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Summary 

The higher-order term in the static dielectric constant of an ionic crystal, 
which is proportional to the square of the applied field, is calculated using a rigid ion 
model. An explicit expression is obtained for this term, involving anharmonic 
coefficients, and is evaluated for NaCI. 

1. INTRODUCTION 

It has been observed experimentally by Herweg (1920) and MaIsch (1928) that 
the static dielectric constant of many polar substances decreases as the strength of 
the applied field increases. This phenomenon is known as dielectric saturation. We 
can in general expand the dielectric constant as a power series in the applied field E, 
thus, 

ES = EO + El E +E2 E2 + .•. , (1.1) 

where EO is the usual, field-independent, static dielectric constant and El, E2 are small 
coefficients which depend on the structure of the substance involved. 

For crystals with a centre of symmetry (e.g. ionic crystals ofthe N aCI structure) 
the term in (1.1) that is linear in E vanishes, because the dielectric constant must be 
invariant towards reversal of the direction of E. 

The problem of the field dependence of the static dielectric constant has been 
treated classically by O'Dwyer (1951), who obtained a general expression involving 
the mean square and mean fourth dipole moment of a macroscopic sphere in the 
absence of a field. 

Another classical calculation has been made by Ninio (1962), who obtained an 
expression in terms of constants directly related to the anharmonicity. Ninio used a 
one-dimensional model with nearest-neighbour interactions only, and so his result 
would not be expected to be quantitatively accurate for a real three-dimensional 
ionic crystal in which long-range Coulomb interactions are present. 

In the present paper a quantum-mechanical calculation of the field-dependent 
dielectric constant is carried out using the theory of lattice dynamics developed by 
Born and von Karman (cf. Born and Huang 1954; Cochran 1963). A three­
dimensional model is used, and the long-range Coulomb interactions are taken into 
account. The only significant simplification is the representation of the ions by point 
charges. A better approximation would be obtained by taking account of the 
deformability of the ions by using a shell model (cf. Woods, Cochran, and Brockhouse 
1960). It is hoped to present such a calculation in the future. 
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If a harmonic crystal is subjected to an electric field the polarization produced 
is proportional to the field, giving a field-independent dielectric constant. Thus a 
harmonic crystal exhibits no saturation effect. The phenomenon of dielectric satura­
tion in a crystal is, therefore, due to the presence of anharmonic terms in the 
potential energy. 

II. THE HAMILTONIAN OF THE MODEL 

The Hamiltonian of the vibrating lattice, in the absence of an external electric 
field, can be written 

H = Ho+H3+H4 + . .. , (2.1) 

where Ho is the harmonic Hamiltonian, given by 

Ho = i- ~ (1jm,J{p",(lK)}2 + <Do + i- ~ <D "'/l(lK, l' K') U",(lK) u/l(l' K'), (2.2) 
l,ax lKIX 

l'K'/l 

and H3 and H4 are respectively the cubic and quartic anharmonic terms, given by 

H3 = 3; ~ <D "'/ly(lK, l' K', l" K") U",(lK) u/l(l' K') uy(l" K"), 
• lKtX 

I'K'/l 

1 
H4 = 4i 

Z"K"y 

~ <D ",/lyS(lK, l' K', l" K", l'" K''') U,,(lK) u/l(l' K') uy(l" K") us(l''' K"'). 
IK'" 

I'K'/l 
I"K"y 

l'IlK'''3 

(2.3) 

(2.4) 

In the expressions (2.2), (2.3), and (2.4), U",(lK) is the IX component ofthe displacement 
from equilibrium of the Kth atom in the lth unit cell, and p",(lK) is the corresponding 
component of momentum. These are operators obey:ing the usual commutation rules 

[U",(lK),U/l(l'K')]- = 0, 1. 
[Pa.(lK)'P/l(l' K')]_ = 0, S 
[U",(lK)'P/l(l' K')]_ = in o",/l0ll' 0KK" 

(2.5) 

We have, in general, N unit cells in the crystal and n atoms per cell, so that 

l = 1,2, ... , N K 1,2, ... , n 

mK is the mass of an atom of type K, <Do is the potential energy of the static lattice, 
and the <D coefficients are derivatives of the potential energy evaluated at the 
equilibrium positions of the atoms (at absolute zero and in the absence of zero-point 
energy). 

It is known (e.g. Leibfried and Ludwig 1961) that it is insufficient to take account 
of the cubic anharmonic term alone in (2.1), because the quartic term gives contribu­
tions to the free energy of the same order of magnitude. However, higher-order terms 
can be consistently neglected. 

