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Summary 

The lattice dynamics of harmonic and anharmonic shell models are reviewed. 
It is shown that the various dynamical equations for the shell model can be expressed 
in the same form as those for the rigid ion model, but with modified force constants. 
The anharmonic shell model leads to higher order contributions to the dipole 
moment, quadratic and cubic in the normal coordinates, for which explicit expressions 
are obtained. 

I. INTRODUCTION 

In the harmonic approximation the Hamiltonian of a crystal lattice can be 
written (e.g. Born and Huang 1954; Cochran 1963) 

Ho = L: (2mlc)-1{PIX(lK)}2+<po+l L: <P1X{3(lK,l'K')ulX(lK)u{3(l'K') , (1.1) 
~IX ~IX 

l'IC' (3 

where ulX(lK) is the a-component of the displacement from equilibrium of the I(th 
atom in the 1th unit cell, and PIX(lK) is the corresponding component of momentum. 

In ionic crystals the potential energy can be split up into a part due to the 
long-range Coulomb forces and a part due to the shod-range repulsive forces, which 
are, in the main, due to overlap of electron distributions on near-neighbour atoms. 
Thus the force constant <P 1X{3(lK, l' K') can be written as 

(j)x{3(lK, l' K') = <P~(lK, l' K') +ZICZIC' <P~{3(lK, l' K'), 

ZKe being the charge on the type K ions. 

The equations of motion for a harmonic crystal are then 

mlCillX(lK) = - L: <P1X{3(lK,l'K')u{3(l'K'). 
l'IC' (3 

(1.2) 

(1.3) 

If we consider an ionic crystal of NaCl structure with N unit cells, (1.3) is a set 
of 6N linear coupled differential equations. Writing the displacement as a plane 
wave of the form 

gives 

where 

ulX(lK) = UIX(Kq) exp{27Tiq.r(lK)-iw(q)t} , 

mIC w2(q) UIX(Kq) = L: M IX{3(KK', q) U{3(K'q) , 
IC{3' 

M IX{3(KK', q) = L: <P1X{3(OK, 1K') exp[27Tiq.{r(lK')-r(OK)}]. 
1 
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(1.4) 

(1.5) 

(1.6) 
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Thus the set of 6N equations (1.3) has been reduced to sets of six equations for 
each of the N allowed values of q. This reduction is possible because of the translation 
symmetry of the lattice. 

Equation (1.5) can be written concisely in matrix notation as 

MU= mw2U, (1.7) 

where M is a 6 X 6 matrix, the dynamical matrix, and U is a six-dimensional column 
vector. It is convenient to define a related matrix, the mass-dependent dynamical 
matrix D, by 

D IX{3(KK',q) = (mK mK ,)-iMIX{3(KK',q). 

Then for any q the allowed frequencies are given as the square roots of the eigenvalues 
of D. This leads to six frequencies w(qj), j = 1, 2, ... 6. 

The Hamiltonian (1.1) is that of an interacting N-body system, since the 
displacements of the different atoms are coupled in the potential energy term. By 
transforming to normal coordinates Q(qj) and P(qj) defined by 

ulX(lK) = (Nm/Cft ~ elX(K I qj) Q( gj) exp{21Tiq. r(IK)} , } 
qj 

PIX(lK) = (m/C/N)t ~ e~(K I qj) P( qj) exp{-21Tiq.r(lK)}, 
(1.8) 

where elX(Klqj) are the components of the normalized eigenvectors of the dynamical 
matrix D, the Hamiltonian reduces to 

Ho = t ~ {P*(qj)P(qj) +w2(qj) Q*(qj) Q(qj)} , 
qj 

(1.9) 

where * denotes the Hermitian conjugate. 

The Hamiltonian has thus been reduced to one of 6N non-interacting linear 
harmonic oscillators. This transformation essentially solves the problem, for once 
the frequencies have been determined from (1.7) any thermodynamic function of the 
crystal is given by the sum over all modes of the corresponding function of a harmonic 
oscillator. 

