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Summary 

This paper deals with wave propagation in planar stratified, continuously 
varying, compressible, non-magnetized electron plasmas. The waves are coupled 
electromagnetic and electron acoustic waves and are described by Maxwell's 
equations coupled to the linearized single-fluid equations of hydrodynamics. Some 
first-order coupled wave equations are obtained and are transformed into con­
venient forms. Coupling, power flow, and approximate solutions are then discussed. 

I. INTRODUCTION 

In much of the work on waves in a compressible plasma, the plasma has been 
taken to be homogeneous, or to consist of homogeneous regions separated by sharp 
boundaries_ In a region of homogeneous non-magnetized plasma, electromagnetic 
and electron acoustic waves propagate independently. Coupling between them 
occurs at a boundary between regions if the electric vector has a component normal 
to the boundary. Coupling can occur also in a continuously varying inhomogeneous 
region. 

Approximate studies of fields in continuously stratified compressible plasmas 
have been made by a number of authors (Fejer 1964; Hoh 1964; Parker, Nickel, 
and Gould 1964; Yadavalli 1965). Musal (1965) has obtained an exact second­
order wave equation. 

Felsen (1966) derived some first-order and second-order coupled wave equations 
for propagation in planar stratjfi~d non-magnetized compressible electron plasmas. 
In that work, gradients in the static pressure and in the electron collision frequency 
were not. allowed for, but the equations were otherwise rigorous. In a subsequent 
letter (Burman 1966) it has been pointed out that alternative first-order equations can 
be obtained. In the present paper, a derivation of these alternative equations is given. 
The equations are then transformed into convenient forms. 

II. BASIC EQUATIONS 

The model of the plasma taken here consists of electrons neutralized by an 
equal number of positive ions. The motion of positive ions in the electromagnetic 
field is neglected. The waves are described by Maxwell's equations coupled to 
the single-fluid equations of hydrodynamics. The amplitude of the waves is taken 
to be sufficiently small that linearized equations can be used. The plasma is 
inhomogeneous and compressible_ The effect of an imposed magnetostatic field is 
not considered. 
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A time factor eiwt is taken, where w is the angular frequency of the fields and 
t is the time. The permeability of the plasma has the free-space value fLo' Also, 
EO is the permittivity of free space and e is the charge of an electron (a negative 
quantity). The electrons have number density No+N, No being the equilibrium 
value. In equilibrium the ordered velocity of the electrons vanishes, the medium 
being stationary. Maxwell's equations are 

v X E = -iwfLoH (1) 
and 

(2) 

Here E and H are the electric and magnetic fields and v is the ordered velocity of 
electrons in the wave. E, H, and v are time-dependent quantities. The current 
density term has been linearized by neglecting N v. 

The pressure in the electron fluid is denoted by Po +p, where Po is the equilibrium 
value. In an inhomogeneous fluid in the absence of static-body forces, it follows from 
hydrostatics that the gradient of the equilibrium pressure vanishes (Friedlander 
1958). In the present case any static forces are neglected, so that Vpo = o. 

The linearized equation of conservation of momentum is 

(3) 

Here m is the mass of an electron and v is the collision frequency of electrons with 
heavy particles. The force on the electrons due to the magnetic field of the wave 
disappears in the linearization. Also it can be shown that for small disturbances 
(Friedlander 1958) 

(4) 

The acoustic speed in the electron gas at rest, uo, is defined by mU5 = oP%N o. 

III. FIRST-ORDER COUPLED WAVE EQUATIONS 

The plasma is now taken to be planar f'tratified. Rectangular Cartesian 
coordinates (x,y,z) are introduced with No, v, al,d 1£0 functions of z only. The field 
quantities are all taken to be independent of y. 

In an incompressible isotropic planar stratified plasma, the electromagnetic 
field can be expressed as the sum of two partial fields. These are referred to as 
horizontally and vertically polarized waves in which the electric and magnetic 
vectors respectively are parallel to the stratifications (Budden 1961). 