In general, the successive force constants <D ",/l' <D a./ly' etc. are related to each other, 
as regards order of magnitude, by 

<D ",/l '" ro <D a./ly '" r~ <D ",/ly8' 
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where ro is the lattice parameter. Thus, we can write the Hamiltonian (2.1) 
symbolically as 

H = HO+1Jl3 +A2H4, (2.6) 

where A is an order parameter which indicates the number of factors of r~l contained 
in H3 and H4 relative to Ho. It can be set equal to unity at the end of the calculation. 

In the presence of an external static field E in the x direction the Hamiltonian is 

H(E) =H-EM, 

where M is the x component of the dipole moment of the crystal, given by 

M = e ~ ZKux(lK), 
IK 

eZ K being the charge on an ion of type K. 

(2.7) 

(2.8) 

It is convenient to introduce normal coordinates according to the definitions 

Ua;(lK) = (NmJ-t ~ ea;(Klqj)Q(qj)exp{27Tiq·r(lK)}, ") 
q} l 

Pa;(lK) = (mjN)i ~ e:(Klqj) P(qj) exp{ -27Tiq 'r(lK)}'Jr 
q} 

(2.9) 

where ea;(Klqj) is the (<XK) component of an eigenvector of the dynamical matrix, j 
labels the branches of the frequency spectrum, and the N allowed q values are 
uniformly distributed throughout the first Brillouin zone; r(lK) is the equilibrium 
position of atom (lK). 

Because UJlK) and Pa;(lK) are Hermitian we impose the restrictions 

ea;(KI-qj) = e:(Klqj), Q( -qj) = Q*(qj), P( -qj) = P*(qj), 

where * represents the Hermitian oonjugate. 

The operators obey the usual commutation rule 

[Q(qj), P(q'j')]- = iii L1(q -q') Ojf', 

where 

L1( ) _ {1 if q is a reciprocal lattice vector (including 0), 
q - 0 otherwise. 

Carrying out the transformation gives for the terms in (2.1) 

(2.10) 

(2.11) 

Ho = t ~ {P*(qj) P(qj) + W2(qj) Q*(qj) Q(qj)}, (2.12) 
qj 

H3 = tN-! ~ L1(ql+q2+q3) <l>(qljl;qzj2;q3j3) Q(qdl)Q(qzj2) Q(qd3), (2.13) 
~11':fI3 

H4 = n N-l ~ L1(ql +q2 +q3 +q4) <l>(qdl; qzj2; q3 j3; q4 j4) 
ql q2 Q2q, 
jd,j,j, 

x Q(qdl) Q( qzj2) Q(q3 h) Q(q4j4), (2.14) 



14 J. OITMAA 

where the <I> coefficients are given by 

<I>(qd1;qd2; ... ;qsjs) = <I> {OK l' K' lISIKISI} . (S) I .) "" ,,/3 ... '1 , , ••• , H e,,(Klq1 J1) ... ey(K qs Js 
~ {ml(ml("" ml«S) 

1(" 
1'1('/3 

1(8)1(18)'1 

X exp27Ti[q1'r(OK) + ... +qs·r{l(S)K(S)}]. (2.15) 

The perturbation due to the external field becomes 

HE = -eE l: ZI( UX(lK) 
II( 

= -EO(Q(04), (2.16) 

where Q(04) is the normal coordinate of that particular optical mode with zero wave 
vector which has polarization in the x direction, and 

0( = eN! 2: Zl(ex (KI04) 
mi-

l( I( 

(2.17) 

Note that for q = 0 there can be no distinction between longitudinal and transverse 
optic modes, which all vibrate with the characteristic infrared dispersion frequency 
woo However, for small q, such that the wavelength is large compared with the 
lattice distance but smaller than the dimensions of the crystal, there is a characteristic 
longitudinal branch with frequencies different from the two transverse branches. 
Much discussion has taken place recently on this point (Barron 1961; Rosenstock 
1961; Fuchs and Kliewer 1965). 

Thus, we have for the total Hamiltonian of the crystal in the presence of the 
perturbing field 

H = HO+AH3+A2H4 +HE, 

where the various terms are given by (2.12), (2.13), (2.14), and (2.16). 

III. THE ANHARMONIC FREE ENERGY 

The static dielectric constant is given by 

47TME 
£8-1 = EV ' 

(2.18) 

(3.1) 

where V is the volume of the crystal and ME is the mean dipole moment of the crystal 
while the field E is acting, given by 

- (BF) ME = - BE . 
V.T 

The free energy F is given by 

F = - (ljfi)lnZ, 

where fi = IjkT, and the partition function Z is given by 

Z = Tr{e-/3H}. 