The Hamiltonian (1.1) is essentially that of a rigid ion model, since electron 
coordinates do not appear. It is true that the repulsive potential energy originates 
from overlap of electron distributions, but in practice a semi-empirical potential is 
always used and distortions of the electron cloud during lattice vibrations are not 
allowed for. The above model fails both in predicting many details of observed 
dispersion curves (Woods, Cochran, and Brockhouse 1960) and in the theory of 
dielectric constants (Szigeti 1949, 1950). 

Dick and Overhauser (1958) realized that the main defect of the above model 
was its inability to take account of the so-called "short-range polarization". As the 
ions vibrate the overlap between electron distributions will change, and this will cause 
a distortion of the electron clouds thus inducing a dipole moment on the ions, in 
addition to the dipole moment due to the electric field. In order to take account of this 
short-range polarization, Dick and Overhauser introduced the shell model of ionic 
crystals, in which each ion is represented by a rigid spherical massless shell, representing 
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the loosely bound outer electrons, coupled by a spring to a rigid spherical core, 
representing the nucleus and inner electrons. Thus in lattice vibrations the shell 
and core can move relative to each other, resulting in dipole moments on the ions. 
This model, although only a first approximation to real deformable ions, contains 
most of the features of a real crystal, and gives much better agreement with experiment 
than the rigid ion model (Woods, Cochran, and Brockhouse 1960). 

II. A SIMPLE HARMONIC SHELL MODEL 

We consider the model illustrated in Figure 1, and take the only short-range 
force as that acting between the shells of nearest-neighbour atoms. Although more 
complex models with many different short-range force constants have been used 

Positive Negative 
Ion . I Ion 

01 Xj€ 01 
x2

€ 

Y j € ..... 

Y 2€ 

Xj+Y j =Zj C:re 

X 2 +Y2=Z2 8 
Shell and shell 

centre 

Fig. I.-Simple shell model showing equilibrium configuration above 
and displaced configuration below. 

(Cowley et al. 1963, models I-VI), this is only at the expense of more and more 
adjustable parameters. The simple model has all the essential features of the more 
complex models and gives quite good agreement with experiment. 

The potential energy of the displaced configuration, in the harmonic approxi­
mation, can be written as 

qJh = t ~ qJ:{3(lK, l' K' ){U,,(lK)+W,,(lK)}{U{3(l' KI)+W{3(l' Kin 
l"iX 

1',,'{3 

+t ~ [k"w~(lK) -e{Z"uiX(lK) + y"wiX(lK)}EiX(lK)] , 
ItJiX 

(2.1 ) 

where UiX(lK) is the a-component of the displacement of the core of atom (lK), wiX(lK) 
is the a-component of the core-shell displacement of atom (lK), and EiX(lK) is the 
effective field at site (lK). 

If there is no external field, the effective field is (Cochran 1963) 

EiX(lK) = - e -1 ~ qJ~{3(lK, l' K'){Z", U{3(l' K') + Y,,' W{3(l' Kin. (2.2) 
l' J,;' {3 
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The equations of motion are (Mashkevich and Tolpygo 1957) 

m"uIX(lK) = -EXPh/8uIX(lK) , 

0= fjrJ)h/8wIX(lK). 

(2.3) 

(2.4) 

Equation (2.4) expresses the adiabatic approximation, namely, that the shell 
displacements instantaneously take up a position to minimize the potential energy. 
Using (2.4) we can, at least in principle, eliminate the shell displacements from (2.1). 

Using (2.1) and (2.2) the equations of motion become 

m"uIX(lK) = - ~ [{CP~(lK,l'K')+Z"Z".CP~(3(lK,l'K')}u(3(l'K') 
1,,,'(3 

+{CP:(3(lK, l'K') +Z" Y", CP~(3(lK, l' K')}w(3(l' K')], 

o = ~ [{CP~(lK,l'K') +y"Z,,'CP~(3(lK,l'K')}u(3(l'K') 
1',,'(3 

(2.5) 

+{CP~(lK, l' K') +k" OIX(3 Oll' 0",,' + Y" Y,,' CP~(3(lK, l' K')}w(3(l' K')]. (2.6) 

These equations can be written in matrix notation as 

mii = -(r+zcz)u-(r+zcy)w, 

0= (r+ycz)u+(r+k+ycy)w, 

(2.7) 

(2.8) 

where m, r, c, k, z, and yare 6N X 6N matrices and u and ware 6N-dimensional 
column vectors. 