When compressibility is considered, a vertically polarized electromagnetic 
wave is coupled to the electron acoustic wave. However, a horizontally polarized 
electromagnetic wave propagates as an independent mode. The physical reason 
for this is that an electric field parallel to the stratifications cannot impart any 
longitudinal motion to the electrons. Thus, horizontally polarized electromagnetic 
waves are unaffected by the compressibility and need not be considered here. 

Consider the propagation of a wave consisting of a vertically polarized electro­
magnetic wave and an electron acoustic wave coupled together. The magnetic 
field of the wave is taken to have a y component H only. The electric field has 
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x and z components Ex and Ez only. Similarly, the electron velocity has x and z 
components Vx and v" only. Such a wave could be excited by a line source of 
magnetic current parallel to the y axis. 

The fields are functions of x and z. Fourier transforms of the fields, taken 
with respect to the x coordinate, are now introduced. The field component Ex has 
the Fourier transform Ex given by 

(5) 

Here, ko = W(JLo EO)! and S is independent of the coordinates. Exactly similar 
expressions hold for all other field components. Equation (5) shows that for all 
components ajax = -ikoS, Also, ajay = 0 for all components, and a prime will 
denote differentiation with respect to z. 

The symbols X and U, commonly used in magnetoionic theory (Ratcliffe 1959; 
Budden 1961), are defined by X = Noe2jEomw2 and U = 1-i(vjw). The quantities 
02 = 1-S2, C = (JLoEO)-!' and 'I/o = (JLojEo)! will also be required below. Equations 
(1)-(4) are expressed in component form and Fourier transforms are taken. 
This gives 

ikoS1£z+1£~ = -iwJLoH, (6) 

-H' = iWEo1£x+Noe'vx, (7) 

-ikoSH = iWEo1£,,+Noevz, (8) 

iwmNo UVx = eNo1£x+ikoSp, (9) 

iwmNo U V" = eNo1£,,-p', (10) 

and iwp+mNou5(v;-ikoSvx) = o. (ll) 

The quantities 1£" and Vx can be eliminated. The resulting equations can 
be written in matrix form as 

(12) 
Here, e is the column vector 

(13) 

and A is the matrix 

0 '1/0 02 is(wmje)X 0 

'l/i)l(l-XU-l) 0 0 -is(ejwm)U-l 
A= 

is(ejwm)U-l 0 0 (kojwmNo U)(C2UU02-S2) 

0 -is(wmje)X (wmjko}No{U -X) 0 

(14) 

Equation (12) represents four first-order coupled wave equations. 

The main difference between the present formulation and the previous one 
(Felsen 1966) is the absence of derivatives of the plasma properties in the matrix A 
used here. Also, the present work allows the electron collision frequency to vary 
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with z. It was mentioned by Felsen (1966) that his matrix equation is similar to 
one describing electromagnetic wave propagation in an incompressible planar 
stratified magnetoplasma (Clemmow and Heading 1954; Budden 1961, p. 389). 
The matrices themselves differ. In the incompressible magnetoplasma problem, 
the matrix in the equation corresponding to equation (12) above does not contain 
derivatives of the plasma properties. In this sense, the present formulation of the 
compressible plasma problem is mathematically closer than Felsen's to the work 
described by Budden (1961, Ch. 18). 

Coupled wave equations are of considerable importance in the theory of 
electromagnetic wave propagation in cold planar stratified media (Budden 1961). 
This is in part due to the fact that solutions can be obtained by successive approxi­
mations (Budden 1961, Ch. 18). 

IV. TRANSFORMATION OF THE EQUATIONS 

Let the column vector S(i) be an eigenvector of A and let qj be the corresponding 
eigenvalue, where i = 1, 2, 3, or 4. These quantities satisfy 

(15) 

where the summation convention is not used. Let S be a matrix the ith column 
of which is S(i). The matrix S will diagonalize A, that is, 

(16) 

as is easily verified. The column vector f is introduced by writing e = Sf. Then 
equation (12) gives 

f' +iko S-lASf = -S-lS/f, (17) 
provided S is non-singular. 

