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Swmmary 

The author's previous work on the application of Wigner's theory of the 
coreps of non-unitary groups to the Shubnikov groups (magnetic groups) is here 
considered in relation to crystal field theory. Both the splitting of the energy levels 
and the symmetry properties of the wave function are considered in magnetic point 
groups. Examples of 4'mm' and 4m'm' are studied. 

1. INTRODUCTION 

Since the start of the systematic study of crystal field theory (Bethe 1929), 
it has been applied to many phenomena in substances from various point groups. 
A convenient review of the group-theoretical part of crystal field theory problems 
for the ordinary point groups is given by Herzfeld and Meijer (1961). However, 
neutron diffraction experiments now make it clear that there are many crystalline 
solids whose symmetry can only be properly described by one of the magnetic point 
groups or magnetic space groups whose derivation has been considered by Zamorzaev 
(1953), Belov, Neronova, and Smirnova (1955), Tavger and Zaitsev (1956), and 
Shubnikov and Belov (1964). 

Some group-theoretical work on these magnetic groups has been done by 
Dimmock and Wheeler (1962a, 1964), Guccione (1963), Cracknell (1965, 1966),t 
and Opechowski and Guccione (1965). Dimmock and Wheeler (1962b) gave some 
consideration to the degeneracy of the energy levels in crystals whose structures have 
to be described by one of these magnetic point groups. Since in APCII not only 
the character tables but also the matrix representatives for the magnetic point 
groups were given, it now seems appropriate to consider the symmetry properties 
of the wave functions themselves. 

There are two important ways in which group theory is applied to crystal 
field theory. Firstly, any point group is simply related to a subgroup of the rotation 
group in three dimensions and therefore the irreducible representations (or "reps") 
of the point group can be found by "subduction" of the reps of the rotation group 
(see Altmann and Cracknell (1965) for an explanation of the term "subduced rep­
resentation"). Or, in terms of energy levels, a level that was degenerate in the case 
of spherical symmetry will probably split into several levels, each of which mayor 
may not be degenerate, in the case of symmetry belonging to one of the point groups, 
and the qualitative nature of this splitting can be determined by group theory. 
Secondly, group theory can be employed to produce symmetry-adapted functions 
for various symmetrical situations, that is, functions belonging to the various reps 
of the point groups, to the totally symmetrical rep if the function describes a physical 
observable, such as the electrostatic potential for example, or to any specified rep 
if the function is to be the angular part of a wave function. 
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t These two papers are henceforth referred to as APCI and APCII respectively. 
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II. THE ROTATION GROUP AND TIME REVERSAL 

Any ordinary point group is a subgroup of 0(3), the rotation group in three 
dimensions, but a magnetic point group must be related to the group that is the 
direct product of the rotation group in three dimensions with the group (E+R), 
where E is the identity element and R is the operation of time inversion. The modifica­
tion of representation theory to allow for the fact that R is an anti-unitary operator 
was considered by Wigner (1959); here we follow his work and when dealing with 
the magnetic point groups we follow the same notation as in APCI and APCII. 

If a rotation in three-dimensional space is denoted by {a, (3, y}, where a, (3, 
and yare the Euler angles of the rotation, then there is a set of irreducible representa­
tions DI( {a, (3, y}) of the group of all possible rotations of this type, where l can take 
any integer or half-integer value and the rep DI({a,(3, y}) is of dimension (2l+1). 
The properties of these reps DI({a,(3, y}) are well known (Wigner 1959). To study 
the application of crystal field theory in the case of the magnetic point groups we 
consider the group RO(3), the direct product of 0(3) and (E+R). Since R is an 
anti-unitary operator, half of the elements of this group are unitary operators and the 
other half are anti-unitary operators, the group is then called a "non-unitary" group 
and instead of having representations and irreducible representations it has corep­
resentations and irreducible corepresentations ("coreps") (see Section 3 of APCI). 
It is then by restricting the elements of this group to the elements of a magnetic 
point group that we can study crystal field theory and the splitting of energy levels 
in magnetic crystals. Each of the coreps of this group will, on restriction in this way, 
be a corepresentation (either reducible or irreducible) of the magnetic point group in 
question; if it is reducible, then the manner in which it splits up into coreps of the 
magnetic point group (see APCII) will tell us the qualitative behaviour of the crystal­
field splitting of the levels in that magnetic point group. Following APCII, we neglect 
spin-orbit coupling, that is, we confine ourselves to integer l values and to single­
valued coreps of the magnetic point groups. 

