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Summary

The theory of the corepresentations of non-unitary groups, which was
developed by Wigner, is applied here to the determination of the double-valued
corepresentations of the magnetic point groups. Complete tables are given for the
double-valued corepresentations of each of the 58 magnetic point groups. A
comparison is made with previous work by Dimmock and Wheeler.

I. INTRODUCTION

The idea of a “double’” point group or of double-valued representations of the
point groups seems to have originated with Bethe (1929) and to have been more
carefully defined by Opechowski (1940). The importance of double groups in
describing the behaviour of a system with half-odd-integer spin and particularly with
regard to spin-orbit coupling in crystals was emphasized by Elliott (1954). Since
the magnetic point groups derived by Tavger and Zaitsev (1956) have now been seen
to be relevant to the description of the symmetry of many real crystals it is necessary
and desirable to derive the corepresentations of these groups. Half the elements of
each of these magnetic groups do not contain the operation of time inversion and are
unitary elements; the other half of the elements do contain the operation of time
inversion and are therefore anti-unitary. The unitary elements form a halving
subgroup H of the magnetic group M. These magnetic groups M are therefore non-
unitary, so that ordinary representation theory is not relevant to them. Dimmock
and Wheeler (1962) showed how the theory developed by Wigner (1959) of the
irreducible corepresentations (“‘coreps’ for short) of non-unitary groups could be
applied to the magnetic point groups. However, this work of Dimmock and Wheeler
(1962) only included the character tables and not the matrix representatives
themselves for H, the halving subgroup of the unitaryelements, in each of the magnetic
point groups. This means that, while their work is adequate for discussing the
degeneracies of energy levels in a system with the symmetry of one of the magnetic
point groups, it is rather difficult to use their results when studying wave functions
that belong to a corepresentation derived from one of the degenerate representations
of H. Complete tables including not only the character tables but also the matrix
representatives themselves were given by Cracknell (1966) for the single-valued
coreps of the magnetic point groups. In the present paper we now give similar tables
for the double-valued coreps of the magnetic point groups. The importance of these
coreps lies in the fact that the wave function of a particle, which is placed in an
environment with the symmetry of one of the magnetic point groups, must belong
to one of the single-valued coreps of that group if it has zero or integer spin and to
one of the double-valued coreps if it has half-odd-integer spin.
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TaBLE 1

THE DOUBLE-VALUED REPRESENTATIONS OF THE CRYSTALLOGRAPHIC POINT GROUPS
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TaBLE 1 (Continued)
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TaBLE 1 (Continued)
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TaBLE 1 (Continued)
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TasrLe 1 (Continued)
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IT. THEORY

We follow the notation of Cracknell (1966) and classify the 122 magnetic point
groups into three types:
I ordinary point groups (32)
IT  ““grey” point groups (32)
III  “black and white”” point groups (58).

The type I groups are simply the ordinary point groups, so that they are unitary
groups and the theory of corepresentations is not relevant to them. The character
tables of these groups are given in many books (see, for instance, Heine 1960), and
matrix representatives are given by Altmann and Bradley (1963). The grey magnetic
point groups (type II) are direct product groups of one of the ordinary point groups G
with the group (£ 4 R), where E is the identity and R is the operation of time inversion.
The “black and white” (or type III) magnetic point groups M can be defined by

M = H + R(G—H), 2.1)

where H is a halving subgroup of G. The identification of H for each of the 58 type I11
groups was originally done by Tavger and Zaitsev (1956).

The theory of the deduction of the irreducible corepresentations of magnetic
groups as developed by Wigner (1959) and Dimmock and Wheeler (1962) is neatly
summarized in Section 4 of a paper by Cracknell (1965) (hereafter referred to as
APC I), in which the only necessary alteration is to replace Gk, Hk, and Mk of that
paper by G, H, and M respectively. It is assumed that the irreducible representations
(“reps”) A(u) of the subgroup H of unitary elements are known already, where u is
any member of H. The coreps of M derived from A(u) will then follow one of three
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cases depending on the relationship between A(u) and A(u), where
A(u) = A(ag "' uag)*, (2.2)

a9 being any (fixed) member of the set R(G—H). If Z(u) is equivalent to A(u) then
it is possible to write

A(w) =B~ A() B. (2.3)

If pp* = —|—A(a0) the corep of M derived from A(u) belongs to case 1 and is given by
equation (4.2) of APC I, but if pp* = —A(ao) then the corep belongs to case 2 and
is given by equation (4.3) of APC I. If A(u) is not equivalent to A(u) then the corep
of M derived from A(u) belongs to case 3 and is given by equation (4.4) of APCI.