Eliminating w from (2.7) and (2.8) gives 

mii = -\jIu, 

where 
\jI = (r+zcz)-(r+zcy)(r+k+ycy)-l(r+ycz). 

Using (2.2) the potential energy (2.1) is given by 

CPh = t ~ [{CP:(3(lK, l' K') +Z"Z", CP~(3(lK, l' K')}uIX(lK) u(3(l' K') 
I"IX 

1',,'(3 

+{CP:(3(lK, l' K') +Z" Y", CP;(3(lK, l' K')}UIX(lK) w(3(l' K') 

+{CP:(3(lK, l' K') + Y" Z,,' CP~(3(lK, l' K')}wIX(lK) u(3(l' K') 

(2.9) 

(2.10) 

+{CP:(3(lK, l'K') +k" OIX(3 Oll' 0",,' + Y" Y", CP~(3(lK, t' K')}Wa(lK) W(3(l' K')] , 
(2.11) 

which can be written in matrix notation as 

CPh = HuT(r+zcz)u+uT(r+zcy)w 

+wT(r+ycz)u+wT(r+k+ycy)w} . 

Using (2.8) and (2.10) this becomes 

CPh = tuT\jIu. 

(2.12) 

(2.13) 



LATTICE DYNAMICS OF SHELL MODELS 

Writing (2.9) and (2.13) in terms of components we have 

and 

<Ph = t ~ </J",p(lK, I' K') u",(lK) up(l' K') 
l,,1X 

l',,'p 

m"ulX(lK) = - ~ </JIXP(lK, l' K') up(l' K'). 
l' ,,' P 

499 

(2.14) 

(2.15) 

These are of the same form as the equations (1.1) and (1.3) for the rigid ion model, 
but with "effective force constants" given by the elements of the matrix (2.10). 

Introducing the plane wave solution (1.4) as before, we obtain the result that 
the allowed frequencies are again given by the solutions of the equation (1.7), the 
elements of the dynamical matrix being given by 

MIXP(KK', q) = ~ </JIXP(OK, lK') exp[27Tiq.{r(lK')-r(OK)}]. (2.16) 
l 

Taking matrix elements of (2.10) and substituting in (2.16), it can be shown that 
the dynamical matrix is given by 

M = (R+ZCZ)-(R+ZCY)(R+K+ YCY)-l(R+ YCZ), 

where the elements of the various 6 X 6 matrices are given by 

RIXP(KK', q) = ~ <P:p(OK, lK') exp[27Tiq.{r(lK')-r(OK)}], 
l 

CIXP(KK', q) = ~ <P~p(OK, lK') exp[27Tiq.{r(lK')-r(OK)}], 
l 

ZIXP(KK', q) = Z" OIXP 0",,', 

YIXP(KK', q) = Y" OIXP 0",,', 

KIXP(KK', q) = k" OIXP 0",,' . 

Using (2.14) the Hamiltonian is 

} 

Ho = ~ (2m,,) -1{PIX(lK)}2 +t ~ </JIXP(lK, l' K') UIX(lK) up(l' K') . 
~IX ~IX 

l' ,,' P 

(2.17) 

} (2.IS) 

(2.19) 

(2.20) 

(2.21 ) 

This can be transformed into normal coordinates, as in the rigid ion case, by using 
the transformation (1. S), which gives the same result (1.9), and all the thermo­
dynamic properties can be worked out as before. 

III. A SIMPLE ANHARMONIC SHELL MODEL 

It is well known that some properties of real crystals cannot be explained by 
purely harmonic theory, whether for a rigid ion model or a shell model, e.g. thermal 
expansion. Thus it is sometimes necessary to include higher order terms in the 
potential energy expansion. This procedure is well known for the rigid ion model 
(e.g. Maradudin, Flinn, and Coldwell-Horsfall 1961), but little has been published 
regarding the extension of the harmonic shell model to include anharmonic terms. 