The first problem then is to be able to determine the coreps of the group RO(3) 
from the reps DI({a,(3, y}) of 0(3). In the notation of APCI, RO(3) is a grey group 
M given by 

M =G+RG, (2.1) 

where G is the group 0(3), Dl({a,(3, y}) the reps of G correspond to A(u), and as the 
element a o we choose R. The coreps of RO(3) can therefore be found by considering 

the relationship between A(u) and A(u) = A(ao1uao)*, and will be one of three 
types according to certain conditions, which, together with the actual coreps, are 
given in Section 4 of APC!. For RO(3), A(u) = Dl({a,(3, y}) so that 

A(u) = DI(R-l{a,(3, y}R)* 

= DI(R-IR{a,(3,y})* 

= DI({a,(3, y})*. 

(2.2) 

Therefore we have to consider the relationship between DI( {a, (3, y}) and DI( {a, (3, y})*. 
The result is that they are equivalent and that ~~* = + 1. To show this, we note 



CRYSTAL FIELD THEORY AND MAGNETIC GROUPS 

that (Wigner 1959) 

Dl( {a, {3, y} )m'm = eim'a d1({3)m'm e imy , 

where d1({3)m'm is real, and therefore 

Dl( {a, {3, y} )~'m = e-im'a d1({3)m'm e-imy . 

This can be related to Dl( {a, {3, y} )-m' ,-m' which is given by 

Dl( {a, {3, y}Lm',-m = e-im'a d1({3)_m',_m e-imy . 

However, (see Altmann and Bradley 1963a) 

d1({3Lm',_m = (_1)m-m' d1({3)m'm, 
so that 

that is, 

DI({a,{3, Y});".m = (_l)m-m' Dl({a,{3, Y})-m',-m 

= (_1)m+m' Dl({a,{3, Y})-m'.-m, 

A(u) = fl-1 A(u) fl, 

where fl is the matrix whose m, n element is given by 

flmn = (-1)m om ,_n, 

so that p is real and Pfl* is equal to p2. Hence 

that is, 

(flfl*)mm' = (_1)m om._n ( _1)n 0n,-m' 

= (-1 )m-m' 0mm' 

= °mm" 

Pfl* = +1. 
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(2.3) 

(2.4) 

(.2.5) 

(2.6) 

(2.7) 

(2 .. 8) 

(2.9) 

(2.10) 

We have thus shown that, for RO(3), A(u) and A(u) are equivalent and 
flP* = + 1. Therefore the coreps of this group will be of the first type for the case 
of integral spin (where A(a6) = A(R2) = +1) and of the second type for the case of 
half-integral spin (where A(a6) = A(R2) = -1). Thus, using equation (4.2) of 
APCI for the case of integral spin and equation (4.3) for the case of half-integral 
spin, it, is possible to write down immediately the coreps of the group RO(3). 

III. SUBDUCTION OF THE COREPS OF RO(3) 

In ordinary crystal field theory when the rep Dl({a,{3, y)} is subduced onto a 
point group, the characters of Dl( {a, (3, y}) for the point-group elements are evaluated 
and the point-group reps that arise from DI({a,{3, y}) are usually identified by inspec­
tion of the character table of the point group. Alternatively, ni , the number of times 
that the rep in which the element g has character Xi(g) appears in the reducible 
representation in which that element has character X(g), is given by the well-known 
formula 

nj = ~ 2x(g)x~(g), (:U) 
~ 

where N is the order of the point group. We therefore consider the modification 
of this procedure necessary for dealing with RO(3) and the magnetic point groups. 
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The process of the reduction of a representation is well known, but the problem 
of the reduction of a corepresentation hinges on the definition of equivalent corep­

resentations. Two corepresentations D and D are said to be equivalent if there is 
some transformation matrix a such that (Wigner 1959) 

D(u) = a-I D(u) a (3.2) 

for the unitary elements u and 

D(a) = a-I D(a) a* (3.3) 

for the anti-unitary elements a. Though the character of a matrix is invariant under 
a transformation according to equation (3.2), it is not invariant under a transformation 
according to equation (3.3) and therefore it is not possible to take the coreps of RO(3) 
and perform a direct subduction onto the coreps of a magnetic point group M by 
using equation (3.1) or by direct inspection of the character table of the magnetic 
point group in question. This is an unfortunate restriction and an alternative pro­
cedure must be adopted, which can be illustrated as follows: 

O(3) +- - - - - - - RO(3) 

subduction subduction 

H----- ..... --+-M 

The direct transition from RO(3) to M can be regarded as "first-order forbidden". 
We proceed therefore by the indirect route, from RO(3) to 0(3), from 0(3) to H, 
and from H to M. The well-known steps are the subduction used in conventional 
crystal field theory from 0(3) to H, an ordinary point group, and the deduction 
of the coreps of a magnetic group, i.e. from H to M and from 0(3) to RO(3); it is 
then just a matter of reversing the step 0(3) to RO(3) and combining all three steps to 
obtain the desired result. 