III. Tuae CorEPs OF THE GREY MAGNETIC PoINT GROUPS

Since the grey magnetic point groups are direct product groups, their single-
valued corepresentations can easily be deduced using the theory that we have
mentioned together with the complete set of matrix representatives given by Altmann
and Bradley (1963). For each of these 32 grey groups we can choose ag to be the
element R, the operation of time inversion itself; this means that, from equation
(2.2), A(u) = A(ao_1 uag)* = A(u)*. It can be seen from the work of Altmann and
Bradley that for the degenerate single-valued reps of the point groups it is always
possible to choose A(u) to be real, so that, for degenerate reps and for the real non-
degenerate reps of any ordinary point group G, A(u) is not only equivalent but also
identical to A(u) so that of necessity p = 41 and pp* = +1. For complex non-
degenerate reps of G, A(u) = A(u)* and is therefore inequivalent to A(u). For
single-valued reps of G, which are used in connection with entities having zero or
integer spin, then A(ag) = A(R?) = +1 (see Wigner 1959). Therefore, for any grey
group G-+RG there will be two coreps derived from A(u) and given by equation (4.2)
of APC T with p = 41 for each degenerate or real non-degenerate rep A(u) of G;
and there will be one corep given by equation (4.4) of APC I derived from each
complex non-degenerate rep A(u) of G. It is therefore possible to write down the
single-valued coreps of any grey point group without much trouble.

We turn now to the consideration of the coreps derived from the double-valued
reps of the grey point groups. In Table 1 we give the character tables for the double-
valued representations of the ordinary point groups, together with the matrix
representatives for degenerate reps. The notation used for the symmetry elements
of these groups follows that of Altmann and Bradley (1963), with the exception that
rather than use a separate notation for tetragonal groups they are regarded as
subgroups of the cubic groups; our operations are active instead of passive. In Table 1
the matrices are given only for the generating elements of each group; the matrices
for the other elements must be found by using Table 2. The generating relations
given in Table 2 enable the complete group multiplication table of the double point
group to be evaluated if necessary. Only half the elements of each double point group
are given in Table 2; the other elements can be found using the fact that if X has
matrix representative P* Qf R” then X must have matrix representative —P° Q° R.
For completeness, in order to identify the point-group elements in terms of the unitary
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TABLE 2
THE MATRICES FOR DEGENERATE DOUBLE-VALUED REPS OF THE POINT GROUPS

E is the identity matrix in the appropriate number of dimensions; the matrices P, @, and R are
identified for each group in Table 1

2mm (Cayp) 222 (Dg) Matrix
E E B
Oz Cag P
oy 021/ Q
Cay Cs, PQ

P =, @+ =F, QP = P%Q, Q* = P?

32 (Ds) 3m (Csv) Matrix
E E E
oy oy P
oy oy P
0;1 ool Q
Cys ove Ps5Q
O’é3 a3 P4Q

422 (Dy) dmm (Cyy) 12m (Dsaq) Matrix
E B E E
- - +
042 04: S4z P
sz Ozz O2z P2
+ + -
C4z 042 S4z P
Oss oy Cay Q
Cay oy Cay P2
Caq Oda Oda P3Q
Cap aay oap PQ

P$ =, ¢t = F, Q2 = P, QP = PQ

unimodular matrices of SU(2) used in the initial derivation of the double point
groups, the matrices of SU(2) corresponding to the generating elements of 432 (0)
and 622 (Ds) are also given in Table 1. All the other point groups are very simply

related to one or other of these two point groups, so that their matrices in SU(2) can
easily be found.

