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Summary 

The shape of a collision-broadened spectral line depends on the assumptions 
made about the collision processes involved. If the collision cross section varies 
inversely as the relative speed of the colliding molecules, the half-width to the 
half-power points and to the points of steepest slope should be 1/27T1' and 1/(2";3)7T1' 
respectively, where l' is the mean interval between line-broadening collisions. It is 
shown that, in a gas of "hard-sphere" molecules, the shape of the line is modified 
and the above half-widths are reduced by' 6·4 and 9·7% respectively. While it is 
not suggested that gas molecules behave entirely as hard spheres, it is suggested 
that some deviations from the Van Vleck-Weisskopf-Lorentz shape may occur, 
and that it may be possible to detect these deviations experimentally. 

1. INTRODUCTION 

The shape of collision-broadened spectral lines was considered by Lorentz 
(1915). He assumed that molecules perform internal forced oscillations under the 
influence of an applied oscillating electromagnetic field, and that these oscillations 
are interrupted by collisions. If x represents the amplitude of the molecular oscilla­
tion, Lorentz assumed that immediately following a collision the mean values of 
x and X, averaged over a sufficiently large number of molecules, are zero; it follows 
from this that oscillation energy is dissipated and distributed among the various 
degrees of freedom available, so that energy is absorbed from the applied electro­
magnetic field. Lorentz then de'duced an expression for the power absorption coeffi­
cient IX in terms of the frequency of the applied field v and the natural frequency of 
molecular oscillation Yo. 

The Lorentz expression was modified by Van Vleck and Weisskopf (1945). They 
pointed out that if vo approaches zero, the absorption coefficient should approach 
the expression found by Debye (1925) for non-resonant absorption. The Lorentz 
expression does not do this, and Van Vleck and Weisskopf showed that the dis­
crepancy could be removed by assuming that the mean values of x and x immediately 
following a collision are not zero but are related to the instantaneous value of the 
applied field by a Boltzmann factor. 

In both formulations, an expression for x at time t is found for those molecules 
that experienced their last collisions at time to = t-8; it is then assumed that colli­
sions occur completely at random, so that the probability that the last collision 
before t occurred in (t- 8- 08, t- 8) is 
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where T is the mean interval between collisions and is assumed to be constant for a 
given gas at a constant pressure. On integrating with respect to 8, it then follows 
that the absorption coefficient ex at frequency v is given by 

N 2( )2 ex(v)=_e ~ f(v,vo)/lv, 
me Vo 

(1) 

where 

( 1 1) 
f(v,vo) = 2 2+. 2 2 

(v-vo) +(/lv) (v+vo) +(/lv) 
(2) 

and /lv = (112m) is the line-width parameter. 

Van Vleck and Weisskopf showed that this result can be generalized to a 
quantum mechanical form in which the shape factor f(v, vol is preserved. If, as is 
frequently the case, Vo ~ /lv the second term in the parentheses in equation (2) may 
be neglected; for such a spectral line the half-widths to the half-power points and 
to the points of steepest slope are /lv and /lvl..j3 respectively. 

This has formed the basis for much of the interpretation of experimental 
measurements of the widths of spectral lines in the microwave region; selected 
references will be found in the paper by Rinehart, Legan, and Lin (1965). Either 
the width between the half-power points, or, in the case of the work of Rinehart, 
Legan, and Lin, the width between the points of steepest slope, is measured for 
various gas pressures and the mean intervals between collisions are calculated from 
the results; these are then discussed in terms of collision processes. Microwave 
spectral lines are particularly suitable for this type of investigation since, at the 
comparatively low frequencies involved, natural or radiation broadening is negli­
gible and, at pressures above a few millitorr, collision broadening is far greater than 
the only other significant mechanism, namely Doppler broadening (Parsons and 
Roberts 1965). 

The mean intervals between collisions are usually interpreted iJ? terms of 
equivalent "hard-sphere" collision diameters, and these are significantly greater 
than the corresponding diameters deduced from transport phenomena. As an 
example, the collision diameter of methyl chloride deduced from viscosity data is 
5 A, while that deduced from the self broadening oftheJ = 0 --+ 1 line in the rotational 
spectrum is 15·9 A (Roberts and Parsons 1966). This is presumably because in trans­
port phenomena the energy of interaction on collision must be of the order of kT, 
while for the interruption of radiation it is of the order of hv, and in the microwave 
region for gases at room temperature hv ~ kT. 