(3.2) 

(3.3) 

(3.4) 
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Therefore, to calculate €s up to the term proportional to E2, we must expand 
Z and F up to order E4. Thus we require to express Z as a power series in E. This 
can be done by perturbation theory. 

The most obvious procedure would be to take Ho as the unperturbed Hamilton· 
ian and the remaining terms as a small perturbation. However, it is more convenient, 
following Szigeti (1959), to take Ho+HE as the unperturbed Hamiltonian and the 
anharmonic terms as a small perturbation. 

In the Hamiltonian Ho-EIXQ(04) the only effect of E is to shift the equilibrium 
position of Q(04) to IXE/w~ and to change each of its energy levels by -1X2E2/2w~ 
while the frequency Wo remains unaltered. None of the other Q's is affected by E. 

Hence, we transform to new operators, defined by 

P(qj) = P(qj), } 
Q(qj) = Q(qj) (qj) # (04), 
- 2 Q(04) = Q(04)-EIX/WO' 

(3.5) 

Note that these operators are still canonically conjugate. We then obtain for the 
unperturbed Hamiltonian 

H(O) = Ho+HE 

= i ~ {P*(qj)P(qj) + w2(qj)Q*(qj)Q(qj)} - ~E21X2/w~. (3.6) 
qj 

This Hamiltonian has eigen-energies 

E~O) = ~ nw(qj){n(qj)+i} - ~E21X2/w~, 
qj 

(3.7) 

where the n(qj) are integers greater than or equal to zero. Thus, we have for the total 
Hamiltonian 

H = H(O)+ills+A2H4 , (3.8) 

and we have to transform Hs and H4 into the new coordinates. The result obtained 
for Hs is 

H - H(O) +EH(1) +E2H(2) +ESH(S) 
3- 3 3 3 3' (3.9) 

where 

H~O) = tN-t ~ ~(ql+q2+q3)<l>(qdl;qd2;qSjS)Q(qdl)Q(q2j2)Q(q3j3), (3.10) 
qlQllqa 
jlizja 

H~l) = + ~N-t(lX/w~) ~ <l>(qjl; -qj2; 04) Q(qjl) Q( -qj2), 
qj.j, 

H~2) = tN-i(1X2/w~) ~ <l>(Oj; 04; 04) Q(Oj), 
j 

H~S) = + tN-t(lXs/wg) <l>(04; 04; 04), 

and the summations over modes include the mode (0,4). 

(3.11) 

(3.12) 

(3.13) 
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The quartic anharmonic term can be transformed similarly, giving 

H4 = H~Ol +EH~I) +E2H~2) +E3H~3) +E4H~4), 
where 

H~O) = -kN-l ~ ~(ql+q2+q3+q4)<I>(qljl;qd2;qaj3;q4j4) 
Q1QIlQaq, 
i,j,i.i. 

x Q(qdl) Q(q2 h) Q(qaj3) Q(q4j4), 

H~ll = +!N-l(a:jw~) ~ ~(ql+q2+q3)<I>(qdl;qd2;qaj3;04) 
q''!'!I' 
:113.3. 

x Q(qdl) Q(q2 h) Q(q3j3), 

H~2) = iN-l(a:2jw~) ~ <I>(qjl; -qj2;04;04)Q(qjl)Q(-qj2), 
qj,j, 

H~3) = +!N-l(a:3jwg) ~ <I>(Oj; 04; 04) Q(Oj) , 

H~4) = -kN-l(a:4jwg) <1>(04;04;04;04). 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Thus, we have to evaluate the partition function (3.4) for the Hamiltonian 
(3.8). The exponential operator in (3.4) can be expanded in the usual way by 
forming an integral equation and solving by iteration to yield 

exp( -(3H) = exp[ -(3{H(O)+.ill3+,\2H4}] 

= exp{ -(3H(O)} [ 1- (3 f: dsl exp{81 (3H(O)} (.ill3+,\2H4) exp{ -81 (3H(O)} 

fl fill + (32 0 d81 0 ds2 exp{81 (3H(O)} 

+ ... l 
X (.ill3+,\2H4) exp{ -(81-82)(3H(O)} 

X (.ill 3 +,\2 H4) exp{ -82 (3H(O)} 

(3.20) 

Using (3.20) the partition function (3.4) becomes 

Z = ZO+AZI +,\2Z2+ ... , (3.21) 

where 

Zo = Tr[ exp{ -(3H(O)}] , (3.22) 

