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Summary 

It is shown that the time.averaged electric forces produced in a dissipative 
system excited by a number of varying charge sources may be written in a form 
analogous to previously derived equations for magnetic forces in quasi·stationary 
systems. The result corresponds to a generalization of Thomson's formula of electro­
statics to quasi-static fields in an energy-dissipating medium. 

1. INTRODUCTION 

Recently (Smith 1965a, 1965b), it was shown that average magnetic forces 
developed by quasi-stationary currents in energy-dissipating systems could often be 
expressed simply in terms of effective inductance parameters of the system. The 
results obtained were similar in form to the familiar equations of magnetostatics or 
to the previously obtained results for general energy-conserving systems (Smith 
1961). For instance, the average generalized force F x corresponding to a generalized 
coordinate x specifying the configuration of the source current part of the system 
may be written 

Fx = tI2 fJLjfJx, (1) 

where, for simplicity, a single r.m.s. excitation current I of angular frequency w has 
been taken and L = L(w, x) is the effective inductance of the excitation circuit at 
this frequency. An immediate practical application of equation (1) relates to the 
estimation of electromagnetic levitation forces. 

Equation (1) and generalizations of it were obtained from the relation 

(2) 

where A is the complex r.m.s. vector potential in a fixed dissipative medium arising 
from current sources described by the complex r.m.s. current density J, and Fx, F~ 
are the average generalized forces resulting from current sources J, J*. The differen­
tiation is to be performed in a particular way which corresponds to constant current 
for current loops. 

The similarity between expressions for average forces in conservative systems 
produced by either electric or magnetic stresses (Smith 1960) suggests that an electric 
force analogy of equation (2) should exist. It will be shown that, for electric forces 
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produced in a quasi-static system as the result of a complex r.m.s. source charge 
distribution p, the replacement for equation (2) is 

(3) 

In this equation, cp is the complex r.m.s. quasi-static electric potential in a fixed 
dissipative medium and F:1:, F~ are time-averaged forces corresponding to source 
charge distributions p, p*. The medium is assumed to be both polarizable and con­
ducting, and the forces are those resulting from a generalized displacement of the 
source charges. The differentiation in the right-hand side of equation (3) is to be 
performed in a specified manner corresponding to constant charge for the movement 
of point charges. Equation (3) is a generalization of an electrostatics formula due to 
Thomson (see Jackson 1962, p. 126) for quasi-static fields in a dissipative medium. 

When the source charges are point charges, equation (3) may easily be reduced 
to a simple form involving the potential coefficients of the system, but, unlike the 
reduced form of equation (2), this does not correspond to the usual practical situation 
of constant voltages over conducting surfaces. Unfortunately, correspondences 
between constant voltage and constant charge conditions, as in electrostatics, do 
not apply. 

Equation (3) is derived by assuming that the magnetic fields, including those 
produced by the flow of conduction currents, are everywhere negligible, so that 
the electric field is expressible in terms of a quasi-static electric potential. The 
steps in the derivation are analogous to those used in deriving equation (2) (Smith 
1965a). A single excitation frequency is considered, but this is no limitation, since 
we consider only linear systems, in which case the forces from individual Fourier 
components are additive. 

II. THE FIELD EQUATIONS AND THEm FORMAL SOLUTION 

All field quantities are taken as having time dependence exp(iwt) corresponding 
to a single excitation frequency, and r.m.s. amplitudes are used throughout. The 
entire field distribution is produced by the charge density p as source. Assuming 
all magnetic fields to be negligible, the Maxwell equations reduce to the quasi-static 
equations (in MKS rationalized units) 

VxE = 0, 

V.D = pIt), 

(4) 

(5) 

where E and D are the complex r.m.s. electric field and electric displacement vectors 
and pIt) is the total complex r.m.s. charge density. The total charge density pIt) is 
composed of the source charge density p together with an induced charge density p(l), 

polarization charges having already been included in D, so 

pIt) = p+ p(l) • (6) 

The induced charge density p(l) is associated with conduction currents J(l) flowing 
in the medium, and the following conservation equation is assumed: 

iWp(l) + V . J(l) = o. (7) 
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That is, the source and induced charges are separately conserved, and the induced 
current comprises the whole of the conduction current in the medium. The require­
ments of charge conservation in the source system must be met other than by conduc­
tion currents in the medium. A similar condition was imposed for the magnetic 
force theorem (Smith 19600) by requiring that the source currents J were conserved 
separately from the induced conduction currents in the medium. It should be noted 
that these conditions impose a restriction on the type of system for which the theory 
is valid. 