The purpose of this paper is to point out that the expression (2) for the shape 
factor is valid only if T is constant for all the molecules in a gas at a given pressure. 
This will be so if the collision cross section is inversely proportional to the relative 
speed of the colliding molecules and, under the assumption of weak collisions such 
that the interacting molecules pass along straight line paths with constant velocities, 
this will be true (Anderson 1949; Tsao and Curnutte 1960). It will not be so for 
hard-sphere molecules, since those moving with high speeds will on the average experi­
ence more collisions per second than the slower ones, and the following analysis shows 
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that under these circumstances the line shape is modified so that the half-width between 
the half-power points is 5· 4 % less than Llv, while between the points of steepest 
slope it is 9·7% less than Llvj.j3, where Llv is the mean value of Llv averaged over all 
the molecules. Since half-widths may be determined experimentally to an accuracy 
of 2%, the effect may be significant; and if the shape of a complete spectral line 
can be measured to an accuracy of this order, it may be necessary to interpret the 
results in terms of collisions between molecules that behave as hard-sphere cores 
(possibly with diameters of the order of those deduced from transport phenomena) 
surrounded by "soft-sphere" regions for which the collision probability is inversely 
proportional to the relative speed of the colliding molecules. 

II. CALCULATION OF LINE SHAPE 

(a) Hard-sphere Molecules 

The calculation of the mean interval between collisions 'f averaged over all 
the molecules may begin from the expression 

Vr'faN = 1, (3) 

where vr is the mean relative speed of the molecules, a the cross section, and N the 
number of molecules per unit volume (Present 1958); for a Maxwellian distribution 
of particles of mass m at a temperature T 

Vr = 4(kTjmn)1. (4) 

Now, however, consider those molecules whose speeds, relative to the laboratory 
frame of reference, lie in the range (v, v+Sv). It is shown in the Appendix that the 
mean speed of these molecules relative to the remainder is 

vr = 4(kTjmn)1 F(fJ) , 
where 

F(fJ) = ~12 ( t exp( _fJ2) +(fJ+ IJ2fJ) f: exp( _y2) dy) 

and 

fJ = v(mj2kT)~ 

It follows from (3) that, if Tv is the mean interval between collisions involving 
at least one molecule whose speed lies in the range (v, v + 8v), then 

(5) 

and hence the corresponding line-width parameter is 

= LlvF(fJ) , where Llv = 1 j27TT . 
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The contribution oa to the absorption coefficient is then found from (1) on replacing 
Nby 

m 2 mv, ( )3/2 ( 2) 
oNv = 47TN 27TkT v exp - 2kT ov; (6) 

and hence, on integrating over all values of v and making the assumption vo ~ Llv 
so that the second term in equation (2) may be neglected, it follows that 

o:(v) = A(~)2 Llv (00 f32 F(~) exp( -fP) 2 df3, 
vo Jo (v-vo) +{LlvF(f3)} 

(7) 

where A = 4Ne2Jmc7T1. The quantum mechanical expression for A may be found 
from equation (2) of Van Vleck and Weisskopf (1945), but the dependence of a on 
v is still described by the above equation (7). In this equation, it is convenient to 
introduce the dimensionless parameter u = (v-vo)JLlv; it then becomes 

- 2 
o:(u) = (AiLlv)(vJvo) a(u) . 

where the shape function G(u) is given by 

(8) 

This was evaluated numerically for a series of values of u with the aid of a GE225 
computer, and the results are plotted in Figure 1. It has a maximum when u = 0, 
and falls to half the maximum value when u = ±0·946. 

The points of steepest slope, which are of particular interest since their frequency 
separation may be measured directly, are given by the solutions of 

d 2GJdu2 = O. 

This equation was solved numerically and the result was u = ±0·521. The term 
(vJvO)2 in the expression for a may be equated to unity without significant error 
provided vo ~ Llv; thus if a spectral line of frequency vo = 30 GHz and width 
Llv = 500 kHz is to be studied in the frequency range vo±3Llv, for example, (vJvO)2 
will not differ from unity by more than 1 part in 104 . 

(b) "Soft" Molec'ules 

If the result of Anderson (1949) that aOC Vr-1 is assumed to be valid for all 
collisions, irrespective of the distance of closest approach of the molecules, it follows 
from equation (3) that Tv = f and hence that Tt, is independent of v. The absorption 
coefficient is then given directly by equation (1), and may be expressed in the form 

(9) 
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In order to facilitate comparison with equation (8), the shape function 

is also plotted as a function of u in Figure 1. It has a maximum when u = ° but falls 
to half the maximum value when u = ±l; this implies a half-width of ~v, as has 
been already stated. The points of steerest slope are given by the solutions of 

d2H/du2 = 0, 

which are u = 0·577 ~v. 