ZI = - (3Tr[ exp{ -(3H(O)} f:dsl exp{81(3H(O)}H3exP{ -81 (3H(O)}] , (3.23) 

Z2 = - (3 Tr[eXP{ -(3H(O)} f: dsl exp{81(3H(O)}H4exp{ -81 (3H(O)} ] 

+ (32 Tr [exP{ -(3H(O)} f~ dsl f: 1 ds2 exp{81 (3H(O)} H 3 exp{ -(81 -82)(3H(O)} 

X H3exP{ -82 (3H(O)}] . (3.24) 
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Note that, since the Hamiltonian (3.8) was taken only as far as ,\2, Z can be expanded 
only to the same order. 

The above expressions can be simplified using the cyclic theorem for traces and 
changing the order of integration in Z2 (cf. Maradudin, Flinn, and Coldwell-Horsfall 
1961), to yield 

Zo = ~ exp{ -(3E~O}}, (3.25) 
n 

Zl = - (3 ~ exp{ -(3E~O}} <nIH3In), (3.26) 
n 

(O) (0) <nIH3]m) <mIH3In) 
Z2 = -(3 ~ exp{ -(3En } <nIH4In ) +(3 ~~ exp{ -(3E n } E(~/ -E(~} 

+i(32 ~ exp{ -(3E~O}}<nIH3In) <nIH3In), (3.27) 
n 

where the E~O) are given by (3.7) and the In) are the eigenstates of the unperturbed 
Hamiltonian H(O}. Substituting from (3.9) and (3.14) into (3.26) and (3.27) and 
using the fact that H~O}, H~2), H~l}, and H~3} have no diagonal matrix elements gives 

Zl = EZil}+E3Zi3} (3.28) 

and 

Z - Z(O}+E2Z(2} +E4Z(4}+E6Z(6} 
2- 2 2 2 2' (3.29) 

where 

Zill = -(3 ~ exp{-(3E~O}}<nIH~llln), 
n 

(3.30) 

Zi3} = -(3 ~ exp{ -(3E~O}} <nIH~3) In), 
n 

(3.31 ) 

Z~O} = -(3 ~ exp{-(3E~O)}<nIH~O)ln)+(3~' exp{-(3E(O)} <nJl1~O)lm)<mIH~O)ln) 
n n,m n E(O} _E(O} , 

m n 
(3.32) 

Z~2} = - (3 ~ exp{ -(3E~O}} <nIH~2) In) 
n 

+(3~' exp{-(3E(O)} <nIH~l}lm)<mIH~l}ln) 
n,m n E(O} _ E(O} 

m n 

+ i(32 ~ exp{ -(3E~O}} <nIH~l) In) <nIH~l} In) 
n 

+(3~' exp{_(3E~o}}<nIH~O}lm)<mIH~2}ln) 
n,m E(O} _ E(O} 

m n 

+ (3 ~'exp{ _(3E(o}}<nIH~2}lm) <mIH~2}ln> 
n,m n E(O) _E(O} , 

m n 
(3.33) 
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Z~4) = -f3 ~ exp{-f3E~O)}<nlH~4)[n> 
n 

+ f3 ~' exp{-f3E (O)} <nIH~2)[m> <m[H~2)[n> 
n,m n E(O) _E(O' 

m n 

+ f32 ~ exp{ -f3E~O)} <n[H~l)[n> <n[H~3)[n>, (3.34) 
n 

Z~6) = if32 ~ exp{-f3E~O)}<n[H~3)[n><nIH~3)[n>. (3.35) 
n 

Using (3.21), (3.28), and (3.29) it is then possible to express the free energy 
(3.3) up to 0(,\2) as a power series in E. However, for centro-symmetrical crystals 
several simplifications are possible. It can be shown that for such a crystal the 
coefficients <1>(Oj; 04; 04) and <1>(04; 04; 04) vanish (see Appendix C). Thus H~2) and 
H~3) are identically zero. From energy considerations (the free energy must be an 
even function of E) it can be seen that the diagonal elements of H~l) must vanish. 
Thus from (3.28), (3.30), and (3.31) we have that Zl = 0, and the partition function 
can be written as 

Z = Zo +,\2Z2, (3.36) 

where 
Z - Z(O) +E2Z(2) +E4z(4) 

2 - 2 2 2 (3.37) 

and where 

Z~O) = _ f3 ~ exp{ -f3E~O)}<n[H~O)[n> + f3 ~' exp{-f3E (O)} <n[H~O)lm> <mIH~O)[n> 
n,m n E(O) _ E(O) , 

m n 
(3.38) 

