
THE ENERGY DEPENDENCE OF THE EFFECTIVE INTERACTION IN 

SUPERCONDUCTIVITY 

By N. K. ArLAWADI*t and V. RADHAKRISHNAN* 

[Manuscript received January 4, 1966] 

Summary 

The effective interaction in the BCS model of superconductivity is usually 
approximated by a constant. We expand the interaction in a power series in 
<k/llw and treat the energy-dependent terms to first order. This introduces one more 
parameter in the theory. The gap, which now becomes energy dependent, is obtained 
by solving an integral equation by iteration. The critical field and specific heat are 
calculated. The value of 2~(0,0)/kBTe and the jump in the electronic specific heat 
at the critical temperature Te are now dependent on the parameters of the super
conductor. Calculated values for the energy gap and the critical field He agree 
rather well with the experimental data. 

I. INTRODUCTION 

In the Bardeen-Cooper-Schrieffer (1957) theory of superconductivity (here
after referred to as the BCS theory), the effective interaction is believed to be the 
result of superposing a screened, repulsive, Coulomb interaction between the electrons 
and a stronger, attractive, phonon-mediated electron-electron interaction. Morel 
and Anderson (1962) have treated the energy dependence of interaction, while 
Schrieffer, Scalapino, and Wilkins (1963) and Schrieffer (1964) have solved a genera
lized gap equation using the Debye model for the phonon spectrum. Earlier attempts, 
particularly by Swihart (1962, 1963), tended to favour the Eliashberg (1960) inter
action. We present here simplified calculations based on the BCS approximation of 
a sharp cut-off of the effective interaction and show that the experimental data for 
the energy gap and the critical field agree extremely well with the results of the present 
calculations. For this purpose, we develop the interaction as a series in powers of 
(£1c/liw. We retain only the terms up to the order of ((£1c/liw)2 in this expansion. The 
problem of the effective energy gap is then solved by a method of successive iteration. 

II. THE EFFECTIVE INTERACTION 

The reduced Hamiltonian of the BCS theory is 

(1) 

where - V 1c1c' is the effective interaction and is the sum of the phonon part V ph and 
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the screened Coulomb part V c. In the BCS theory, the effective interaction - V kk' 
is approximated by a constant - V in a narrow region -liw < E < liw about the 
Fermi surface and by zero outside it, i.e. 

-liw < E < liw} 
outside this region. 

(2) 

(3) 

Here liw is the average phonon frequency, usually taken as ikB eD, where kB is the 
Boltzmann constant and eD is the Debye temperature. Quite generally, we can 
effect a series expansion of the effective interaction - V(Ek, Ed about the Fermi 
surface. Using the dimensionless quantities x = Eklliw and x' = Ek'/nw, this is 

(4) 

Now the effective interaction - V(Ek, Ed, occurring as it does between the 
electrons of energy Ek and Ek', should be symmetric in Ek and Ek'. This is true of the 
Bardeen-Pines (1955) interaction used in the BCS theory and perhaps of many 
other forms of the effective interaction. Thus we restrict the form of the effective 
interaction so that 

(5) 

holds. The equation (5) results in the vanishing of the terms of the type xo Vlox 
and x' 0 V lox' . We then rewrite (4) in the form 

(6) 

where - V is the function used in the BCS theory. We will note in the next section 
that within our approximation the term containing - V 2 gives no contribution to the 
energy gap. Thus we have two parameters - V and - VIto consider in the effective 
interaction (6). This is the interaction with which we shall be concerned in the 
present paper. 

III. THE GAP EQUATION 

The integral equation for the energy gap is given by 

where 

and 

E k , = (E%'+Ll%,)i, 

'Tk' = tanh(i,8Ek , ), 

,8 = l/kB T. 