IV. AN EXAMPLE, 4'mm' AND 4m'm' 

Here we are not concerned with systems that are invariant under the operation 
of time inversion, that is, we are not concerned with the grey groups, for which it is 
quite unnecessary to use the theory of corepresentations at all, but only with those 
magnetic point groups, which, in APOII, were classed as type III groups, namely, 
magnetic groups from which R, the operation of time inversion, is absent. As an 
example, we study the energy levels in fields possessing the symmetry (and the anti­
symmetry) of the magnetic point groups 4'mm' and 4m'm', which are derived from 
the group of the square 4mm (C4v)' The magnetic point group of the antiferromagnetic 
layers in K2NiF4 is the direct product of 4'mm' with (E+I), where I is the inversion 
(see Legrand and Verschueren 1964); it is harder to find a real example of 4m'm'. 
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The first step in studying the splitting of the energy levels in these magnetic 
point groups is to identify H, the halving subgroup of unitary elements, for each 
group. These are (from Table V of APCII) 

4'mm' 

4m'm' 
E, 02Z' ax, ay, 

E, Otz, 02Z' 04z' 

Therefore we can quote the results for the splitting of the atomic energy levels on 
subduction of Dl( {a, (3, y}) onto these two groups H from any of the usual crystal 

TABLE 1 

CHARACTER TABLE OF H FOR 4'mm' 

E C' 2 uy u. Type of Corep 

------

D'( {a, {3, y}) 2l+I (_1)' (_1)" (_I)" 
Integral Half-integral 

Spin Spin 
---

Al 1 1 1 1 1 2 
A. 1 1 -1 -1 1 2 
BI 1 -1 1 -1 3 3 
B. 1 -1 -1 1 3 3 

TABLE 2 

CHARACTER TABLE OF H FOR 4m'm' 

Note that n = tl, l even; n = Hl-I), lodd 

E Ct. C •• C4• Type of Corep 

---

D'({a,,8,y}) 2l+1 (_l)n (_1)' (-l)n 
Integral Half-integral 

Spin Spin 
---------

A 1 1 1 1 1 2 
B 1 -1 1 -1 1 2 

IE 1 i -1 -i 1 2 
2E 1 -i -1 i 1 2 

field theory treatments, e.g. Bethe (1929). In the (2l+1)-dimensional rep Dl({a,{3, y}), 
the characters of these elements in H are given in the first row of Tables 1 and 2 for 
4'mm' and 4m'm' respectively, and the last two columns of each table give the types 
of the coreps of the magnetic group M for integral and half-integral spin in each case. 
The rep Dl({a,{3, y}) leads to coreps of RO(3) that are of the first type for the case 
of integral spin and of the second type for the case of half-integral spin. 

If we consider the 4'mm' case first and take, for example, l = 1, we have from 
Table 1 

Dl({a,{3, y}) 
E 
3 

so that the triply degenerate p level in an atom is split into three levels with the 
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symmetry of AI' B I , and B2 when the atom is in the environment with the symmetry 
of H of 4'mm', that is, of 2mm (C2V); this can be seen from inspection of Table 1. 
In the commonly accepted notation we write 

DI = A I +BI +B2 • (4.1) 

This is shown in Table 3. 

TABLE 3 

DI({a,fJ, y}) AND H OF 4'mm' 

E G2• ay a. 
---

Al 1 1 1 1 
BI 1 -1 1 -1 
Bs 1 -1 -1 1 

-----------------
fl1({a, fJ, y}) 3 -1 1 1 

For the cases both of integral spin and of half-integral spin the coreps of 4'mm' 
derived from Bl and B2 are of the third type, i.e. there is an extra degeneracy and 
the two levels Bl and B2 "stick together". For integral spin the corep derived from 
Al is of the first type and for half-integral spin it is of the second type; in either 
case, since A(u) and A(u) are equivalent, there will be no sticking together ofthe levels. 
The splitting of the energy levels derived from the atomic p level is shown in Figure 1. 