The linear constitutive equation 

D=KE K real 

together with Ohm's law for conduction currents, 

J(l) = uE ureal 

(8) 

(9) 

are also assumed, guaranteeing the linearity of the system. From equation (4), the 
scalar potential 4> may be introduced by 

E = -V4>. 

Then, from equations (5), (6), and (8), 

p+p(l) = - V • (K V4». 

However, from equation (7), 

p(l) = - (l/iw) V . J(l) 

= - (l/iw) V . (uE) 

= (l/iw) V • (u V4» 

Elimination of p(l) from equations (11) and (12) leads to 

V • (K+u/iw) V4> = -p, 

w =10 

using (9) 

from (10). 

(10) 

(11) 

(12) 

(13) 

which expresses the electric potential 4> in terms of the source charges alone. Equation 
(13) corresponds to the introduction of the complex permittivity K+u/iw to account 
for conduction in the medium. With the imposition of a suitable boundary condition 
on 4> (4) - 0 as l/r or faster as r _ (0), equation (13) provides a means of finding 
the electric field and hence the forces on the source charges. 

We suppose that the solution of equation (13) is expressible in terms of a 
Green's function G(r, r'), for which 

V' (K+u/iw) VG(r,r') = -S(r-r'), (14) 

where G(r, r') satisfies the same boundary conditions as 4> and S(r) is the three­
dimensional Dirac delta function. Clearly, G(r, r') corresponds physically to the 
solution of equation (14) for a single point charge source at r = r'. The solution for 
4> of equation (13) may then be written 

4>(r) = J v G(r, r') p(r') d7" . (15) 
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The Green's function G(r,r') is symmetric in r,r', that is, 

G(r, r') = G(r', r), 

which we show by considering both G(r, r') and G(r, r"), which satisfies 

V· (/<:+ajiw) VG(r, r") = - o(r-r"). 

From equations (14) and (17), 

G(r, r") V . (K+ajiw) VG(r, r') = - o(r-r') G(r, r"), 

and G(r, r') V . (K+ajiw) VG(r, r") = - o(r-r") G(r, r') . 

(16) 

(17) 

(18) 

(19) 

Subtracting equation (19) from (18), and integrating over the entire volume, 

J v {G(r, r") V . (K+ajiw) VG(r, r') - G(r, r') V . (K+ajiw) VG(r, r")} d'T 

= G(r", r')-G(r', r"). (20) 

However, the following generalization of the usual scalar Green's theorem may easily 
be proved: 

Is a(~ V", - '" V~) . dS = J v (~V . a V", - '" V . a V~) d'T. 

Application of this theorem to equation (20) gives 

J s (K+ajiw){G(r, r") VG(r, r') - G(r, r') VG(r, r")} . dS = G(r", r')-G(r', r"), 

and the surface integral vanishes from the boundary conditions on G, giving the 
symmetry expressed by equation (16) in accord with general principles of reciprocity 
for irreversible electromagnetic systems (Meixner 1963). 

III. THE AVERAGE GENERALIZED FORCE 

The average generalized force F x is computed by evaluating the work F x ox 
done in a displacement generated by a small change ox of the generalized coordinate 
x. This displacement is to be carried out sufficiently slowly for the fields at any 
time to be adequately described by steady-state equations. Let or(r) denote the 
displacement of the source charges at r generated by ox. 