Another phenomenon that emphasizes the need to include anharmonic terms 
in the dynamics of the shell model is infrared lattice absorption. For a harmonic 
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crystal, which has a dipole moment depending linearly on the normal coordinates, 
the predicted absorption consists of an infinitely sharp line (i.e. a S-function) at the 
infrared absorption frequency wo, which is the frequency of the transverse optic mode 
of zero wave-vector. However, the experimentally measured spectra of alkali halides 
show a broad absorption band in the infrared together with one or more subsidiary 
maxima. This discrepancy has been attributed by Blackman (1933), Born and 
Blackman (1933), and Barnes, Brattain, and Seitz (1935) to anharmonicity that 
couples the harmonic modes and provides for the absorption of a photon by the 
creation of two or more phonons. It has also been attributed by Burstein, Oberly, 
and Plyler (1948) and Lax and Burstein (1955) to the presence of a lattice dipole 
moment containing terms that are quadratic, cubic, etc. in the normal coordinates. 
This phenomenon, due to deformation of the ions by the motion of those nearby, 
also permits multiphonon absorption of a photon. Born has concluded that the 
widening of the main band is due to the third-order potential while the side bands 
are probably due to the second-order dipole moment (e.g. Born and Huang 1954). 

It has been shown by Keating and Rupprecht (1965) that a harmonic crystal 
has no higher order dipole moments. Thus to obtain such dipole moments, anharmonic 
terms must be included in the shell model. These dipole moments will be evaluated 
in Section IV. 

We shall now develop the theory of a simple anharmonic shell model. The 
potential energy (2.11) of the harmonic shell model was written in the form 

~h = t 2: {alX(3(lK, l' K') ulX(lK) u{3(l' K') +blX{3(lK, l' K') ulX(lK) w{3(l' K') 
Z"IX 

1''''13 
+b{3lX(l' K', lK) Wa(lK) u{3(l' K') +clX{3(lK, l' K') wlX(lK) w{3(l' K')} , (3.1) 

where 

alX{3(lK, l' K') = ~:(3(lK, l' K') +Z"Z", ~~(3(lK, l' K'), 

blX{3(lK,l'K') = ~:(3(lK,l'K') +Z" V"'~~{3(lK,l'K'), 

CIX{3(lK, l' K') = ~:(3(lK, l' K') +k" 13 1X {3 Sll' SIC'"~ + V" V"' ~~(3(lK, l' K') • 

} (3.2) 

In general the potential function (3.1) will also contain cubic and higher order 
terms in the coordinates ulX(lK) and wlX(lK). 

We shall include anharmonic Coulomb terms between rigid ions and anharmonic 
repulsive terms between shells of nearest neighbours. Replacing for convenience the 
triple index (lKa) by a single index (A), the potential function can be written as 

~ = t A~ {a(Al ,1.2) UAI UAz +b(Al ,1.2) UAI WAZ +b(A2 AI) WAI u Az +C(AIA2)WAI WAJ 
I"Z 

'" C 2", C +iy 4; ~ (AIA2A3)UAIUAzuA3+l4Y 4; ~ (AIA2A3A4)UAIUA2UA3UA4 
.1.1.1.2 )'3 AIAz A3A4 

+/ry 2: ~R(AIA2A3)(UAI+WAI)(UA2+WA2)(UA3+WA3) 
.1.1..1.2..1.3 

+ 2~ y2 2: ~R(AI ,1.2 ,1.3 ,1.4) (U AI +W A.)(UA2 +W A2)(UA3 +W A3)(UA4 +W .1.4 ) , 

AIAZA3A4 
(3.3) 

where ~C(AI ,1.2 ,1.3), ~C(AI ,1.2 ,1.3 ,1.4), ~R(AI ,1.2 ,1.3), and ~R(AI ,1.2 ,1.3 ,1.4) are respectively 
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the third- and fourth-order derivatives of the Coulomb and repulsive potential 
energies with respect to the ionic displacements, and y is the usual order parameter. 