To obtain the double-valued coreps of each of these 32 grey groups G--RG, we
still have A(u) = A(u)*, since R can be chosen as ay. But now, since double-valued
reps are used in connection with entities having half-odd-integer spin, we have
A(ag) = A(R?2) = —1 (see Wigner 1959). It is then fairly straightforward to see how
the coreps of a grey group are obtained from the double-valued reps of an ordinary
point group. This is conveniently summarized in Table 3 together with the values
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TaBLE 2 (Continued)
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of matrix B where relevant, where the entry in the second column indicates whether
the corep belongs to case 1, case 2, or case 3. Except in the case of degenerate reps
A(u) with real characters but with some matrices complex, the coreps can be written
down immediately using Table 3 and the matrices A(u). For this one remaining case
the characters of A(u) and A(u) must be the same, so that the coreps derived from
A(u) must belong to either case 1 or case 2; which of these actually happens can be
found by determining § by inspection of A(u) and Z(u). Alternatively, one can use
the test given by Dimmock and Wheeler (1962; equation (21)) or Bradley and Davies
(personal communication 1966) to determine whether the corep derived from A(u)
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TaBrLE 2 (Continued)
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belongs to case 1 or case 2; however, this does not achieve very much saving of effort
if one actually wishes to write down the matrices in the coreps because p has to be found.

As an example we can consider the grey point group 2221’, which is derived
from 222 (Ds); in Table 4 we list A(u) and A(u) for the rep E. By inspection it can

—+1

1 2
1 0) so that pp* = —1 = +A(ay),

easily be seen that f must be the matrix (

since this is a double-valued rep of G and ap = R. The corep of the grey group
G+RG derived from the rep E of G can thus be written down using equation (4.2)
of APC I and the value of B that we have just found.

In Table 5 we give the information that enables those coreps of the grey groups
derived from degenerate double-valued reps of the point groups to be written down.
In Table 5, A(u) is listed in the second column; the third column indicates which type
of corep of G+RG is derived from that rep of G; and the last column gives p for
those cases in which it exists. In the third column the number 1, 2, or 3 indicates that
the corep of G+RG derived from that rep of G belongs to case 1, case 2, or case 3;
the actual matrices will then be given respectively by equation (4.2), equation (4.3),
or equation (4.4) of APC I.

This completes the derivation of the double-valued coreps of the grey groups;
the rules for all forms of A(u) except one have been given in Table 3, and for this one
exception the coreps can be found by using Table 5.

IV. Tee Corers oF THE Brack AND WHITE MaaNETIC PoIiNT GROUPS

In this section we shall be concerned with the double-valued coreps of the 58
type III magnetic point groups defined by equation (2.1). We shall follow the
identification of H and of the classes in (G—H) given in Tables I and V of Cracknell
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(1966);1 the notation used for the symmetry elements of these groups again follows
that of Altmann and Bradley (1963), with the exception that rather than use a
separate notation for tetragonal groups they are regarded as subgroups of the cubic
groups and our operations are active instead of passive.

TABLE 3
RULES FOR CONSTRUCTING DOUBLE-VALUED COREPS OF GREY GROUPS

A(u) Corep Equation of APC I B
Non-degenerate, complex 3 (4.4) ' —
Non-degenerate, real 2 (4.3) +1

Degenerate, some characters
complex 3 (4.4) —

Degenerate, characters real,
all matrices real 2 (4.3) +1

Degenerate, characters real,
some matrices complex Case 1 or case 2; determine by inspection

TABLE 4
2221, A(u), AND A(u) ¥or E oF 222 (Dg)

u A(w) A(w)

I R I O
e | (0 0) [ ()
o | (7 W) | (5 )
o | (o )G i)

The theory outlined in Section IT can be applied to these groups, and by way of
illustration we consider the magnetic point group 4'22’. From APC I we can see that
H is the point group 222 (Ds) and that the elements of H and B(G—H) are