Atom Atom H M 

RO(3) 0(3) 2mm (C2v) 4'mm' 

Al " , , , 
Dl ", Bl '--- • 

"" 
"-"-, 

B2 " , 
" . 

Fig. I.-Energy levels in 4'mm' derived from an atomic p level. 

The pattern of the splitting is the same whether the particles in question have integral 
or half-integral spin. The only difference is in the degeneracy of the .coreps of RO(3) 
and of the corep derived from the rep Al of H; for the half-integral spin case, where 
this corep is of the second type, the degeneracy will be twice that for the integral 
spin case, where the corep is of the first type. 

The case of 4m'm' is very much easier to consider because no corep of this 
magnetic group is of the third type, so that there is never any sticking together of the 
energy levels at all, with the result that the pattern of the splitting of the energy 
levels in the magnetic group 4m'm' is exactly the same as in H, its halving subgroup, 
which is the point group 4 (C4). The splitting of an atomic p level is shown in Figure 2. 
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These examples illustrate what always happens, namely that the addition to 
H of the anti-unitary elements never causes any extra splitting of the energy levels 
but may cause some levels to stick together, as might have been expected. 

Atom Atom H M 

RO(3) 0(3) 4 (C4) 4m'm' 

A , 
/ 

/ 
Dl , , , , 

1£ 2£ , , , 
Fig. 2.-Energy levels in 4m'm' derived from an atomic p level. 

_ Just for comparison, we show in Figure 3 the splitting of an atomic p level in 
the non-magnetic group 4mm to which these two magnetic groups are related. In 
this case the level is well known to split as 

DI =A1+E, 

where Al is non-degenerate and E is doubly degenerate. 

Fig. 3.-Energy levels 

in 4mm (non-magnetic) 

derived from an atomic p level. 

Atom 

0(3) 

Dl " 

, 
" 

4mm 

--.;;;...-~' " , 
" £ ,._-----

v. SYMMETRY-ADAPTED FUNCTIONS FOR MAGNETIC POINT GROUPS 

(4.2) 

The discussion of the previous sections shows how, if the reps of the halving 
subgroup H and their matrix representatives are known, the coreps of a magnetic 
point group M may be found. This means that, in addition to studying the splitting 
of the levels, we can also study the symmetry properties of the wave functions and 
can set about trying to produce functions that are symmetry adapted to the various 
coreps of M. One might try to proceed a1J initio using the methods of projection 
operators, similar to Altmann (1957) for example. However, this is hardly necessary 
because Hisapointgroupforwhichsymmetry-adaptedfunctionsarealr eadyavailable, 
e.g. Altmann and Bradley (1963b). It is therefore a fairly simple matter to obtain 
the functions that are symmetry adapted to the coreps of M from the functions that 
are symmetry adapted to the reps of H. The results are implied in Wigner (1959). 
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If l/lk (k = 1,2, ... 1) is a basis of the rep A(u), of dimension 1, of H, then 
l/l~ = aol/lk (k = 1,2, .. . 1) is a basis of the rep A(u) = A(ao1uao)*, and it is almost 
trivial to show that for the three types of corep, whose matrices are given in equations 
(4.2)-(4.4) of APCI, the basis functions are 

First type (dimension of corep = 1) 

l/lk (k = 1,2, .. . 1) (5.1) 

Second type (dimension of corep = 21) 

(l/lk' -l/l~ P-l) (k = 1,2, ... 1) (5.2) 

Third type (dimension of corep = 21) 

(l/lk' l/l~) (k = 1,2, ... 1) . (5.3) 

As an example of this, we consider again the two magnetic groups 4'mm' and 
4m'm'. We need to know H, the basis functions of the reps of H, the element a o 
used in the derivation of the magnetic group M, and also the method of finding the 
coreps of a magnetic point group M from the reps of H (the required method is given 
in Tables VI and VII of APCII). 

TABLE 4 

THE SPHERICAL HARMONICS FOR 

2mm (Oov) 

A, Ao Bl Bo 
---

yg,c 

----
y~,c 

n,c n·· 
---

yg,c 
y~,c n,' 

y~,c ~., 

yg,c 
Yl,c y~" 

~,c yg,. 