Since magnetic fields have been assumed negligible, the force density operating 
on the source charges is Re(p*E). Consequently, the work done is 

(21) 

from (lO) 

= Re( J v {~V' (p*or) - V . (p*~or)} d'T)' 

= Re( J v ~ V . (p*or) d'T) - Re( J s p*~or' dS) 

by the Gauss theorem, where S encloses the volume V containing the source charges. 
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The surface integral vanishes, giving 

Fx 8x = Re( J v.p V . (p*8r) dT) (22) 

= Re( J v .p(p* V . 8r + 8r . V p*) dT) . (23) 

For the moment suppose 8r to be constant, representing a simple translation of the 
source charges. Then V . 8r = 0, and the only contribution to the right-hand side 
of equation (23) is from the term involving (8r . V p*). But (8r . V p*) may be written 
-8p*, where 8p is the change in the source charge density generated by translation 
of the sources without change of the charge amplitudes, i.e. at constant charge. Then, 

(24) 

Inclusion of the term (p* V ·8r) in equation (23) allows for dilatation of the charge 
distribution with a general displacement 8r. We shall see that equation (24) always 
applies, provided constant charge is interpreted to mean that every volume moving 
with the displacement is always to contain the same amount of source charge. That 
is, 

8 J v' pdT = 0 all V', 

or (25) 

where the second integral accounts for the change in the volume of integration 
generated by 8x. But, by geometry, 

J P dT = J p 8r . dS 
.tv's' 

= J v' V' (p8r) dT, 

where 8' is the surface enclosing V'. From (25) and (26), 

J v' {8p + V . (p 8r)} dT = 0 all V'. 

Thus, 
8p = - V • (p 8r) 

corresponds to constant charge displacements. 

Using (27) in (22), we obtain 

Fx 8x = - Re( J v .p8p* dT). 

Equation (28) may be written in a more useful integral form by examining 

(26) 

(27) 

(28) 

(29) 
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But since only the source charges move under the displacement OX, we have, from 
equation (15), 

o</>(r) = I v G(r, r') op(r') dT' ; 
therefore, 

I v p* o</> dT = Iv p*(r) I v G(r, r') op(r') dT'dT 

where </>'(r), given by 

<P'(r) = I v G(r, r') p*(r') dT' (30) 

(using the symmetry (equation (16)) of the Green's function </>'), is the electric 
potential corresponding to the source charge distribution p* rather than p. Therefore, 
equation (29) becomes 

and, using (28), we finally obtain 

(Fx+F~)ox = -o{Re( Iv</>p*dT)} (31) 

or Fx+F~ = - (:J p {Re( Iv </>/ dT)} , (32) 

where F~ is the average generalized force corresponding to the charge distribution p*. 

IV. DISCUSSION 

The forces F x and F~ are not usually equal, since, from equation (28), 

OX (Fx-F~) = Re( I v (</>' op - </>* op) dT) 

= Re( I v op(r) I v {G(r, r')-G*(r, r')} p*(r') dT' dT)' (33) 

which depends on the imaginary part of the Green's function. If a = 0, as in a loss­

free system, the Green's function is real, and F x = F~. Then I v </>p* dT is also real 

and equal to twice the average energy of the system. Thus, equation (32) corresponds 
to a generalization of the well-known Thomson theorem for electrostatic forces 
(Maxwell 1881, Section 93; Jackson 1962, p. 126). In fact, for a conservative system 
with w ~ 0, equation (32) is just the Thomson formula 

(34) 

where W is the electrostatic energy. 
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For a set of point charge sources qk at r = rk, we have 

and, from (15), 

with from (16). 

The Gkj are complex potential coefficients of the system. Then, 

Using equation (32), 

= Re( ~ q; Gkjqj) 
j,k 

= ~ q;qjRe(Gkj) 
i,k 

from (36). 

Fx+F~ = -~ q;qj(%x){Re(Gki )}. 
j,k 
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(35) 

(36) 

(37) 

(38) 

Equation (38) is the analogue of the magnetic force formula expressing magnetic 
forces in terms of the source currents and effective inductances (Smith 1965a, 
equation (28)). However, in contrast to the magnetic force formula, no practical 
applications suggest themselves, since excitation with a specified charge distribution 
is rather artificial. Practical situations involve excitation of conducting surfaces by 
voltage or current sources. The magnetic force theorem provided useful practical 
results because currents are the direct sources of magnetic fields, but for electric 
fields it is charges that are the sources. For energy-conserving systems a correspon­
dence between constant charge and constant potential conditions may be made 
(e.g. Jackson 1962, p. 127), but this does not seem feasible for energy-dissipating 
systems. 
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