Z~2) = _ f3~ exp{-,8E~O)}<nIH~2)[n> +,8 ~' exp{-,8E(O)} <n[H~l)[m><m[H~l)ln> 
n n,m n E(O) - E(O) , 

Z~4) = -,8 ~ exp{-,8E~O)}<n[H~4)[n>. 
n 

From (3.3) and (3.36) the free energy is given by 

I 
F = - -In(Zo+,\2Z2) 

f3 

,\2 Z2 I __ 
= -~InZo - ,8 Zo 

, 

= _ ~ In Z - ~{Z(O) +E2Z(2) +E4Z(4)} 
,8 0 ,8Zo 2 2 2' 

Using the results (3.25) and (3.7) gives 

m n 

Zo = exp(i,8E2()(2/w~) L exp [ -,8 ~ nw(qj){n(qj)+i} J, 
n 

(3.39) 

(3.40) 

(3.41) 
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1 E 2cx2 1 ("'" [ , ]) - ~lnZo = - 2w~ - ~ In ~ exp - (3 ~ nw(qj){n(qj)+H 
n 

E 2cx2 

- 2w2 +Fo, 
o 

19 

where Fo is the free energy of a harmonic crystal in the absence of an external field. 
Thus, the free energy is given by 

E 2cx2 ,\2 
F = F - -- - _{Z<O)+E2Z(2)+E4z(4)} 

o 2w~ (3Zo 2 2 2' 
(3.42) 

This is the result for the free energy of an anharmonic crystal in the presence of an 
external electric field. It is an even function of E, as expected for a centro­
symmetrical crystal. The first term represents the free energy of a harmonic crystal 
in the absence of an external field, and the second term is the change in this due to 
the field. The remaining terms represent contributions to the free energy from the 
anharmonic terms in the potential energy. The term _,\2Z~O) /(3Zo is the usual correc­
tion to the free energy in the absence of a field, arising from cubic and quartic 
anharmonic terms (cf. Maradudin, Flinn, and Coldwell-Horsfall 1961), while the 
remaining two anharmonic terms appear only as a result of the external field. 

IV. THE DIELECTRIC CONSTANT 

The mean dipole moment of the crystal is given by (3.2) and (3.42) as 

2 ,\2 
M- = ~E + -"--f2EZ(2)+4E3Z(4)} (41) 

E 2 (3~ 2 2' . Wo 0 

and from (3.1) the static dielectric constant is given by 

4rr{ cx2 2,\2Z~2) 4,\2Z~4) } 
Es-l =-V 2 + __ + __ E2, 

Wo (3Zo (3Zo 
so that 

47TCX2 87TZ( 2) 167TZ (4 ) 
Es = 1 + -2 - + ,\2 __ 2_ + ,\2 2 E2. 

Wo V (3Zo V (3Zo V 
(4.2) 

Hence, we see that for a harmonic crystal the dielectric constant is (putting ,\ = 0) 

47TCX2 

h=l +~V' Es Wo (4.3) 

which is independent of the field. Thus, a harmonic crystal shows no dielectric 
saturation effects. 

The third term in (4.2) represents the contribution from the anharmonic terms 
to the field-independent dielectric constant. This term has been calculated by 
Szigeti (1959) using a slightly different approach, and it can explain the observed 
temperature dependence of the ordinary field-independent dielectric constant. 
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The last term in (4.2) represents the saturation term. Comparing (4.2) with the 
phenomenological expansion (1.1) gives for the coefficient E2 

1617 Z~4) 
E2 =---. 

[3V Zo 
(4.4) 

Use of (3.40) and (3.19) gives 

1 ()(4 
Z(4) = - [3 " exp{-[3E(O)} - - <1>(04·04·04·04) 

2 ~ n 24N w~ ", 

_ [3 ()(4 
- - 24N wg <1>(04; 04; 04; 04) Zo, 

so that, from (4.4), 

217 ()(4 
E2 = -- 3NV s <1>(04;04;04·04) wo ' ... (4.5) 

This expression is independent of the temperature and in this regard agrees with the 
result obtained by Ninio (1962). Ninio's result contains also a contribution propor­
tional to the square of the cubic anharmonic coefficient. In the present more realistic 
model this contribution vanishes. 

v. EVALUATION FOR NaCl STRUCTURE 

The general expression (4.5) can be simplified for crystals ofthe NaCI structure. 
For this case (2.16) gives 

()( = eNi{ex(l~4) _ ex(21~4)}, 
mi m2 

and use of the results for ex(1104) and ex(2I04) from Appendix A gives finally 

()( = eNt(~ + ..!.)t. 
ml m2 

Using this and the result for <1>(04; 04; 04; 04) from Appendix C gives 

- - ~e4N2{(1/ml)8+(1/m2)}2 2( M +2N) (~l + ~2r 
E2 - 3N2v wo 

417e4(M +2N){(1/ml) +(1/m2)}4 

3vwg 
where v is the volume of a unit cell. 

