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Summary 

A theory is developed for the treatment of quantized signals and for the 
estimate of correlation from quantized signals of only finite length. Different 
quantization systems can be compared on the accuracy of estimation of correlation 
for the same record length. For Gaussian statistics it is shown that with low values 
of correlation the efficiencies of one, two, and three bit quantizations are respectively 
64, 89, and 95% with respect to continuous multiplication. For highly correlated 
signals the one bit system becomes the most efficient. 

I. INTRODUCTION 

In practical systems of correlation measurement one has only a finite record 
length of the random variables X(t) and Y(t). The normalized correlation pT will 
hence be only an approximation to the true correlation p obtatined from an infinite 
record length. If ergodicity is assumed, different records of the same length T will 
give pT, which will fluctuate about p with some standard deviation aT. It is 
convenient then, to consider p as the "signal" and aT as the "noise" in a definition 
of output signal to noise ratio. 

The signals X(t) and Y(t) would have to be sampled in time and quantized in 
amplitude if a computer were to be used to determine the correlation. We define 
{X(i)} and {Y(i)} as the quantized and sampled forms of X(t) and Y(t). The 
normalized and averaged product of X(i) and Y(i) over N samples is denoted by pN. 
However, p is not, in general, a linear function in p. For the quantized signals the 
estimate of correlation is given in terms of the function A relating p to p as 

(1) 

By a knowledge of the statistics of X(t) and Y(t) and hence those of pN, the 
output signal to noise for the record length N and quantization system chosen is 
given by piaN where aN is the standard deviation of the value of pN about p. The 
signals X(t) and Y(t) could be quantized in an infinite number of ways and each 
system would produce its own estimate of correlation and output signal to noise 
ratio. By defining efficiency as the decrease in output signal to noise of the estimate 
of p in one quantization system with respect to continuous multiplication for the 
same signals and record length, one can compare the various quantization systems. 

It is well known that the output noise is inversely proportional to the square 
root of the record length, so a knowledge of the statistics, and hence efficiency, for only 
one sample length is sufficient for all record lengths. 
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Systems to which such a theory is applicable include the square·law detector 
(X(t) = Y(t)), the polarity coincidence correlator (one bit correlation), and the 
more complex forms of correlation detection. The problem of correlation of quantized 
signals but with infinite records has been treated before, and after a review of the 
quantization process the later sections develop an approach to the less elegant 
problem of finite record length. The results are from an application of this to four 
types of quantizations of Gaussian signals. 

II. QUANTIZATION PROCESS 

Bonnet (1962) considers a general quantization function, but it is only necessary 
here to consider the one which is shown by him to maintain a zero mean and which 
gives a finite correlation output for very weak signals. The quantizing system consists 
of bands of width q such that, if X(t) lies within this band, it takes on the value of 
the midpoint of the band. In general we consider the origin at a transition between 
bands and an equal number (K -1) of bands on either side of the origin. That is, 
for integers K, k, and q, 

x 

(-K+t)q 

X(i) = (k-t)q 

(K-t)q 

if X(t) < (-K+l)q, 

if (k-l)q <:: X(t) < kq, 

if X(t) > (K-l)q, 
} (2) 

Fig. I.-Finite quantization 
system with K = 3 and bands 
of width q in which X is 

transformed to X. 

Figure 1 illustrates the case where K = 3. The above 
definition is general in that it includes infinite clipping 
(K = 1), infinite quantization (K -+ 00, q finite), the 
linear limiter (q -+ 0, K -+ 00, Kq constant), and the 
identity (Kq -+ 00). 

III. FINITE QUANTIZATION 

Given the statistical properties of the signals X(t) and Y(t), it is possible to 
give formulae for the estimate pN, the standard deviation (jN of pN about p, and the 
function A relathl1;; p to p. 

If p(X) is the probability distribution (pdf) of X, we define a quantity P j by 

PK = fa) p(X) dX, 
(K-l)q 

(-K+2) <::j <:: (K-l), 

fiq 
P j = p(X) dX, 

(i-l)q 
(3) 

j integer. 

f<-K+1)q 
P(-K+1) = _ a) p(X) dX , 
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Then p(g), the probability density distribution of g, is 

(4) 

where 8(x) is the Dirac delta function. 