The method in the above paragraph has simply followed that described by 
Budden (1961, p. 398). It now remains to find the eigenvectors and eigenvalues of 
the particular matrix used here, namely A. 

It is found that the eigenvectors of A can be written 

and 

In these expressions 

and 

S(l) = {aI' 1, b, 0}4>1' 

S(2) = {a2, 1, b, 0}4>2' 

S(3) = {b, 0, C3, 1 }4>3' 

S(4) = {b, 0, C4, 1 }4>4. 

b=iS~~, 
wmU-X 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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The eigenvalues q1 and q2 are the two values of qem given by 

(qem)2 = I_XU-1-S2. 

Similarly, q3 and q4 are the two values of qea given by 

751 

(25) 

(26) 

Thus q2 = -q1 and q4 = -q3' Hence a1 = -a2 and Ca =-c4 . The quantities 
a and c are now defined by a1 = -a2 = a and c3 = -c4 = c respectively. 

Also CP1' CP2' CP3' and CP4 are arbitrary functions of z. Equations (18)-(26) are 
easily verified by substituting them into equations (15). Equations (15) determine 
only the ratios of the elements of each eigenvector. This accounts for the presence 
of the arbitrary functions CPl' 

When the plasma is homogeneous, 8' = 0 and equation (17) reduces to four 
first-order uncoupled differential equations. Then four independent waves can 
exist in the plasma for a given S. These are two independent electromagnetic waves, 
travelling in opposite directions with respect to z, and two independent electron 
acoustic waves, also travelling in opposite directions with respect to z. Under 
various circumstances, some of these fields will be evanescent disturbances rather 
than propagating waves. 

Consider a theoretical homogeneous plasma with properties the same as those 
of the actual plasma. at the level considered. The four independent waves in the 
theoretical plasma may be referred to as the characteristic waves of the actual 
plasma at the level considered (Budden 1961, Ch. 18). Solving equation (17) for 
a homogeneous plasma gives, using equation (16), 

(27a) 

where II is the ith component of f. Suppose that Ii is the only field present, that is, 
II ::j= 0 but Ij = 0 for j ::j= i. In this case, e = 8(1) ft. Then equation (27a) shows that 

(27b) 

which gives the field components of the ith characteristic wave at the level z. 

Thus, the vector e of the ith characteristic wave is proportional to the ith 
eigenvector of A. Also, the propagation constant with respect to z of the ith 
characteristic wave is the ith eigenvalue of A. These considerations correspond 
closely to those in the incompressible magnetoplasma problem (Budden 1961, 
Ch. 18). 

Consider the four characteristic waves. Equations (18) and (19) for a homo­
geneous medium represent electromagnetic waves; these waves possess all the 
magnetic field present, but there is no pressure deviation from the mean. The 
propagation constants with respect to z are the two roots of equation (25). 
Equations (20) and (21) for a homogeneous medium represent electron acoustic 
waves; these waves possess no magnetic field, but involve a pressure deviation from 
the mean. The propagation constants with respect to z are the two roots of 
equation (26). 
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By using equations (18)-(21), the matrix S can be written 

a<Pl -arP2 brPa brP, 

rPl rP2 0 0 
S= (28) 

brPl brP2 crPa -ccfo4 

0 0 rPs rP, 

It is easily shown that 

det S = 4rPi rP2 rPa rP, ac. 

Thus, the singularities of S will depend on the choices made of the functions rPt. 
If the rPt are taken to be finite and independent of z, then S is singular where its 
eigenvaJues become equal to zero. It is found that 

1 1 
0 

-b 
arPl rPl arPl 

-1 1 
0 

b 
arP2 rP2 a<P2 

2S-1 = (29) 