(5.1) 

(5.2) 

The infrared dispersion frequency wo for this model is given by (Kellermann 
1940) 

2 e2
( 417)(1 1) wo = - A+2B-- .- + - . 

v 3 ml m2 
(5.3) 
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A and B are defined in terms of the derivatives of the short-range repulsive potential 
as follows: 

[ d2cP(r)] = e2A; 
dr2 r=ro 2v ~[d:~)],=ro 

For a Born-Mayer potential cP(r) = De-riP, this becomes 

D e2A ") 
- exp(-ro/p) = -, } p2 2v 

D e2B 
- - exp(-ro/p) =-. 

rop 2v 

e2B 

2v 

(5.4) 

The expression (5.2) can then be evaluated numerically for NaOI using the following 
data (Born and Huang 1954): 

This gives 

ro = 2·814xlO-8 cm; 

p = 0·328 X 10-8 cm; 

Dexp( -ro/p) = 2·78 X 10-13 erg. 

v = 2rg = 4·456 X 10-23 cm3 ; e = 4·803 X 10-10 e.s.u.; e2/v = 5·170X103 ; 

A = 10·04; B = -1·172; A+2B-47T/3 = 3·505; 

l/m1+1/m2 =4·31Xl022 g-1. 

These values give for wo, from (5.3), 

wo = 2·792 X 1013 sec-I. 

Kellermann (1940) obtained a value of 2·86 X 1013 sec-1 by using an inverse power 
potential. 

Also, from the definitions (09) and (010) we obtain 

M = 24 ·17 X 1020 erg cm -4 ; 

N = 1·094 X 1020 erg cm-4 ; 

M +2N = 26·36 X 1020 erg cm-4. 

Substitution of these values into (5.2) gives 

€2 = -1·23xlO-10 (OGS). (5.5) 

The coefficient of E2 in the expansion of the dielectric constant (1.1) has the value 
-1· 23 X 10-10 (OGS). Thus, an applied field of say 1000 e.s.u./cm (3 X 105 V/cm) 
causes a decrease in the static dielectric constant of 1· 2 X 10-4, so that 

~€s '" 2 X 10-5. 
€s 

This compares with Ninio's result of 19 X 10-5• 
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APPENDIX A 

Eigenvectors of the Dynamical Matrix for Alkali Halides 

For alkali halides the elements of the 6 X 6 dynamical matrix are given by 

1 
D,,{3(KK',q) = t ~ <P,,{3(OK,lK')exp[21Tiq'{r(lK')-r(OK)}], 

(ml<ml<') I 
(AI) 

with (J(,(3 = x,y,z; K = 1,2. The components of the eigenvectors are given by the set 
of equations 

w2(qj)e,,(K\qj) = ~ D,,{3(KK',q)e{3(K'\qj), 
1<'{3 

(A2) 

with j = 1,2, ... , 6 labelling the various branches. 

The eigenvectors satisfy the following orthogonality and completeness relations: 

~ e,,(K\qj) e,,(K\qj') = Oji'> (A3) 
"I< 

~ e,,(K\qj) e{3(K'\qj) = 0,,{301<1<" (A4) 
J 

Consider the case when q is in a symmetry direction, in particular along (100). 
Then, for a longitudinal mode, 

ey(K\qj) = eZ(Klqj) = 0, 

and (A2) reduces to 

Dxx(ll, q) ex(llqj) + Dxx{12, q) ex(2\qj) = w2(qj) ex(llqj),} 
Dxx(l2, q) ex(llqj) + Dxx(22, q) ex(2Iqj) = w2(qj) ex(2\qj). 

(A5) 
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These results hold for 

This gives the result 

. _ J 1 longitudinal acoustic mode, 
J - L 4 longitudinal optic mode. 