We now make an approximation. We expand the last two terms in (3.3) and 
retain only those terms linear in W A' Since the rigid ion model has fairly good quan­
titative success, it is expected that the core-shell displacements will be less than the 
displacements of the cores from equilibrium. Making this approximation, (3.3) 
becomes 

(fJ = t ~ {a('\'l '\'2) U A, U A +b(,\,l '\'2) U A W A +b(,\,2 '\'1) W A, U A2 +C(,\,l '\'2) W A, w A,} 
~~ 2 1 2 

+ty ~ (fJ(,\,1,\,2 '\'3) U A, U A2 U A3 + -kl ~ (fJ(,\,1,\,2,\,3 '\'4) U A, U A2 U)'3 U A4 
.1.,.1.2.1.3 A,A2)'3A4 

+h ~ (fJR('\'1'\'2'\'3)WA1UA2UA3+tl ~ (fJR('\'1'\'2'\'3'\'4)WA1UA2UA3'UA4' 
.1.,.1.2.1.3 A1A2 A3A4 (3.4) 

where (fJ(,\,1,\,2 '\'3) and (fJ(,\,1,\,2,\,3 '\'4) are the total anharmonic coefficients given by 

(fJ(,\,1,\,2 '\'3) = (fJC(,\,1,\,2 '\'3) + (fJR(,\,l '\'2 '\'3), 
and so on. 

The equations of motion to be used in conjunction with (3.4) are 

m A itA = -o(fJ/OU A , } 

0= o(fJ/Ow A . 

The second equation of motion gives 

o = ~ {b(,\,2,\,1)U A2 +C('\'1'\'2)WA2}+ty ~ (fJR(,\,1,\,2,\,3)U A2 u A3 
~ ~~ 

+il ~ 
A2 A3A4 

(fJR(,\,1,\,2,\,3 '\'4) U A2 U A3 U A4 • 

(3.5) 

(3.6) 

This equation embodies the adiabatic principle. It expresses the core-shell 
displacements uniquely in terms of the nuclear displacements. Using (3.6) we can 
eliminate the wA's from (3.4) and thus express the potential function in terms of core 
displacements only. 

Multiplying (3.'6) by tWA1' summing over '\'1, and subtracting the result from 
(3.4) gives 

(fJ = t ~ {a('\'l '\'2) U A U A2 +b(,\,l '\'2) U A W A } 
.1., .1.2 1 1 2 

+ty ~ (fJ('\'1'\'2'\'3)UA1UA2UA3+l4l ~ (fJ('\'1'\'2'\'3'\'4)UA1UA2UA3UA4 
A1A2 A3 A1A2 A3A4 

~ R 2 ~ R 
+iy ~ (fJ (,\,1,\,2 '\'3) W A, U A2 U A3 + 12-Y ~ (fJ (,\,1,\,2,\,3 '\'4) W A, U A2 U A3 U A4 • 

.1., .1.2.1.3 .1., A2 A3A4 (3.7) 

Defining quantities d('\'i'\'j) by 

~ d('\'i '\'k) C('\'k ,\,j) = OAiAj' 
Ak 

(3.8) 
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gives from (3.6) 

w A, = - ~ d(A5Al)b(A2Al)UA2-iy ~ d(A5Al)cpR(AlA2A3)UA2UA3 
A,A2 A,A2A3 

-ty2 ~ d(A5 AI) cpR(AIA2 A3 A4) UA2 UA3 u A.' (:3.9) 
A, A2A3A. 

Eliminating the W A'S from (3.7) by using (3.9) gh'-es for the potential energy 

cP = t ~ ifi(AI A2) u A, UA2 +ty ~ ifi(AIA2 A3)UA, UA2 UA3 
A').2 ).,A2A3 

+ i4y2 ~ ifi(AIA2 A3 A4) UA, UA2 U).3 UA., 
).,A2 ).3).. 

(:3.10) 

where 

ifi(AIA2) = a(AIA2)- ~ b(AIA3)d(A3A4)b(A2A4), 
)'3).' 

(3.11) 

which is the same as the result (2.10) for the harmonic shell model. 

The cubic and quartic coefficients are given by 

ifi(Al A2 AS) = CP(AIA2A3)-3 ~ b(AIA4)d(A4A5)cpR(A5A2A3) (3.12) 
A.)., 

and 

Y/(AIA2..\aA4) = CP(AIA2A3A4)-4 ~ b(Al~)d(A5A6)cpR(A6A2A3A4) 
).S).6 

-3 ~ q)R(AIA2A5)d(A5A6)cpR(A3~A6). (3.13) 
A,A6 

From (3.10) the force constants ifi(AIA2 A3) and ifi(AIA2 A3A4) should be symmetri­
cal in the A'S. However, the expressions (3.12) and (3.13) are not symmetrical. We 
therefore replace these by the symmetrized force constants 

ifi(AIA2..\a) = CP(AIA2 A3)- ~ {b(AIA4) d(A4 A5) cpR(A5 A2 A3) 
A.A, 

+b(A2 A4) d(A4 A5) cpR(A5 A3 AI) 