Yi·c Yl·· 

y~.c 

Yl,c Yl,' 

l1·c 11,' 
Yi,c Yi,' 

Yi,c Yi,' 

Considering 4'mm' first, the elements 
in H are, from Table 1, 

E, C20 ' ax, ay , 

in R(G-H) they are (Table V of APCII) 
RCt", RCi" , Rada, Radb' 

and our choice of ao is Rada' The coreps 
of 4'mm' have been identified in Table 1 
and are either of the first type or of the 
third type. If they are of the first type, 
i.e. derived from Al or A 2, then the basis 
functions of the coreps of M are given by 
the expression (5.1), and are therefore 
immediately available, e.g. from Altmann 
(1957). If they are of the third type, i.e. 
derived from BI or B 2, then the basis 
functions of the coreps of M are given by 
the expression (5.3), when it becomes 
necessary to evaluate l/l~ = ao l/lk' where l/lk 
will be either a single spherical harmonic or 
some linear combination of spherical har­
monics. Wherever possible we choose RI 
as ao, but in many cases it is not possible 
to do so; 4'mm' is one such case and for 
this group we chose ao to be Rada' Thus 

aol/lk = (Rada)l/lk (5.4) 

= R(adal/lk) 
= RIC2a l/lk , 

and, since l/lk is a spherical harmonic or some linear combination of spherical harmonics 
and C2a is a member of the three-dimensional rotation group, we can find C2a l/lk by 
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using the matrix elements of the rotation group. From Table 12 of Altmann 
(1957), we can see that the spherical harmonics are assigned to the reps of H ( = 2mm 
(C2v)) as in Table 4, where 

(5.5) 

and 
(5.6) 

In Ta.ble V of APCII we have been able to choose ao so that fl, the second Euler 
angle of the rotational part of ao, is either 0 or TT for each magnetic group and never 
takes any other value; the rotation coefficient DI({a,fl,Y})m'm therefore always has 
the particularly simple form (Altmann 1957) of 

(5.7) 

or 

DI({a,TT'Y})"'m = (-l)lelmae-lmYl)m'._m' (5.8) 

For 4'mm' the Euler angles for C2a , the rotational part of ao, are {a,fl, y} = {iTT, TT, TT} 
so that from equation (5.8) 

C2a Y\" = }:; Y\,,' DI({tTT, TT, TT} )m'm (5.9) 
m' 

= ~ Y\,,'(-l)lellm"e-im"l)m'._m· 
m' 

However, ao is RIC2a , so that for 4'mm' 

ao Y\" = R( -1)1}:; Y\,,' (_1)/ ei1m" e-im" I)m'.-m (5.10) 
m'· 

= R}:; Y\,,' e-t1m"l)m'._m 
m' 

= R}:; Y\,,'(-i)ml)m'._m 
m' 

Thus, if.plc is Y\",c, then 

ao.plc = tao(y\,,+y1m) (5.11) 

= tR( y1m( _i)m+ Y\,,( _i)-m), 

which can be rearranged and expressed in terms of Y\,,'c or Y\"", depending on the 
actual value of m; if m = 1 then 

(5.12) 

= _RY~·s. 

Similarly aoYl"'s can be found. The functions .p~ for the first few l values for the 
coreps of 4'mm' derived from Bl and B2 are given in Table 5. 

Thus we have completed the method for finding the basis functions of the coreps 
of 4' mm' for the case of integral spin. The case of half-integral spin is not essentially 
different, except that where we had coreps of the first type and used expression (5.1), 
we now have coreps of the second type, whose basis is given by expression (5.2). 

Although these coreps of the second type are of dimension 2l, the functions .p~ are 
linear combinations of the .pic so that, since we are usually only concerned with using 
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complete sets of functions in an expansion, there is no real need to evaluate o/~ or 
-o/~ P-1 of expression (5.2). If we did wish to evaluate -o/~ P-1 for some reason, p 
is known from equation (2.9) and o/~ can be found in the way we have just conRidered. 

TABLE 5 

.p~ FOR 4'mm' 

Bl B • 

.pI< .p~ .pk .p~ 

Yl·e -RYl·- y!:.- _Ry!:.e 

y~.e -RY~.- y~., _Ry~.e 

Yl·c -RYl·s Yl·· -RYl·c 
Yi· c RYi·· Yi·· Ry~.e 

Yl·c -RY!.- Yl·' -Rne 
y~.c RY1·- y:!., RYi·c 

( -1 )1(m+1) R Yr.-
m odd 

VI. CONCLUSION 

The above considerations show that, in studying a crystal with the symmetry 
of one of the magnetic point groups, the splitting of the energy levels and the symmetry 
properties of the wave functions are best studied via the halving subgroup H of unitary 
elements. The extension from H to M is then relatively straightforward. 
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