
DISSIPATION IN QUANTUM MECHANICS 

By E. HARTING* 

[Manuscript received April 22, 1966] 

Summary 

The energy dissipation of an electromagnetic mode, weakly coupled to a solid, 
is derived for a simple model. The result differs in significant detail from that 
previously obtained by a different method. Reasons for the discrepancy are given, 
with reference to a recently proposed theorem in quantum optics. 

I. INTRODUCTION 

The energy dissipation of an electromagnetic mode in a lossy cavity has received 
previous attention (Senitzky 1960). In the present paper, the mode is treated as a 
classical driving force, and the loss mechanism to which it is weakly coupled through 
the electric field is quantized and assumed to be at all times in approximate thermal 
equilibrium. In other words, the loss mechanism consists of a quasi-continuum of 
energy levels, and in the uncoupled state it is adequately described by a density 
matrix 

(0) 
(0) exp( -f3H ) 

p = , 
Tr exp( - f3H(O») 

(1) 

where H(o>is the unperturbed Hamiltonian and f3 = 1/kT. It is only slightly perturbed 
by the field. 

II. ENERGY IN THE MODE 

The Hamiltonian of the uncoupled electromagnetic mode can be expressed as 

(2) 

where q(O) is defined by the equations 

E = -(lie) q(O)A, H = q(O)VxA; (3) 

p(O) = q(O) is the variable that is canonically conjugate to q(O), and w is the angular 
frequency of the radiation. 

We assume that p(O) and q(O) are classical variables and that the coupling 
takes place through p. Introducing a coupling constant IX, the generalized force 
acting on the solid is IXp(t). 
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Since the coupling is weak, two simplifying assumptions can be made: 

(i) the signal energy density, averaged over a cycle, is equally divided between 
electric and magnetic energy at all times, that is, 

us(t) = /p(t)/2 = /q(t)/2; (4) 

(ii) the frequency is not appreciably changed from w. 

Under these assumptions, the mean power abstracted from the mode is 

I~f~ir R(w) 

or d/~)\2 = -lp(t)/2o:2G(w) , (5) 

where Z(w), R(w), and G(w) are the complex impedance, its real part, and the real 
part of the complex admittance, respectively, of the solid. 

Bernard and Callen (1959) have shown that, with the assumptions made here 
about the solid, G(w) can be expressed as 

G(w) = -1Tw{l-exp(-,Bliw)}B(w) , (6) 

with (7) 

where 7J(E) denotes the density of states function, averaged for states near E, 
p(O)(En ) is the density matrix element p~~ in the unperturbed energy representation 
of the solid, and the matrix elements of r are those of the coordinate of the solid 
through which the coupling takes place. 

It follows that the signal energy is given by 

us(t) = /p(t)/2 = /p(O)/2 exp{-o:2G(w)t}, 

which describes the decay of the signal. 

(8) 

Apart from this coherent signal energy, the solid exhibits a random noise 
voltage. In thermal equilibrium (which we assume to hold approximately), the 
quantized version of the Nyquist theorem states that the noise energy in the mode 
is (Callan and Welton 1951) 

Iiw 1 
E(w;,B) = ""2 + exp,Bliw -1 . (9) 

The total energy in the mode is therefore 

(10) 

III. COMPARISON WITH PREVIOUS WORK 

Senitzky (1960) considers a very similar problem; the only difference lies in 
the treatment of the electromagnetic mode, which in his work is quantized. Explicit 
expressions for the p and q operators are obtained under the same assumption of 
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weak coupling as in Section II above. His final expression (equation (60)) for the 
energy in the mode is, in our notation, 

Ut = {lp(O)12_E(w;,B)}exp{-oc2 G(w) t} + E(w;,B). (ll) 

The difference between (lO) and (ll) is in the first term on the right-hand side, 
and it is easily shown, with reference to the derivation of (ll), that this difference 
is not the result of treating the radiation quantum-mechanically. In fact, Senitzky 
treats the dissipation classically (cf. remarks following his equation (20)), and the 
whole derivation leading up to his equation (60) is independent of the commutation 
relation betweenp and q. The interpretation ofthe result (remarks following equation 
(61)), involving the zero-point energy of the radiation, cannot, therefore, be correct. 

The results (lO) and (ll) can be reconciled if Ip(O)12 in (ll) includes the noise 
energy E(w;f3), that is, if it denotes the total energy in the mode at the initial time. 
But, as we have seen, the noise energy is associated with the solid (as is evident 
from the fact that it depends on (3); Ut of (ll) thus describes the energy in a mode 
of the solid which is excited in some way prior to t = 0 and is then weakly coupled 
to the "remainder" of the solid. It is then understandable how a Brownian movement 
equation for p will result ((72) of Senitzky), this model being the analogue of a 
classical, harmonically bound particle. The equations of motion for the coordinates 
of the latter are given by Chandrasekhar (1943), and the energy calculated from these 
(employing assumptions (i) and (ii) of Section II) leads to the classical analogue of 
(ll) (classically, E(w;f3) -+ I/(3). 

As we have remarked, in Senitzky's calculation it is immaterial whether the 
radiation is classical or quantum-mechanical, and this is in part a result of his 
treatment of the dissipation in a classical approximation. As a consequence, p and 
r, the coupling coordinate of the solid, are made to commute at all times, and this is 
implied in the way the (combined) Hamiltonian is written (Senitzky's equation (3)). 
The coupling term appears as ocpr, instead of oc[p,rh as required in a full quantum
mechanical treatment. 

These remarks are relevant to the discussion of a theorem in quantum optics, 
proposed by Senitzky (1965), stating that "all sources (of radiation) on which the 
effect of the 'detector' is negligible may be treated as classical sources in the inter
action under consideration". Since the proof of this theorem rests on the classical 
approximation described above, the theorem would seem to require further 
justification. 

On the other hand, it seems reasonable to conjecture that such a theorem may 
well hold in the situation explicitly considered here, i.e. where the interaction is of a 
purely resonant nature. If one of the two interacting systems is quantized, energy 
can in any case only be exchanged in units of nw. It is interesting to note in this 
connection that previous objections to the theorem (Glassgold and Holliday 1965) 
quote as a specific example of its shortcomings the photoelectric effect, which is 
clearly a more complicated interaction. 
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