In two dimensions consider functions X and Y with correlation coefficient p 

and joint pdf of p(X, Y;p). If both X and Y undergo the same quantization to 
g and r we can express the joint distribution of X and t in terms of zPi ", where 

(-K+I) <j,k < K, } 

j, k integers. 

fbI fdk 
2P1k = p(X, Y;p) dY dX, 

41 CI< 

(5) 

The limits of integration are defined as: 

(j-I)q if (-K+2) <j <K, 
aJ = if j = (-K+I), -00 

00 if j=K, 
bJ = . 

Jq if (-K+I) <j <K-I, 

(k-I)q if (-K+2) <k <K, 
Ck = 

-00 if j = (-K+I), 

00 if k=K, 
d" = kq if (-K+I) <k <K-I. 

The joint pdf is then p(X, Y; p) and is given by 

(6) 

where Z8(x, y) is the two-dimensional Dirac delta function. For the case of interest 
here, we desire an expression for the pdf of the random variable z equal to the 
product gr. Evidently p(z) is a discrete distribution given by 

K K 
p(z) = ~ l; ZPJk 8(z-(k-!)(j-!)q2) j,k integers. (7) 

-K+l -K+l 

The mean of z is 

z = fex> zp(z) dz = ~ l; 2Pik (k-!)(j_!)q2 
-ex> j lc 

(8) 

and the mean square is 

(9) 
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When z is normalized to the value at p = 1, it is identical with p while ~1 is the 
standard deviation of p(z} normalized in the same way, i.e. 

(1O) 

IV. CALCULATION 

Another way of considering the transformation is via a plot of p(X, Y;p} on the 

L 
,oJ -x 

Y: 

. ,. 
-~- --+----------

two-dimensional X, Y plane cut into squares of side 
Q. The distribution p(X, Y; p} is a two-dimensional 
distribution of delta functions on the centres of the 

. • 1. 

squares and with values 2PIJ , where 2P1f is the 
~-:.. :-r--------x integral of p(X, Y;p} over that particular square 
(b) i (see Fig. 2). That is, p(X, Y; p} can be represen-

Fig. 2.-The pdf 
p(x, Y;p) plotted for: 

(0) K ~ 1 
(b) K ~ 2 
(c) K ~ 4 

ted as the two-dimensional array of numbers 
A(1, J) = 2Pij in which an increment of unity in 
the index represents a shift of q on the X or Y 
axis. When the product X Y is formed, a one
dimensional array of numbers B(M} is obtained 
in which M represents multiples of iQ2• The 
multiplication can thus be considered as a trans

formation on the indices rather than an operation on the actual values of Pli' 

Henceforth consider a symmetrical pdf so that we need treat only the first 
and fourth quadrants, say. In the first quadrant let the array A(1,J) = 2P1j be 
the representation of p(X, Y; p), where 1 and J are positive integers by definition. 
A symmetrical pdf implies that p(X, Y; p) is symmetrical about the 45° axis and 
so, for the case 1 -=1= J, XY takes the value (1 -t)(J -t) in four positions on the 
X, Y plane: 

(1-t)(J-t) = (J-t)(1-t) = (-1+t)(-J+!) = (-J+!)(-1+t)· 

Therefore if 1 -=1= J and 1> J, B(M) = 4A(1,J}, where M = (21-1)(2J-1) is a 
multiple of !Q2. 

On the 45° axis 1 = J and there are only two positions where X Y takes the 
value (1 _t}2. Hence B(M) = 2A(1, 1) in the first quadrant. Thus the positive axis 
of B(M) can be found: 

B(M) = I~l C~: 4A(1,J)8(M-(21-1)(2J-1})) + I~l 2A(1,1}8(M-(21-1)2). 

(ll) 

In the fourth quadrant the same arguments apply and p(X, Y; p) is represented 
by the array C(N,L) = P".-I+1 and Nand L are integers 1 ... +K. Taking the 

product XY gives the negative axis of B(M), represented by B(W), 

K (N-l ) K 
B(W} = N~l L~l 4C(N,L) 8(W-(2N-1)(2L-1)) + N~l 2C(N, N}8(W -(2N _1}2). 