W2(qj) - Dxx(22, q) ex(2Iqj). 
ex(llqj) = Dxx(12, q) 

The relations (A3) and (A4) give 

ex(llql)2 +ex(2Iql)2 = 1; ) 

ex(llq4)2 + ex(2Iq4)2 = 1; 

ex(llql) ex(llq4) + ex(2Iql) ex(2Iq4) = 0; 

ex(llql)2+ex(llq4)2 = 1; 

e x(llql)ex(2Iql) +ex(llq4)ex(2Iq4) = O. J 
From (A7) we can write 

where 

ey(llql) = sinO(q, 
ey(llq4) = cos O(q, 

ey(2lq 1) = cos O(q, 

ey(2Iq4) = - sin O(q, 

ex(llql) 
tanO(q = ex(2Iql) 

Dxx(12, q) 

= w2(ql) - Dxx(ll, q)' 

} 
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(A6) 

(A7) 

(AS) 

(A9) 

Similarly, for a transverse mode with polarization in the y direction, labelled by 

we can write 

where 

. _ {2 transverse acoustic mode, 
J - 5 transverse optic mode, 

€y(llq2) = sin f1q, '1 
€y(llq5) = cos f1q, 

€y(2Iq2) = cos ~q, J 
€y(2Iq5) = - smf1q, 

Dyy(12,q) 
tanf1q = ) 

w2(q2) -Dyy(ll,q 

For q = 0 we have, from (A9) and (AI), 

tan 0(0 = (ml m2)-t ~l <I>xx(Ol, 12) 
- m1 1 ~l <I>xx(OI, ll) , 

since the frequency approaches zero as q -+ 0 for an acoustic mode, 

(AlO) 

(All) 
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From the fact that the potential energy must remain invariant for an infini­
tesimal translation it can be shown (Leibfried and Ludwig 1961) that 

~ <Pxx(01, lK) = O. 
IK 

Using this fact gives 

tanoco = (ml/m2)t. (A12) 

Thus, we have the following result for the eigenvectors for q = 0 (which are the 
same for longitudinal and transverse modes): 

( 
ml )t 

ex(lj01)=-ex(2j04)= ml+m2 ' 

( mz )t 
ex(lj04) = ex(2j01) = ml +m2 . } (A13) 

ApPENDIX B 

Anharmonic Force Constants in Alkali Halides 

Several approximations will be made in calculating the third- and fourth-order 
force constants that appear in the expansion of the potential energy (2.1). 

First, the anharmonicity of the Coulomb forces is neglected. Whereas the 
electrostatic forces behave like 1/1'3, the short-range forces behave more like 1/1'11 
and will dominate the anharmonic effects. 

Secondly, we assume two-body interactions only, so that the total potential 
energy is the sum of two-body potential energies. We can then assume a specific form 
for the nearest-neighbour repulsive potential. A Born~Mayer potential 

4>(1') = De-riP (Bl) 

is used. To evaluate the force constants it is necessary to label the nearest atoms. 
The labelling adopted is given in Figure 1. Because the potential energy is the sum of 
two-body interactions, coupling constants of the form <P <x/ly(lK, l' K', l" K") are zero 
for (lK) =1= (l'K') =1= (l"K"), and similarly for the fourth-order constants. 

Using the definition and also the invariance relations 

~ <P <x/3y(lK, l' K', l" K") = 0, "I 
1" " J 

" it-. K(l l' I l" " l"l III) - 0 ~ '¥tX{jy8 K, K, K, K -, 
l"'K'" 

we obtain the results 

D 
<Pxxx(01,12,12) = -exp(-rolp) 

p3 

= - <Pxxx(01, 01,12), etc., 

D 
<P xxz(01,01,02) = -2(ro+p)exp(-rolp)· 

p2ro 

(B2) 

(B3) 

(B4) 
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(71) ______ _ 
(Y----- ... 

.... ....... 
0(81) 

(32) 

... 
, , ... 

z 

.... 
, ... " ....... 

... .0(61) 

(~)--- - ------0(51) 

y 

(-12) 0 Positive ion 

o Negative ion 

x 

Fig. I.-Labelling of nearest-neighbour atoms for calculation of anharmonic 
force constants. 
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All third-order constants of other form vanish. Similarly, for the fourth-order 
constants we obtain 

D 
<1>xxxx(Ol; Ol ; 12; 12) = - exp( -ro/p) , (B5) 

p4 

3D 
<1>xxxx(Ol; Ol; 02; 02) = -3- (ro+p) exp( -ro/p) , (B6) 

ro p2 

<1>xxxx(Ol ; 01 ; 01 ; 01) = 2<1>xxxx(01 ; 01 ; 12; 12) +4<1>xxxx(01 ; 01 ; 02; 02), (B7) 