0 
-b 1 1 

ccfoa crPa rPa 

0 
b -1 1 

ccfo, crP, rP4 

and hence 

2arPl+a'rPl -a'rP2 b'rPs b'rP' 
arPl ~ arPl a<Pl 

-a'rPl 2a<P; +a'rP2 -b'rPs -b'rP' 
arP2 arP2 ~ arP2 

2S-1S' = 
b'rPl b'rP2 2crP;+c'rPs -c'rP, 

(30) 

crPs crPa crPa ~ 

-b'rPl -b'rP2 -c'rPs 2crP~+C'rP4 
ccfo4 ~ crP, ccfo, 

The equation e = Sf gives f = S-le provided S is non-singular. Hence, 

and 

fl = (E x+all-bp)/2arPl' 

f2 = (-E x+all+bp)/2a<P2' 

fa = (-bll +v",+cp)/2crPs. 

f, = (bll-v",+cp)/2ccfo4' 

(31) 
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Consider waves propagating purely in the z direction in the stratified 
medium. Then the fields are independent of x and S = O. From equation (23), 
b = O. Hence, equations (17) and (30) show that the fields fl and f2 are not coupled 
to the fields fa and f,. Furthermore, equations (31) with b = 0 show that fl and f2 
possess a magnetic field but no pressure deviation from the mean, while the contrary 
holds for fs and f4' Thus fl and f2 here represent electromagnetic waves while fs 
and f4 represent electron acoustic waves. For propagation purely in the z direction, 
there is no coupling between electromagnetic and electron acoustic waves. 

Also, equation (23) shows that b vanishes if the charge on the electron is put 
equal to zero. Then there is no coupling between electromagnetic waves and acoustic 
waves in the electron gas. The latter waves then possess no electric field, as well 
as no magnetic field, and are purely mechanical in nature. 

V. A PARTICULAR FORM OF THE EQUATIONS 

Consider the matrix equation (17). The ith component equation contains 
only the ith component of f on the left-hand side. In general it contains all com­
ponents of f on the right-hand side. In the ith equation, the coupling terms can 
be defined to be the terms involving f] for j =F i. If the diagonal components of 
8-18' were to vanish, the right-hand side of equation (17) would contain coupling 
terms only. When the coupling terms are neglected, eachfl represents an independent 
field. When coupling terms are allowed for, the coupling terms show how each 
field fl is coupled to the remaining f] (j =F i). 

The cf>t are now taken to satisfy 

2acf>; +a' cf>t = 0 for i = 1,2 } and 2ccf>; +c' cf>i = 0 for i = 3,4. 
(32) 

Hence cf>t = Bia-t for i = 1,2 } and cf>1 = Bic-i for i = 3,4, 
(33) 

where the BI are arbitrary constants, independent of z. Equation (30) shows that 
the diagonal elements of 8-18' now vanish. 

For simplicity, the B; are all taken to be unity. Then evaluating 8-18' and 
writing out the matrix equation (17) in full gives 

and 

f~ +ikoqdl = (a'/2a)f2-!b'(ac)-l(fa+f4)' 

f~+ikoqd2 = (a'/2a)fl +!b'(ac)-!(fs+f4)' 

f~+ikoqafa = -!b'(ac)-!(fl +f2)+(c'/2c)f4' 

f~ + ikoq4f4 = !b'(ac)-l(fl +f2) + (c'/2c)fs' 

(34) 

These are coupled wave equations with the right-hand sides containing coupling 
terms only. 
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The term "coupling" refers to the process in which energy is transferred between 
two waves that are independent when coupling is neglected. In the region of 
coupling itself, the wave cannot be separated into the two independent parts. 
A special case of coupling is reflection. Then a wave travelling in one direction 
with respect to z is coupled to a wave of the Same type propagating in the other 
direction. In the region of reflection itself, a wave cannot be separated into oppositely 
travelling parts. Away from a reflection region such separation can be made. 

Consider coupling between the components of f as demonstrated by equations 
(34). Coupling between the first pair (fl and 12) and the last pair (fa and 14) occurs 
wherever b' is non-zero. Coupling between 11 and 12 occurs wherever a' is non-zero. 
Coupling between la and 14 occurs wherever c' is non-zero. The quantities a, b, 
and c depend on z through No, v, and Uo' 

Terms in the right-hand sides of equations (34) become large in the region 
where a = 0 or c = 0, that is, coupling is important in regions near zeros of qem 
or qeB. Zeros will occur, in general, for complex values of z. Their effect on the 
propagation will be most significant when they are on or near the real z axis. 

