/GO~ I(Rl-1)G4/Go-R2G;;!Go-R3Go/Gol· 

(3) terms containing exp( -g; 2) are negligible, and 

(4) terms containing (wm-k ll p~-8ywHm)-1 are small in comparison with 
the terms containing (wm-k II p~ -8ywH rn)-2. 

We now consider the validity of the above four approximations. If the spread 
in P.L (specified by a~) is of the order of the spread in P II (specified by a1!), we have 
G4/GO ~ 1 in cases when the spread in P.L is not too large. More precisely, we want 
~o = p1/a.L > 1 (the least value of ~o should be about 3) in order that approximation 
(1) above is valid. Approximations (2) and (3) are also taken in Zheleznyakov (1960b), 

and approximation (4) is the well-known assumption in the radiative instability 
problem of a stream-plasma system when the growth rate is small (that is, Iwl ~ 10'1). 

For another example, we consider the stream to be cold, that is, a.L = a II = 0, 
and we have a delta momentum distribution for the particles in the stream. In this 
case, where the wave-normal angle () assumes general values, we have in equation 
(22) W 4 = W 5 = W 6 = W 7 = O. This equation therefore reads 

(25) 

In this particular case, 

and 
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and we see that this equation is in fact exactly the one derived by Fung (1966a, 
equation (5), article (1)). We may thus conclude that the dispersion equation derived 
in the present investigation agrees with that obtained by Zheleznyakov on transition 
from a general 8 to 8 = 0° or 1800 (under the approximations stated), and, when the 
temperature of the stream is taken as zero, the dispersion equation (22) is simplified 
to the one derived by Fung. 

When the coefficients of the dispersion equation (22) inthe case of the v.l.f. 
emission in the terrestrial magnetosphere are evaluated, the results (not shown 
here) indicate that only the first three terms are significant, i.e. the dispersion equation 
can be approximated to 

(26) 

This is of the same form as the dispersion equation for the case of a strictly 
helical beam in a cold magnetoactive plasma as derived in Fung (1966a). Hence, 
if the dispersion equation of the system considered can be approximated to the form 
of equation (26), we can readily obtain an exact solution for I) by Cardan's method; 
otherwise, equation (22) must be used to calculate complex numerical solutions. 

Under different conditions, electromagnetic waves generated by normal or 
anomalous cyclotron radiation processes by particles in the stream may grow in the 
stream-magnetoactive plasma system and the power of the wave may be amplified 
enormously. This radiative instability may in fact happen in many natural radio 
emissions in radio astronomy. The study of such instability problems will help us 
to understand various phenomena in plasma radiation. Assuming a delta momentum 
distribution, the theory has been applied to terrestrial v.l.f. emissions and decametric 
emissions from Jupiter (Fung 1966a, 1966b). However, a perfect monoenergetic 
stream of charged particles is unlikely to occur in nature. As far as cyclotron radia­
tion is concerned, the distribution function of the stream considered by Zheleznyakov 
(1960b) and in the present investigation seems to be a more realistic and important 
one. We note that the theory presented here is a linearized one. When the growth 
rate becomes large so that an appreciable amount of energy is transferred from the 
stream to the electromagnetic wave, the non-linearized theory has to be employed. 
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