D 2 
<1>xxzz(01;01;02;02) = -aa(ro+rop+p2)exp(-ro/p), (BS) 

rop 

D 
<1>xxyy(Ol; 01; 02; 02) = -3- (ro+p) exp( -ro/p), (B9) 

rop2 

<1>xxyy(Ol ; 01 ; 01 ; 01) = 2<1>xxyy(01 ; 01 ; 02; 02) +4<1>xxyy(01; 01 ; 12; 12). (BlO) 

All fourth-order constants of different form are zero. 
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APPENDIX 0 

Evaluation of the Ooefficients <1>(04;04 ;04), <1>(05 ;04 ;04), and <1>(04 ;04 ;04 ;04) 

From the definition (2.14) we have 

if> • • • L <I>,..sy(OK, l'K', l"K") (I .) ('I .. ) ("1 .) 'I!(q1J1; q2J2; q3J3) = ( \. e,. K q1 J1 e.s K q2 J2 ey K q3 J3 
m"ml(,ml(" 

KO< 

l'K'.s 
l"K"y 

x exp[21Ti{ql·r(OK) +q2·r(l'K') +q3·r(l"K")}]. (01) 

Thus, we have 

"" <l>zZZ(OK, l' K', l" K") 
<1>(04; 04; 04) = ~ l. ez(KI04) ez(K'104) ez(K"104), 

(mKmK, mK") 

since, for the mode (04), 

K 

1'1(' 
1"1(" 

ey(KI04) = ez(KI04) = O. 

(02) 

From the results of Appendix B the only force constants contributing to 
(02) are 

<l>zzz(OI, 01,12), <l>zzz(OI, 12, 12), <l>zzz( 01,12,01); 

<l>zzz(OI, 01, 32), <l>zzz(OI, 32, 01), <l>zzz(OI, 32, 32); 

<l>zzz(02, 02, 51), <l>zzz(02, 51, 02), <l>zzz(02, 51, 51); 

<l>zzz(02,02,71), <l>zzz(02, 71, 02), <l>zzz(02, 71, 71). 

By writing out the expression (02) explicitly it can be seen that all the terms cancel, 
giving 

<1>(04; 04; 04) = O. 

Similarly, from (01) we have 

L <l>yzz(OK, l' K', l" K") 
<1>(05; 04; 04) = )l. ey(KI05) ez(K'104) ez(K"104), 

(ml(m",ml(" 
K 

1'1(' 
l"1C" 

(03) 

(04) 

where (05) refers to the q = 0 optic mode with polarization in the y direction. It can 
be shown, by writing out explicitly the various terms, using (B4), that 

<1>(05;04;04) = o. (05) 

These two results (03) and (05) lead to the vanishing of the operators H~2) and H~3) 
in (3.9). 
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From the definition (2.14) we have for the general quartic coefficient 

<1>( qdl; q2j2; q3j3 ; q4j4) 
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'" <I>"fjya(OK,l'K',l"K",l"'K"') . ,. ". ",. 
~ (_ ~ ~ _ ,! e,,(KlqlJl) ep(K Iq2J2) ey(K Iq3J3) ea(K Iq4J4) 

"" l',,'P 
1',,''1' 

l'''K'''8 

x exp[21Ti{ql 'r(OK) + q2 'r(l' K') + q3 'r(l" K") + q4 'r(l'" K"')}]. (06) 

From this we obtain 

<1>(04; 04; 04; 04) = 
.n (0 l" l" " l'" II') '" ""xzzz K, K, K, K 

~ (mlCmlC,ml("mlC'I')* 
" I'K' 

l"IC" 
l'"K''' 

X eZ(KI04) ez(K' 104) eZ(K" 104) ez(K'" 104). (07) 

The nonvanishing terms in the summation can be written out explicitly, using the 
results (B5), (B6), and (B7), to give 

where 

<1>(04; 04; 04; 04) = 12(M +2N) {ex(1104)}2{ ez(2104)}2 
mlmZ 

+ 2( M +2N) eez(~~4)}4 + {ex(21~4)}4] 
1 m2 

_ s( M +2N) {ez(1104)}3 ez(2I04) 
ml(ml m2)t 

_ s( M +2N) ez(1104){ez(2104)}3 
m2(ml m2)* 

= 2( M +2N) {ez(11~4) _ ez(2 I04»)4 
m1 m?s' 

? 

D 
M = -exp(-ro/p), 

p4 

3D 
N =-3- (ro+p)exp(-ro/p). 

rop2 

Using the results from Appendix A for ez(lI04) and ex(2104) gives 

<1>(04;04;04;04) = 2( M +2N) (~1 + :~r· 

(OS) 

(09) 

(010) 

(OU) 
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