(7) 
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The summation in equation (7) can be changed to integration and we obtain 

(8) 

where N(O) is the density of states (one-electron) in the normal state at the Fermi 
surface. Using the expression for V(€, €/) from equation (6), we obtain 

A(€,T) = tN(O) V Io(A(€,T))+HN(O) Vl/(nw)2}I2(A(€,T)) 

+HN(O) V2/(nw)2}Il(A(€,T))€+HN(O) Vl/(nw)2}Io(A(€,T))€2, (9) 
where 

(lO) 

We use a method of successive iteration to solve this integral equation. The zeroth
order approximation for A(€,T) can be obtained from equation (9) by substituting 
€ = ° in the right-hand side of (9) and solving for A(O, T). This gives 

A(O,T) = tN(O) V Io(A(O,T))+HN(O) Vl/(nw)2}I2(A(O,T)). (11) 

Substituting the solution of this integral equation on the right-hand side of equation 
(9), we obtain the solution in the next approximation, namely, 

A1(€,T) = tN(O) V Io(A(O,T))+HN(O) Vl/(nw)2}I2(A(O,T)) 

+t{N(O) V 1/(nw)2}Io(A(O, T)) €2 

Al(€,T) = A(O,T)+HN(O) Vl/(nw)2}Io(A(O,T))€2. (12) 

Repeating the process, the solution can be obtained to any degree of accuracy. It 
may be seen that in each stage of iteration the odd terms in € vanish. Evaluating 
the integrals Io(A(O,T)) and 12(A(O,T)), we obtain 

00 

Io(A(O, T)) = 2A(O, T)sinh -1 (liw/A(O, T))-4A(O, T) ~ (-l)m+1Ko(,8mA(O, T)) 
m~l 

00 

~ 2A(O, T)ln(2nw/A(O, T))-4A(O, T) ~ (-l)m+1Ko(,8mA(O, T)), (13) 
m~l 

00 

_A3(O, T)sinh -\nw/A(O, T))+2A3(O, T) ~ (-lr+1 
m~l 

X {Ko(,8mA(O, T))-K2(,8mA(O, T))} 

~ (liw)2A (O, T){l+(A(O, T)/liw)2}t_ A3(O, T)ln(2liw/A(O, T)) 

00 

+2A3(O, T) ~ (-l)m+1{Ko(,8mA(O, T))-K2(,8mA(O, T))}. (14) 
m~l 
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The second forms of these expressions hold only for the weak coupling limit, when 
nw ~ ~(O, T). Ko and K2 are the modified Bessel functions of the second kind of 
order zero and two respectively. Equation (12) now becomes 

(15) 

where 

As we do not propose to go to higher approximations, in what follows we shall 
omit the suffix 1 on ~l. The energy gap now depends on energy parabolically, leading 
to the same conclusion as that of Morel and Anderson (1962) and Swihart (1962, 1963). 
In this approximation then, the quasi-particle energy is given by 

E = {€2+~2(€,T)P = {l+2A(T)~2(0,T)€2+~2(0,T)}i, 

neglecting terms of the order A2(T) M(O, T) €4. 

(17) 

The sums involving the Bessel functions that occur above have simple forms 
in the limiting cases of T near 0 and T near T c. 

Near T = OOK, 

2 ~ (-I)m+1KoC8m~(0,T)) ~ (27T)t{exp(-,M(0, 0)) _ exp(-,8~(O,O))) 
m~l (,8~(0, OJ)! 8(,8~(0, 0))3/2 f' 

and, for a temperature near T = T c, 

Here 

cr; m+1. { 7T } 7~(3)( ).2 
2 ~ (-1) Ko(,8m~(O, T)) ~ In ,8~(0 T) + --2 ,8~(0, T) 

m-l Y, 87T 

_ 93~(5)(,8~(0, T))4 , 
1287T4 

00 1 2 { 3 ( )2 2 ~ (-I)m+1K2(,8m~(0,'l'))"""" 3 7T 2 1--2 ,8~(0,'l') 
m-l (,8~(O, T)) 27T 

+ 3q2(,8~(0, T))4} . 
87T . 

(19) 

J 
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In 'Y is the Euler constant, and "s) is the Riemann zeta function of order s. These 
are identical to the expansions used by Khalatnikov and Abrikosov (1959). 