0·5 

0·4 

j·O 2·0 
u 

Fig. I.-The line-shape function G(u) for hard-sphere interactions 
(full curve) is compared with the Lorentz shape H(u) (dashed curve). 
The abscissa u represents the dimensionless parameter (v-vo)/Av. 

III. CONCLUSIONS 

It has been shown that the predicted shape of a collision-broadened spectral 
line depends on the assumptions made about the nature of the collision processes 
involved. If the cross section for line-broadening collisions varies inversely as the 
relative speed of the colliding molecules, the line shape is described by the Van 
Vleck-Weisskopf modification of the Lorentz theory; if not, departures from the 
Van Vleck-Weisskopf shape may be expected, and in the limiting case of hard-sphere 
collisions, these departures are of the order of several per cent. While it is not for a 
moment suggested that molecules do, in fact, behave entirely as hard spheres, it is 
suggested that some deviations from the Van Vleck-Weisskopf shape may occur, 
and hence it would be of interest if the shape of a collision-broadened line could 
be measured to an accuracy of, for example, 1 %. A line in the microwave region of 
the spectrum appears most suitable for such an investigation, since at pressures 
above a few millitorr collisions provide the only line-broadening mechanism of 
significance. A line broadened by non-polar foreign gas collisions would be more 
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appropriate for study than a self-broadened line, since in the former case the collision 
diameters for line broadening are not greatly in excess of those deduced from trans­
port phenomena (Burton et al. 1965; Roberts and Parsons 1966), and hence the 
effect of a "hard-sphere core" may be more apparent. This may not now be beyond 
the range of possibility, since existing microwave line-width spectrometers are 
capable of an accuracy of better than 2%. However, such instruments merely 
measure one parameter of a spectral line (the half-width); the development of an 
instrument for measuring the complete line shape presents difficult experimental 
problems but these appear worthy of investigation. 
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APPENDIX 

Consider first a problem in geometry. Suppose 
that a sphere of radius a has a large number of 
points uniformly distributed over its surface and 
that one of these points is P. Suppose further that 
a second sphere, concentric with the first but of 
radius aI, has points, one of which is Qt, uniformly 
distributed over its surface, there being a large 
number n of points per unit surface area. It is 
required to find the mean distance PQt averaged 
over all the points Qt. Using the nomenclature of 
Figure 2, this mean distance 8 will be defined as 

8 = lim {47Ta~n)-l ~ PQ, 
n .... co 

Fig. 2 
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On writing 82 = a2+a~-2aal cos 8, this becomes 

8 = (2aal) -1 fS2 i dB , 
8, 

where the limits of integration are 

81 = al-a and 82 = al+a if a < aI, 
or 

81 = a-al and 82 = a+al if a> al. 
Hence 

8 = al +a2/3al if a <al 
and 

8 = a+aV3a if a> al. 

Now consider It large number of molecules whose speeds are distributed accord­
ing to the Maxwellian function, equation (6). It follows from the above analysis 

, that the mean speed of all those molecules whose speeds are v in the laboratory 
frame relative to those whose speeds are VI in the same frame will be VI +V2/3vl if 
v < VI and v+vV3v if V > VI. On averaging over all values of VI, the result is 

where 

2'0 

1'5 

@ 
"-

1·0 

0'5 
0 1'0 

f3 

Fig. 3.-Relative speed distribution 
function F(f3) plotted as a function 
of the dimensionless parameter 
f3 = v(m/2kT)t. 

Successive integration by parts then gives the expressiou for Vr used in the text, 
namely 

Vr = 2e:r( texp(-,82) +(,8+1/2,8) J: exp(_y2) dY) 

= 4(kT/7T'm)1 F(,8), 

where,8 = v(m/2kT)1. 

(AI) 
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In Figure 3, F(f3) is plotted as a function of f3. When v = 0, Vr = 2(2kTjTTm)1, 
and this is the mean speed relative to the laboratory frame of reference; for very 
large values of v, Vr -l- v and this also is as expected. As a further check of the validity 
of equation (AI), the quantity 

was evaluated numerically, and gave a result equal to iTT!; this then yields the value 
4(kTjTTm)! for the mean relative speed averaged over the whole distribution, in 
agreement with equation (4). 