(12) 
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Evidently the mean value of X Y is 

(13) 

and the mean square is 

Z2 = (M~1 M2B(M))~; +(W~1 W2B(W))~;. (14) 

In general it is very difficult to determine the values of PIf. Numerical 

integration seems the only solution. For example, if X and Yare Gaussian variables, 

the case p = 1 is the only one expressible in closed form (and then in terms of the 

error function). A computer programme can perform the operations specified by the 

above equations. It would give results enabling the function p = A(p) and the 

value of &1 to be plotted for various values of p and quantization systems. 

v. PRODUCT OF Two GAUSSIANS 

The primary purpose of the calculations is to compare the various quantization 

systems with the signal to noise ratio of continuous multiplication of two Gaussian 

signals of finite length. The pdfp(z) has to be found where z = XY, the product 

of the two Gaussians X and Y, and where p(z) dz is the probability that z is between 

z and z+dz. On a plot of the two-dimensional pdf, p(x,y;p), p(z)dz is thus the 

integral of the areas between the curves z = xy and z+dz = xy, that is, the area 0, 

p(z)dz = fLp(X,y;p)dxdy. (15) 

The result is one that is well known in statistics and is given, for example, in more 

general form by Wishart and Bartlett (1932). In an information-theory context it 

is derived by Lampard (1956), and in the present notation it is the less general 

expression 
(16) 

where Ko(x) is the modified Bessel function of the first kind of zero order. 

As p(z) is a proper probability density, it normalizes and so, integrating (16) 

from -00 to +00, 

With the new variable u = zj(l-p2), 

(18) 

and so 
(19) 
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This can be differentiated on both sides with respect to p to give 

-t(1-p2}-3/2(-2p} = 7T-1 I: <Xl uexp(pu) Ko(u} du, (20) 
which is just 

(21) 

(22) 

Hence the mean of z is 

z =p. (23) 
This is also clear from first principles. 

Equation (20) may be differentiated again to give 

(24) 
and so 

= I: <Xl Z2p(Z} dz. (26) 
Hence 

(27) and the variance is 

(28) 
The output noise to signal ratio for continuous multiplication is hence 

(29) 
Obviously the higher moments could be found by continuation of the differentiation 
process. 

VI. RESULTS 

By using the formulae of Section IV, the output noise to signal ratio could 
be calculated for Gaussian statistics and for values of K from 1 to 4 with correlation 
coefficient p and quantization level Q (fraction of standard deviation) as parameters. 
The mean of X Y represents p when it is normalized to the value for the case p = l. 
Hence it is possible to trace curves of p = A(p) for various K and Q as shown in 
Figure 3. As expected, for K increasing, the system behaves more closely in character 
to the continuous multiplication, while for a given value of K there is a value of 
Q at which the quantization best approximates the continuous case. K = 1 represents 
the infinite clipping or one bit case and the curve is the (2/7T}sin-1p curve given by 
Van Vleck (1943). 
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It is also possible to plot the ratio of 8-1/p against p, K, and Q. Denoting this 
ratio by N/B, Figure 4 also shows that, for a given K and p, an optimum Q exists 
for least noise. 

1·0,----,---------,---·--,----., 

0·81------1 

0·2j------;,w,;&C---j-----t----+----i 

0'2 0'4 0,6 0,8 \'0 
True correlation p 

Fig. 3.-Plots of output 
correlation coefficient p against 
input p for various quantization 
systems and operating 
conditions. 

To obtain the relative efficiencies of the quantization systems, the values of oJ. 
must be found through the use of the curves of p versus p. A quantized correlation 
measure on one sample would give an estimate pI = A{pl), and a1 is the standard 

100 

\0 

V 
(a) 

0·\ 
0·2 

100 

\0 

-
(c) 

0·1 
0·2 

~ -u· 

0·\ 

0·4 
0·8 

0·98 

\·0 

Q 

l ~ 0·\ 
--
0·4 
0·8 

0·98 

0·4 

Q 

l~o.\ 
0·4 

0·8 -- 0·98 

(b) 

\·8 0·2 0·6 \·0 

Q 

(d) 

0·6 0·2 0'6 \·0 

p 

Fig. 4.-Plots of output noise 
to signal ratio NIB against 
step width Q (fraction of 
standard deviation) for various 
values of p and 

(a) K = 2, 
(b) K = 3, 
(e) K = 4, 

and against p for 
(d) K = 1 and 

continuous. 

deviation of pI about p. The a'S are related since errors in the measurement of p 
and p are related; a1 is merely the value 8-1 divided by the slope of the appropriate 
curve in Figure 3 at the relevant value of p. The ratio a1/p is hence the noise to 
signal ratio of the estimate of correlation with that particular quantization system 
and record length. This ratio is plotted in Figure 5 as a function of p for various 
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quantization types. The following section interprets these clirves in terms of the 
two practical uses: correlation and power measurement. 

p 

Fig. 5.-0utput noise to signal 
ratio NIB plotted against p for 
various systems to indicate 
relative efficiencies. 