H: E: E: 02:E7 62%7 022/, 521/’ 02?,’7 622 (4'1)
and
R(G—H): RCy,RCy,RC},RC},, RCsq, RCza, RCap, RCa. “.2)

+ There is an error in Table V of Cracknell (1966). The line for the point group 6’ should read
i h on; 8338, on
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It does not matter which of the elements in R(G—H) is chosen as ag, except that
once ag is chosen it should not be altered; in fact, we choose RCs, as ag so that

TABLE 5
THE DEGENERATE DOUBLE-VALUED COREPS OF THE GREY GROUPS

()

(Direct product groups are not included)
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TaABLE 6
A(u) AND Z(u) FOR 4'22/

u A(u) A(u)
B 1 % 10
0o 1 (o J
Coa 0o 1 (0 i
-1 0 i

Ca i 0

0 —i

(
(
Cay (
(

o
(=
~— < N

)
G )
b )

i
0 —i

A(u) = A{(RC24)~' u RC3q}* = A(Czqu O)*, since R commutes with all the point-
group operations. The generating relations given in Table 2 can be used to evaluate
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products of the form Oz, u Cy4, so that the matrices for each of the elements of H
in the reps A(u) and A(u) can be found from Tables 1 and 2; these matrices are listed
in Table 6. The matrices for E, Cas, Cay, and Cs, are not listed, since they are given
by A(X) = —A(X) where X is any point-group operation. A(u) and A(u), although
they are obviously not identical, are nevertheless equivalent since their characters
are the same; we can therefore find p from

A(u) = pLA(u)p (2.3)
for all u. It is fairly easy to show that
11— o
B= iW( 0 1+i)’ (4.3)
and, therefore,
pp* = 1. (4.4)
But A(@d) = A{(RC3q)?} = A(R2E) = A(R2) A(E) = +1,
so that Bp* = +A(ad) (4.5)

and the corep of 4’22’ derived from the double-valued rep E of 222 (Ds) belongs to
case 1, and its matrices can be found using equation (4.2) of APC I and the value of
B given in equation (4.3) above.

This example illustrates how the double-valued coreps of all the 58 black and
white (type I1I) magnetic point groups can be derived. The results are collected into
Table 7. Columns 1 and 2 of Table 7 give M and H respectively; the actual
identification of the elements and classes in H and R(G—H) can be done using
Tables V and VI of Cracknell (1966). In column 3 of Table 7 we identify the element
that has been chosen as ag, ag being R times the entry in column 3. The coreps
obtained in the end do not depend on the choice of ag (Wigner 1959), although some
of the details of the working will depend on ag. Column 4 lists the double-valued reps
of H, column 5 indicates to which case the corep of M derived from that rep of H
belongs, and column 6 gives B for those cases in which it exists. In column 5 the
number 1, 2, or 3 indicates that the corep of M derived from that rep of H belongs
to case 1, case 2, or case 3; the actual matrices will then be given respectively by
equation (4.2), equation (4.3), or equation (4.4) of APC I.

V. Discussion

We have already mentioned that the earlier work of Dimmock and Wheeler
(1962, 1964) on the coreps of magnetic point groups did not include either p or the
matrix representatives for the halving subgroup of unitary elements in the type II
or type III magnetic groups. The work of Cracknell (1966) on the single-valued
coreps of magnetic point groups did not explicitly give p either, although it did give
the matrix representatives A(u). For the single-valued reps in that work the matrix
representatives chosen were all real, so that in nearly every case A(u) is not only
equivalent but also identical to A(u) and, therefore, B is equal to +1. There are three
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TABLE 7

THE DOUBLE-VALUED COREPS OF THE 58 TYPE III MAGNETIC GROUPS

1 0 0 1 1 /1—i 0
o= +41; e=i(0 1); p=i(_l 0); 0=i\72(0 1—|—i)