+b(A3 A4) d(A4 A5) cpR(A5 AIA2)}, (3.14) 

ifi(AIA2A3A4) = CP(AIA2A3A4)- ~ {b(AIA5)d(A5 A6)cpR(A6 A2AsA4) 
AS A6 

+b(A2~) d(A5 A6) cpR(A6..\a A4 AI) 

+b(A3 A5) d(A5 A6) cpR(.\s ~ A1A2) 

+b(A4 A5) d(A5 A6) cpR(A6 Al A2..\a)} 

~ {cpR(A1A2~)d(~A6)cpR(..\e..\a~) 
).').6 

+cpR(A2 A3 A5) d(l\5 A6) CPR(A6 A4 AI) 

+cpR(A1A3 A5) d(A5 A6) cpR(..\e A2 ~)}. (3.15) 

Thus we see that the cubic and quartic anharmonic force constants for the shell 
model ifi(A1A2 A3) and ifi(A1A2 A3A4) differ from the corresponding quantities CP(AIA2 A3) 
and CP(A1A2 A3 A4) for the rigid ion model. This has not been pointed out by Cowley 
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(1963), although Szigeti (1959) has pointed out that higher order dipole moments 
make an appreciable contribution to the anharmonic potential energy. 

The new anharmonic force constants still satisfy the invariance relations due to 
translation symmetry, namely, 

ifJIXPy(lK,l'Ic',l"K") = ifJIXpy(OK, (l'-l)K', (l"-l)K") , } 
(3.16) 

ifJIXPY8(lK, l' K', l" K", l'" K''') = ifJIXPY8( OK, (l' -l)K', (l" -l)K", (l'" -l)K"') . 

Transforming the potential energy (3.lO) into normal coordinates according 
to (1. S) and using the fact that the kinetic energy of this model is the same as that 
for the rigid ion model, the Hamiltonian becomes 

H = Ho+yHs+iH4, 

where H 0 is the harmonic Hamiltonian 

Ho = t 1: {P*( qj) P( qj) +w2( qj) Q*( qj) Q( qj)} 
qi 

and the cubic and quartic terms are 

(3.17) 

(3.1S) 

Hs = i N - t 1: LI (ql + q2+ qs) lJI( ql jl ; q2 j2 ; qs js) Q( ql jl) Q( q2 j2) Q( qs js), (3.19) 
q, q2 q J 

1.1213 

H4 = -hN-1 1: L1(ql+q2+qs+q4) lJI(qdl; qd2; qsjs; q4j4) 
q, q2 q3 q. 
i,i213i. 

x Q( ql jl) Q( q2 j2) Q( qs js) Q( q4 j4) , 

where the lJI coefficients are given by 

1JI(qdl; qd2; qsjs) = 1: (m"m"'m,,,,)-tifJIXPy(OK,l'K',l"K") 
"IX 

I',,' P 
l"IC"jI 

X eIX(K I qi jI) ep(K' I q2 j2) ey(K" I qs js) 

(3.20) 

X exp[27Ti{ qi. r(OK) +q2. r(l' K') + qs. r(l" K")}] , 
(3.21) 

lJI(qdl; qd2; qsjs; q4j4) = 1: (m"m", m,," m",,,)-t ifJIXPY{j(OK, l' K', l" K", l'" K"') 
"IX 

1''''P 
1""""1 
l'lI ,,'" lJ 

X eIX(K I qdI) ep(K' I qd2) ey(K" I qsjs) e{j(K" , I q4j4) 

X exp[27Ti{ql.r(OK) +qZ.r(l'K') +qa.r(l" K") 

+q4. r (l"'K"')}] . (3.22) 

These equations (3.17)-(3.22) are all of the same form as for the anharmonic 
rigid ion model (e.g. Maradudin, Flinn, and Ooldwell-Horsfall 1961), but it must be 
remembered that the force constants (3.11 )-(3.13) are different. 