The terms involving coupling between II and 12 become large near zeros of a. 
Hence a field 11 will generate a field 12 when passing near a zero of qem. Also a field 
12 will generate a field 11 near such a zero. Similarly, la and 14 are coupled near 
zeros of qeB. Terms involving coupling between the first and last pairs become large 

. near zeros of both qem and qeB. 

The fields 11 and 12 are associated with the eigenvalues ql and q2 (= -ql)' 
which are roots of equation (25). When there is no coupling, these waves reduce 
to electromagnetic waves propagating in opposite directions with respect to z, 
or to evanescent electromagnetic disturbances. Similar remarks apply to the fields 
la and 14' which are electron acoustic in nature when coupling is neglected. 

Suppose that b'(ac)-i is small. Then coupling between the first pair (ft and 12) 
and the last pair (fs and 14) is small. Thus II and 12 represent a quasi-electromagnetic 
type of wave while la and 14 represent a quasi-electron acoustic mode. Where a' /a 
is small, 11 and 12 represent oppositely propagating waves (when they are not 
evanescent). Reflection of a quasi-electromagnetic mode will occur when a' /a is 
significant. Similarly, reflection of a quasi-electron acoustic mode will occur when 
c'/c is significant. When b'(ac)-i is not negligible, the separation into quasi­
electromagnetic and quasi-electron acoustic modes is not physically meaningful. 

It has been mentioned by Budden (1961, p. 418) that care should be taken 
in the use of first-order wave equations (for the cold magnetoplasma problem) in 
a coupling region. Thus it will be of interest to investigate the positions of coupling 
regions by using second-order differential equations. 

VI. POWER FLOW 

The time-averaged power flux in a compressible plasma is given by P, where 
(Seshadri 1963) 

P = tRe(E X H*+pv*). (35a) 
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A particular value of the Fourier transform variable S corresponds to a particular 
wave in the spectrum appearing in equation (5). For any such wave, with S real, 

P = !Re(E X H*+lJV*), (35b) 

where the barred quantities are defined as in equation (5). In the present problem 
this vector has x and z components P x and Pz only, and these will now be calculated. 

and 

The equation e = Sf, with the choice made of the rPi in Section V, gives 

Ex = at(fl-12) +bc-t (fa+14)' 

Ii = a-t(fl +12)' 

Vz = ba-t(fl +12) +Ct(fa-14) , 

p = c-t (fa+14)' 

(36) 

The remaining field components, Ez and vx, are given in terms of the elements of e 
by equations (8) and (9). Those equations give for the x component of (E X Ii*+pv*) 

koS IiIi* _ iNoe v Ii* +~ -E* + koS --* 
w€ w€ Z wmU*P x wmN U*PP . o 0 0 

(37) 

(38) 

and that the z component of the same vector is 

In the remainder of this section it will be supposed that the medium is loss-free. 
Then a and c are real or purely imaginary, while b is purely imaginary. On using 
equations (22) and (24) it is found that 

2P = II-XI (Noe{3 +s)(lll+121
2 +lla+1412) 

x ko qt q~ 

+Xi Im[{(qa/qi)! -(qi/qa)l}(fi la-I; 14)] 

+X! Im[{(qa/qi)t + (qi/qs)t}(f; Is-Ii 14)]' (40) 

where b = i{3, {3 being real. Taking positive square roots, expression (39) gives 

Here, €l = 1 and 0 when a is real and imaginary respectively, and vice versa for €2' 

Similar definitions apply to €s and €4' but with respect to c. It is interesting to 
note that in equation (41) there are no "cross-terms" between the first pair and the 
last pair of II' 12' la, and 14' 
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VII. ApPROXIMATE SOLUTIONS 

Equations (34) are in a very convenient form for obtaining WKB-type expressions 
for the fields. WKB solutions for the fields in an inhomogeneous medium are 
approximate solutions that neglect any coupling, so that the various characteristic 
modes propagate independently. When coupling terms are neglected, each of the 
equations (34) can be written 

f;+ilcoqdi ~ O. (42) 

Thus, the WKB solutions for the fields are 

fi ~ exp( -ilco f ql dz), (43) 

where the lower limit has been left unspecified. These results are very similar to those 
given by Budden (1961, Ch. 18) in a different problem. 