VII. PRAOTIOAL MEASUREMENT 

The determination of correlation between two slightly correlated signals is 
important in radio astronomy for the study of polarization and also spectral lines. 
In these cases the correlation is usually small and, as Figures 3, 4, and 5 indicate, 
linearity is approached. By normalizing the output signal to noise ratio of the various 

TABLE 1 
EFFICIENCIES RELATIVE TO A CONTINUOUS SYSTEM 

System 
p 2 3 4 

Continuous K = 1 Q = 1·0 0·6 0·4 

0·1 100 64·2 88·5 93·6 94·6 
0·2 100 67 90 95 96·5 
0·3 100 71 93·5 99 100 
0·4 100 77·5 98 103 106 
0·5 100 87 103 109 112 
0·6 100 102 110 115 120 
0·7 100 121 113 119 125 
0·8 100 168 125 131 138 
0·9 100 282 142 138 148 
0·95 100 480 160 151 155 

systems to that of continuous multiplication at each value of p, Figure 5 is 
re-represented in Table 1 as a list of relative efficiencies. This table confirms the 
relative efficiencies of 0·64 for one bit and 0·88 for two bit as given by Weinreb 
(1963) and Clark (1967) (for his n = 9 and m = 3), in the limiting case where p 

tends to zero. 
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However, against these curves and efficiencies must be placed the practical 
complexities of implementing a quantization system. For a rapid many-point 
determination of a correlation function, many multipliers are needed and in this 
case the one bit system is simplest .. The operations for a one bit system would be 
binary arithmetic so that the only source of error could be in determination of the 
point where the signals change sign. The electronics are simple and work rapidly 
(5 MHz), as has been shown, for example, by Weinreb (1963). 

Calibration is simply a count of N, the record length. This gives the value 
which would be obtained in the case p = 1 and which enables an immediate 
determination of pN as sin{t7TpN). Systems of two, three, or higher bits involve 
several levels apart from zero that divide the amplitude of the signal into bands 
of width Q. It is evidently important to consider the effect of absolute level and 
stability of level on the system performance. Determination at the zero level of 
amplitude is extremely accurate by the use of amplifiers and limiters. The levels 
above and below zero must be generated in the quantizer and held stable. The theory 
in this paper uses levels as a fraction of the standard deviation of the signal, which 
is generally an unknown. In other words, the absolute level as a fraction of the 
standard deviation would not be known extremely accurately. The theory would 
indicate the region of maximum efficiency and only calibration could determine 
the actual function p = A{p). Fortunately Figure 4 indicates that efficiency is a 
slowly varying function of the level Q. 

Consequently, the important point with multiple bit systems is the stability 
of the quantizer. The quantizer as well as the level of the signal would need to be 
stable between calibrations to a level commensurate with the level of correlation 
coefficient being measured. Calibration would be more complicated as it not only 
requires a knowledge of the output for two completely correlated signals but another 
test signal is required to determine the level Q and hence the relation p = A{p). 

In other applications (particularly in radio astronomy for correlation receivers, 
for compound arrays, and for polarization measurements) the actual correlation 
coefficient between two signals is not required. In these cases the actual output of 
the correlator is used as an indication of power of the correlated component. 
Calibration is then achieved by insertion of a signal of known power. 

The two applications are related in that, if a; is the power of the correlated part 
and a~ the power in the uncorrelated part of each of the assumed equal channels, 
the value a; can be expressed in terms of the correlation coefficient of the two signals 
as 

a; = {p/{l-p)}~. (30) 

For small excursions around the operating point, the relative efficiencies will be 
the same as before. Again the result emerges that for operating points at high 
values of p the one bit system is the most efficient. 

VIII. CONCLUSIONS 

This paper has presented an approach to the general problem of correlation 
measurements on quantized Gaussians of only finite length. The results for Gaussian 
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statistics and one, two, and three bit quantizers indicate that for p greater than 0·3, 
three bit is more efficient than continuous, while for p greater than 0·6 or so, 
one bit is the most efficient. For the other extreme of low values of p, one bit is 
only 65% efficient and a large increase in efficiency to 89% can be obtained by the 
small increase in complexity of two bit representation. The rewards of three bit 
representation are only another 6% greater than two bit. 

In general the efficiencies and optimum operating positions are very much a 
function of the system parameters and one would need to know the approximate 
system parameters before any ideal operating conditions could be chosen. 
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