Thus the same methods of evaluating thermodynamic properties as have been 
used for the anharmonic rigid ion model can be used for the anharmonic shell model. 
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IV. THE DIPOLE MOMENT 

To calculate properties that are due to the interaction of a crystal with either 
a static or a time-dependent electric field it is necessary to express the dipole moment 
of the crystal in terms of the normal coordinates. In terms of core and core-shell 
displacements, the x component of the dipole moment is 

Jt = 2: {ZiCux(lK) + YiC WX(lK)}. (4.1) 
liC 

Substituting for WX(lK) from (3.9) gives 

Jt = ~ ZiC1 ux(h Kl) + ~ Y iC1 {- ~ dxa(h Kl, l2 K2) b{3a(la Ka, l2 K2) u{3(la Ka) 
lliC1 lliC 1 12iC2 a 

l,iC,{3 

-ty ~ dxa(ll Kl, l2 K2) <Pa~y(l2 K2, l3 Ka, l4 K4) u{3(la K3) 1ly(l4 K4) 
l2/C2 ()(, 

13iC ,{3 
14iC4Y 

_ty2 ~ dxa(h Kl, l2 K2) <P!f{3ya(l2 K2,.l3 Ka, l4 K4, l5 K5) 
12 ••• 1, 

iC2"· .K s 
a ... a 

X U{3(l3 K3) 1ly(l4 K4) Ua(l5 K5)} . (4.2) 

Transforming to normal coordinates, according to (1. S), gives 

.At = Nt ~ M(Oj)Q(O,i) +!y ~ Ll(ql+q2)M(qdl; qzj2) Q(ql,h) Q(qzj2) 
i qdl 

q2i2 

+ty2N-t ~ Ll(ql +q2+qa) M(qdl; qz.j2; qaj3) Q(qdl) Q(qzj2) Q(qaj3). 
ql Q2. q 3 (4.3) 
i 1i 2}3 

The first-order dipole moment coefficient is 

.111(O,i) = ~ m;t ZiCex(K 10j) 
iC 

- ~ m;;~ YiC e{3(K" I OJ) Dxa(KK',O)B{3a(K"/, O), (4.4) 
/c/c'/c" 

a{3 
the coefficients D and 13 being defined as in (2.1S), 

The second- and third-order coefficients are 

.LVJ( qdl; qzj2) = - ~ 
13 14 

"1"21C 3/C4 
a{3y 

(miC3 miC4 ) -t Y iC1 e{3(Kal ql jl) ey(K41 q2 j2) 

X Dxa(Kl K2, 0) <P~{3y(OK2' la Ka, l4 K4) 

X exp[27Ti{ ql ,r(la Ka) + q2. r(l4 K4)}] , (4.5) 

M(qdl;qzj2;qaja) =- ~ 
13l4l, 

(miC, miC4 miC,) -t Y iC1 e{3(Kal qdl) ey(K41 qzj2) ea(K51 qaja) 

1C 11C21C31C4IC S 
a{3ya 

R 
X Dxa (Kl K2, 0) <Pa{3ya(OK2, la Ka, l4 K4, l5 K5) 

X exp[27Ti{ ql. r(la Ka) + q2· r(l4 K4) + qa· r(l5 K5)}] . 
(4.6) 
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The first term in (4.4) is the only term that contributes to the dipole moment of 
a harmonic or anharmonic rigid ion model. The second term in (4.4) is the additional 
contribution from a harmonic shell model. The higher order moments appear only 
in the anharmonic shell model. 

V. CONCLUSIONS 

The lattice dynamics of simple harmonic and anharmonic shell models have 
been reviewed. It has been shown that the theory can be expressed in the same form 
as the better-known theory of the rigid ion model, but with modified harmonic and 
anharmonic force constants. 

The shell model is the simplest model that allows for distortion of the electron 
clouds during lattice vibrations. This is especially significant in optic modes in 
which the two atoms of a unit cell vibrate in opposite directions, and the shell model 
gives good agreement with experimental dispersion curves for these modes. 

It is also seen that it is possible to have deformable ions without the appearance 
of higher order dipole moments, e.g. in the harmonic shell model. Inclusion of 
anharmonic terms leads to the appearance of higher order dipole moments. 
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