Suppose that only the ith field is present. This field will propagate independently 
of the others to within the accuracy of the WKB method. WKB expressions for 
the components of e can be obtained by substituting equation (43) and f, = 0 for 
j *- i into equations (36). The vector e is now equal to 8(1) fl> so the WKB approxi-
mation is 

(44) 

Suppose that the medium is loss-free, so that the ql are real or purely imaginary, 
and consider equation (41) for Pz• It is seen that, when the WKB expression for a 
particular fl is used, Pz is independent of z for ql real, while Pz = 0 for ql purely 
imaginary; that is, the power flow in the z direction is independent of z for propagating 
waves and is zero for evanescent disturbances. 

In the incompressible magnetoplasma problem, Budden (1961, Ch. 19) has 
described the use of a method of successive approximations in treating first-order 
equations. The method can easily be applied to the present equations, as will now 
be shown. The positive and negative z directions will now be referred to as the 
upward and downward directions. Suppose that there exists a coupling region 
above and below which the WKB approximations are applicable. The WKB 
solutions for fl and fa are taken to represent upward travelling waves. An upward 
travelling electromagnetic wave enters the coupling region. Thus the zero-order 
approximation is taken to be 

f2 =f3 =f4 = O. (45) 

This expression is substituted into the right-hand sides of equations (34). The 
first equation, containing fI> is unaffected; the others become 

f~+ilcoqd2 = (a'/2a)exp( -ilco J: ql az), 

f~+ilcoqafa = -!b'(ac)-lexp( -ilco J: ql az), (46) 

and 
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These equations are easily solved to give 

f2 ~ exp( -iko f~ q2 dz) X f: (a'/2a)exp(iko f~ (q2-ql) dz) dz, 

f3 ~ exp( -iko f~ q3 dz) X f: -lb'(ac)-i exp(iko f~ (q3-ql) dz) dz, (47) 

and f, ~ exp( -iko f~ q, dz) X t ib'(ac)-texp(iko f~ (q,-ql) dz) dz. 
The limits a, fJ, and y must be chosen to satisfy the conditions above and below 
the coupling region. Thus there should be no downward travelling waves above 
the coupling region (f2 = 0 = f, there) and no upward travelling electron acoustic 
wave below that region (fa = 0 there). Hence a and y can be taken to be anywhere 
above the coupling region and fJ anywhere below. 

Equations (47) give, to a first approximation, the fields generated by the incident 
wave fl' In particular, below the coupling region fa represents the reflected electro­
magnetic wave. Also, the coupling process has generated transmitted and reflected 
electron acoustic waves, given by f3 above the coupling region and by f4 below it 
respectively. Other results can be obtained by taking an electron acoustic wave 
incident on the coupling region. It is seen that the approximate methods discussed 
in this section correspond very closely to those used by Budden (1961, Chs.lS and 19) 
in a different problem. 

VIII. CONCLUDING REMARKS 

The purpose ofthis paper has been, essentially, to apply the methods introduced 
by Clemmow and Heading (1954) to a problem that differs from the one considered 
by those authors. Both their paper and the present one concern propagation in 
stratified plasmas. The difference is that the work of Clemmow and Heading (1954) 
allowed for the effect of a magnetostatic field but not for the compressibility, while 
the reverse holds for the present paper. 

The problem of allowing for both a magnetostatic field and compressibility 
forms a suitable topic for further investigation. Also, the presence of an electro­
static or gravitational field would give a non-zero gradient to the static pressure. 
The effect of such a gradient is another topic for future study. 
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