_ 1 ((\/3+1)+i(\/3—1) 4i )
X~ 306 4i (V3+1)—i(v3—1)
0 1 0 0
yg=+[—-1 0 0 0
0 0 01
00 —1 0
1) (2) (3) (4) (5) (6)
M H R-1ap Rep of H Corep of M| B
T 1 (C1) I ) 2 o
2 1 (Cy) Ca; a 1 o
m’ 1 (C1) oz A 1 a
2/m’ 2 (Cq) I 1E,2E 3 —
2'/m m (C1n) I 'E,*E 3 -
2'|m’ 1(C) Ca, Ag, Ay 1 o
22'9/ 2 (Cs) Cos 1F,2F 1 «
2m'm’ 2 (Cs) oy 1E,2E 1 o
2'm'm m (Cin)t Cs. 1R, 2E 1 o
m'm'm’ 222 (Ds) I E 1 p
mmm’ 2mm (Cav) I E 1 p
m'm’m 2/m (Cap) Oss 1Bg, 2B g, 1By, 2Hy 1 a
¢ 2 (C2) oy, \E, 2E 3 —
g 2 (Cq) S,, 1R, 2E 3 —
422’ 4 (Cy) Ca 2F1, 1Hs, 2E3, 1B 1 @
422 222 (Ds) Csa E 1 o
4/m/ 4 (04) I 2E1, 1E2, 2E2, 1E1 3 —
4//1}'&' 41 (S4) I 2E1, lEz, ,2E2, lEl 3 —_
&|m 2/m (Cazn) oy, 1B, 2B, 1By, 2By 3 —
dm’'m’ 4 (Cy) oz 2F, 1Hs, 2B, 1E, 1 o
4'mm’ 2mm (Ca2y) Gda E 1 o
42'm’ 4 (S4) Cay 2f1, 1By, 2E», 1E 1 o
Toam 222 (D2) Cda B 1 o
2'm 2mm (Cayp) Osq E 1 o
4/m'm'm’ 422 (Ds) I Ey, B2 1 p
4/m'mm 4mm (Cayp) I B, E» 1 )
4’ [mmm mmm (Daz) Czq By Ey 1 o
4 Im'm'm 42m (D2a) I E, Es 1 p
4/mm’m' 4/m (04;,) ng 2E1g, 1E2g, ZEZg, 1E19 1 a
ZEIuy IEZ’M’ ZEZuy 1E’Iu 1 4
32’ 3 (Cs) (o g, 4,1E 1 a«
3m’ 3 (03) a4l ZE, Z, IE 1 -1
& 3 (Cs) on g1 3 —
A 1 o

+ The elements of H are E, E, oy, and G, instead of the E, E, 0., and &, used in Table 1
for m (C 1h)~
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TaBLE 7 (Continued)
(1) (2) (3) (4) (5) (6)
M H R-lag Rep of H Corep of M| B
Bm'2’ 8 (Can) Oy 2By, 1By, 2Ks, 1B, 2By, LH3 1 «
f-i’m2’ 3m (030) On IE, ZE 1 o
Ey 1 €
6'm’2 32 (Ds) on 15,2 1 a
E; 1 €
6’ 3 (Cs) Cq 2E 1E 3 —
4 1 o
3 3 (C3) I 2F,1E 3 —
A 2 a
3m’ 3 (O3) Cél 2., Ay, 1E, 1 o
2y, Ay, 1B, 1 o
3m 3m (Csyp) I 1F, 2E 3
B 1 P
3'm’ 32 (D3) I 1E,2E 3 ——
El 1 P
6227 6 (Ce) Oél 2E3, 1E1, zEz, lEz, ZEI, 1E3 1 o
6722’ 32 (D3) Ca 1R, 2E 1 a
El 1 €
6/m' 6 (06) I 2E3, IE_l, ZEz, l.Ez, 2E1, 1E3 3 _—
6 Jm’ 3 (Cai) Co 2By, 18, 2By, By 3 —
A,, A, 1 «
6'|m 6 (Csn) 1 2E3, 1E1, 2E5, \Es, 2Eh, *E3 3 —
6m’m’ 6 (06) g4l 2E3, lEl, 2E2, 1E2, 2E1, 1E3 1 o
6'mm’ 3m (C3yp) Ca 1R, 2R 1 a
E, 1 €
6’/mm’m B2m (Dgh) I El, Eg, E3 1 P
& m'm'm | 3m (Dsa) Ca 1, 2B,, 18, 2B, 1 o
By, Era 1 €
6/m'm’m’ 622 (Dg) I E\, E» E3 1 P
6/m’mm 6mm (Cgyp) I E1,E», Es 1 P
6/mm'm’ 6/m (Cﬁh) 0;1 2E3g, 1E1g, 2E2g 1 o
1E2y, 2Elgy 1E3y 1 =2
2H3u, 1B 14, 2E2q 1 o
1E2u, 2E1u; IESu 1 -4
m’'3 23 (T) I E 1 P
1F,2F 3 —_
3m’ 23 (T Oda E,\F,2F 1 X
432/ 23 (T) Caq E,\F,2F 1 X
m’'3m’ 432 (0) I E1, E» 1 P
F 1 "
m’3m 43m (Td) I El,Eg 1 P
F 1 ¢
m3m’ m3-(Ts) Caq Ey, IFy, 2F, 1 X
Ey,1F,,2F, 1 X
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exceptions; for the reps 7' of #'3m/’, T of 4'32’, and T'y and T, of m3m’ A(u) and A(u)