(a) Case of T near OaK 

Using equations (15), (16), and (18), we obtain 

A(€,T)/A(O,T) = I+Ao(T)€2, 

where Ao(T) = ~~~)~l{ln(A~~~))-(~A~;'T)rexp( -~A(O,T))} 
and, from equations (ll), (13), (14), and (18), we have 

and 

A(O,T) = A(0,0)-{(27T/~)A(0,0)}!exp(-~A(0,0)) 

A(O,O) = 2nwexp(-I/N(0) V)exp(!Vl/V). 

(20) 

(21) 

(22) 

(23) 

The quantity A(O, 0) differs from the BOS value of the gap at T = OaK by a 
factor exp(!V1/V). The temperature dependence of A(O,T) is the same as in the 
BOS theory. The energy-dependent gap has an additional temperature variation 
through A(T). From equations (20) and (23), we obtain 

(24) 

This gives the parabolic variation of the energy gap with energy €, at T = OaK. 

(b) Case of T near Tc 

For this case We have to use the approximations in equations (19). We obtain, 
as before, 

A(€,T)/A(O,T) = I+Ae(T)€2, (25) 
where 

Ae(T) = N(O) Vl{In(2nw'Y~) _ 7 ~(3)(~A(O, T))2 + 93~(5)(~A(0, T))4} . (26) 
(nw)2 7T 87T2 1287T4 

From equations (ll), (13), (14), and (19), we obtain the equation for A(O, T) as 

In('Y~A(O,O)) = 7~(3)(~A(0,T))2 _ 93~(5)(~A(O,T))4 + 7T2Vl(~nw)-2 
7T 87T2 1287T4 6 V 

At T = T e, the gap becomes zero and we obtain 

In('Y~eA(O,O)/7T) = i7T2(Vl/V)(~enw)-2. 
Using equation (23), this equation becomes 

(27) 

(28) 

(29) 
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From equations (27) and (28), we obtain 

which can be put in the form 

2 87T , T 47T (kBTC) T 2 ( )2( ) 4 4( . 2) 
A (O,T)=n(3) k B 1 c I-Tc +21~(3) (hw)2 I-T~' (31) 

The last term on the right can be approximated by using (1-T2/T~) ~ 2(1-TjTc). 
Therefore 

(32) 

From equation (28), we obtain 

(33) 

It is clear from equation (33) that A(O,O)/kBTc is not a constant for all super
conductors, as in the BOS theory, but depends on the parameters of the super
conductor, as expected from the experimental data. 

IV. FREE ENERGY, ENTROPY, AND SPECIFIC HEAT 

The expressions for the free energy and entropy are now obtained using equations 
(15) and (17) for A(€, T) and E, in the usual definitions (BOS theory). 

]i's = (nw)2N (O)-N(O) (nw)2{1+2A(T) A2(O, T)+A2(O, T)/(hw)2}, 

_ N(O)A(1')~4(O,T) In{ 2hw -(1+2A(T)A2(O,T))!} 
{l+2A(T) A"(O, T)}3/2 A(O, T) . 

_ 2N(O)A(T)A4(O,T) {~ (-1)m+l{K2(,BmA(O, T))-KoCBmA(O, T))}! - tTSs 
{l+2A(T)A2(O,T)}3/2 m~l f 

(34) 

and 
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As before we discuss the two limiting cases separately. 

(a) Case of T near OaK 

Using the expansions of equations (18) in (35), we can obtain the free energy 
and the entropy for this range of temperatures. The results are found to be the 
same as in the BCS analysis, as given by Khalatnikov and Abrikosov (1959). 

(b) Case of T near Tc 

We use the expressions from (19) in (34) and (35) to find the appropriate 
expressions for the free energy and the entropy. Using the usual value for the elec
tronic specific heat in the normal state, Cen, with Ys the Sommerfeld constant, we 
obtain 

Cen = ys T, 

x (1 + 7T2_1_ Vl)ln(2liwYf3) 
3 (f3liw)2 V 7T 

x In(2li~Yf3) _ N(O) Vl(1 + 27T2 Vl_l_)}. 
7T (liw)2 3 V (f3liw)2 

(36) 

Here Ces is the electronic specific heat in the super conducting state. We see that 
the leading term on the right is the same as in the BCS theory (Khalatnikov and 
Abrikosov 1959). At T = T e, we obtain 

A new feature now appears in that this quantity is not a constant, as in the 
BCS theory, but depends on the parameters of the superconducting state. 