0 1 0
are equivalent but not identical, and f is equal to 4-{ 1 0 0].
0 0 —1

With regard to the grey groups Dimmock and Wheeler (1962) state that all
double-valued reps with real characters and of dimension greater than 1 belong to
case 1, that is, they follow equation (4.2) of APC I. This statement, which is perfectly
true, is not present in their later work (Dimmock and Wheeler 1964), and there is no
indication in this later work of how the coreps derived from degenerate reps with
real characters but with some complex matrices may be found. In fact, they do
belong to case 1 and can be found using equation (4.2) of APC I and the values of
B given in Table 5 of the present paper.

We would like to draw attention to the following error in the work of Cracknell
(1966) on the single-valued coreps of the magnetic point groups. In Table VI of that
work the reps B of 4, B of 4, and B, and By, of 4’/m do not lead to coreps belonging
to case 1, as stated there, but to coreps belonging to case 2 which can be found using
equation (4.3) of APC I.

VI. ACKNOWLEDGMENTS

We are indebted to Professor K. M. Gatha and the other members of the staff
of this Department for their interest and encouragement and also to Dr. C. J. Bradley,
University of Oxford, for much correspondence on magnetic groups.

VII. REFERENCES

ALTMANN, S. L., and BrapLEY, C. J. (1963).—Phil. Trans. R. Soc. A 255, 199.

BetHE, H. A. (1929).—Annin Phys. 3, 133.

CRACKNELL, A. P. (1965).—Prog. theor. Phys., Kyoto 33, 812.

CRACKNELL, A. P. (1966).—Prog. theor. Phys., Kyoto 35, 196.

DiMMOCK, J. O., and WHEELER, R. G. (1962).—Physics Chem. Solids 23, 729.

Dimmock, J. O., and WHEELER, R. G. (1964).—“The Mathematics of Physics and Chemistry.”
(Eds. H. Margenau and G. M. Murphy.) Vol. II, Chap. XII. (Van Nostrand: New York.)

ELuiort, R. J. (1954).—Phys. Rev. 96, 280.

Heivg, V. (1960).—‘Group Theory in Quantum Mechanics.” (Pergamon: Oxford.)

OrecHOWSKI, W. (1940).—Physica, Eindhoven 7, 552.

TAvGER, B. A., and Zarrsev, V. M. (1956).—Zh. éksp. teor. Fiz. 30, 564. (English translation:
Soviet Phys. JETP 3, 430.)

WIGNER, E. P. (1959).—‘Group Theory and its Application to the Quantum Mechanics of Atomic
Spectra.” (Academic Press: New York.)




 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 1.89, 645.19 Width 452.21 Height 13.24 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         Both
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     1.8921 645.1871 452.2073 13.2446 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     0
     16
     15
     16
      

   1
  

 HistoryList_V1
 qi2base