V. THE CRITICAL FIELD 

The critical field is given by the formula (BCS theory) 

(38) 

Substituting the expression for the free energy from equation (34) in this equation, 
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we obtain 

H~(T)/87T = tT(Ss-Sn)-N(O) (liw)2 +N(O) (liw)2{1 +2A(T) ~2(O, T)+~2(O, T)/(hw)2}' 

+ N(O)A(T)~4(O,T) In{ 2liw (1+2A(T)~2(O,T))!} 
{1 +2A(T) ~2(O, T)}3/2 ~(O, T) 

+ 2N(O) A(T) ~4(O, T) {£ (-1)m+1{K2(,8m~(O, T))-Ko(,8m~(O, T))}} 
{1 +2A(T) ~2(O, T)}3/2 m~1 

_ N(O) A(T) ~2(O, T) (liw)2{1+2A(T) ~2(O, T)+~2(O, T)/(liw)2}t. (39) 
1+2A(T) ~2(O, T) 

For the case of T near OaK, we obtain 

2 )2{ 2 2 2) 2 2 2 He(T) -l-2-l ('!..- l+B(l_~kBTe VI _~ VIkBTC} 
H~(O) - 3 T e, 3 (liw)2 V 3 V (liw)2 ' 

(40) 

where 

B = ~2(O,0;{1+8N(O) Vdn(2nw/~(O,0))-8N(O) VI(l+tN(O) VI){ln(2Iiw/~(O,0))}2fl, 
(2liw) 

H~(0)/87T = -N(O) (nw)2 +N(O) (liw)2{1 + 2Ao(O) ~2(O, 0)+~2(O, 0)/(liw)2}! 

+ N(0)Ao(O)~4(0,0) In{ 2liw (1+2Ao(O)~2(0,0))t} 
{l +2Ao(0) ~2(O, 0)}3/2 ~(O, 0) 

(41) 

_ N(O) Ao(O) ~2(0, 0)(nw)2{1+ 2Ao(0) ~2(O, 0)+~2(O, 0)/(liw)2}t . (42) 
1+2Ao(O) ~2(O, 0) 

For T near T e, we obtain 

H~/87T = !;qN(O),82 ~ 4(0, T)-!;N(O) ~ 4(0, T)/(liw)2 

(43) 
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The leading terms on the right are the same as in the BCS theory (Khalatnikov and 
Abrikosov 1959). 

We have determined the parameters V and VI from equations (29) and (37), 
using the experimental values for (Ces-Cen)/CenITc, T c, and nw (= ikB 6D ). We 
then computed the values of ~(O, 0) by making use of (23) and the critical field H c(0) 
at T = OaK from the exact equation (42). The results are tabulated in Table l. 
Experimental data for the energy gap 2~(0, O)/kBTc and the critical field H c(O) for 
several metals are listed for comparison. The results for the BCS theory are also 
listed; the results agree quite well with the experimental data. It may be mentioned 
that even though no account has been taken of life-time effects (believed to be 
important, particularly for strong coupling superconductors lead and mercury), the 
results are quite close to the experimental values. In the case of niobium the experi" 
mental data for 2~(0,0)/kBTc lie in the range 3·6-3·84. Leupold and Boorse 
(1964) found a value of 3·69, which is somewhat lower than the value of 4·03 found 
from our calculations. The critical field for niobium, from specific heat data of Leupold 
and Boorse was found to be 1994 G. McConville and Serin (1964, 1965) found Hc(O) 
to be 1990 G. Niobium, even in the purest form, is a type II superconductor. The 
difference in 2~(0,0)/kBTc between our value and the observed values may be 
possibly due to this reason. Thus on the basis of experimental data, at least for the 
energy gap and the critical field, a two parameter energy-dependent effective inter
action within the BCS approximation seems sufficiently accurate. 
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