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Summary 

In this paper the influence of a purely toroidal magnetic field upon the 
structure of a poly trope is investigated and the first. order perturbations in the 
density distribution, the geometry of the boundary, and the mass-radius relation 
are obtained. 

I. INTRODUCTION 

In a recent paper, Van der Borght (1967) has investigated the structure of a. 
polytrope in the presence of a magnetic field having both poloidal and toroidal 
components. The structure of a polytrope in the case of only a toroidal field does not, 
however, follow from his investigations. Roxburgh (1966) investigated the structure 
of a toroidal magnetic field in a polytrope, and in a following paper (Roxburgh 1967) 
indicated the form of the radial perturbation of the polytrope n = 3 in the presence 
of a toroidal magnetic field but did not give any detailed calculations. 

The existence of a toroidal magnetic field in a polytrope ,is not unrealistic. 
In the present work, we study the effect of a toroidal field on the structure of poly­
tropes employing a method previously used by Chandrasekhar (1933) to study 
rotating polytropes. The geometry of the boundary, the oblateness, and the mass 
variation are obtained for polytropes n = 1·5(0·5)3·5. 

II. GENERAL EQUATIONS 

The general Lundquist equations for a self-gravitating fluid are 

DV Vp 1 
-.- = ---VcJ>+ ::-(VxB)xB, 
Dt p ~p 

(1) 

8p/8t = -V. (pV), (2) 

8B/8t = Vx (Vx B), (3) 

V.B=O, (4) 

and DB/Dt = 0, (5) 

where V is the velocity of the fluid, B is the magnetic field, p is the pressure, p is the 
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density, 8 is the entropy, J is the current density, il is the permeability of the medium, 
and DIDt = f)1f)t + V. V. Further, the gravitational potential tP satisfies the Poisson 
equation 

VltP = 47rGp . (6) 

In spherical coordinates (r, {},,p), the field may be expressed as 

B == (O,O,B). 

In the absence of any azimuthal velocity component, equations (2)-(5) may be solved 
to obtain 

Blrsin{}p =1(8), 

giving a general expression for B. 

III. EQUILIBRIUM CONFIGURATION 

In the steady state, which we take as the equilibrium configuration, the energy 
equation (5) can be replaced by the polytropic equation 

where K is a constant and n is the polytropic index. B now may be given by 

B = Lrsin {}p, 

(7) 

(8) 

where L is a constant. The equation (8) gives the same expression for B as that 
obtained by Roxburgh (1966) in a different way for a polytrope in equilibrium. 

In the equilibrium state, equation (1) gives rise to the equations 

fJp f)tP ~ f)B BI _ ° 
f)r +,o-e;:- + il f)r + ilr - , 

fJp atP B f)B BI 
f){} + Pfi8 + Ii f){} + il cot {} = ° . 

Using equations (7) and (8), the above equations can be solved to give the integral 

On substituting equation (9) into equation (6) we obtain 

We write 

p = 'A€J", 1"= cos 8-, 

r = cxf, 

(XI = {(n+l)/41rG}K'A,,-l-l, 

pI = LI/47rGil, 

(9) 

(980) 

where 'A is the central density, e is a dimensionless distance, and pI, the square of a 
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oharaoteristio Alfven Maoh number of the medium, is a measure of the strength 
of the magnetio field. The equation (980) becomes 

and it is this equation that has to be solved to find the density distribution in a 
polytrope in equilibrium with a toroidal magnetio field. 

In the absenoe of a magnetio field (fJ = 0) the above equation reduoes to Emden's 
equation 

(11) 

of index n, where the spherioally symmetrio function 0 is introduced by Pu = ),05 , 

the subscript u denoting the solution for the unperturbed poly trope. 

Assuming the magnetio field to be small (fJ2 ~ 1), a solution of equation (7) 
will be sought in terms of 0, up to first order in fJ2, by oonsidering a solution of the 
type (of. Chandrasekhar 1933) 

(12) 

Substituting equation (12) into equation (lO) and using equation (11), it is found 
that 'l'satisfies the equation 

:2:i e2~~) + :2~{( 1-/L2)~~} +n8ft-1'l' 

= (/L2- 1) :2:Ae2 :i tOft)} _(6/L2_2)05. (13) 
From equation (12), it follows that 

'P is expanded as 

and we find that 

'l' = 8'l'/8e = 0, at e=o. 

00 

'l' = ,Me) + 1': "'jU)Pj(/L), 
1-1 

"'1(0) = "'/(0) = O. 

(14) 

Substituting the expansion (14) into equation (13) and equa.ting ooeffioients of 
Pj(/L), we get the equations 

j =F 0,2, (15) 
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and 

~:e( e2 : O) = _nOn-1~O -; ;2:Ae2 :/ e20n)} (17) 

to determine the ~j. 

The equation (15) is different in form from equations (16) and (17), in as much 
as if ~j is a solution of (15) so is A1~1' where Aj is an arbitrary constant. A proper 
expansion of 'P would then be 

<Xl 

'P = ~oW +~2W P2(1L) +~' Aj ~1W Pj(lL) , 
1=1 

(18) 

where the prime denotes excluflion of the term with j = 2 from the summation. 
Equation (10) does not contain f/J explicitly and remains the same whatever be the 
external gravitational field. This indeterminacy may be resolved by calculating the 
potential from the solutions found and then making it satisfy the basic equation 
(9). This will also lead to the determination of the A j • 

Poisson's equation (6) may be rewritten as 

1-~(eOf/J) +1-~(I- 2,of/J) e2 oe oe e2 OIL IL OIL 

= _D[On+nOn-ltf{~O+~2P2(1L) + ~' A1~1P1(1L)}], (19) 

where D = -(n+I)KAn -1. To the first order in fJ2, f/J may be developed as 

f/J = q)+fJ2( f/JoW + 1~1 f/J1W Pj(IL») , 

where q) is the potential of the polytrope without a magnetic field. Substituting 
in equation (19) and equating the coefficients of P1(1L), we get the equations 

j =F 0,2, (20) 

(21) 

(22) 

1 d (..adq»), n e2de r; 'de = -DO. (23) 
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Equation (20) becomes, using equation (15), 

Since there is no singularity at the centre, the admissible complementary function 
is DBJgi, where BJ is any constant. A particular solution is given by (/>i = DAiifsi' 
Hence the general solution is 

j =F 0,2. 

Equation (21) treated with equation (16) yields 

and, as above, its solution is 

where B2 is constant. Substituting for ifso from equation (17) into equation (22), we 
get 

which has the solution 

(/>0 = D(ifso+ ig2 on) + constant. 

Finally, comparing equation (23) with Emden's equation (11), we get 

(j) = DO + constant. 

Substituting these values of (j) and (/>i in equation (14), the expression for (/> becomes 
after a readjustment of terms 

(/> = D{@+,82(~1 Bigi Pi(p.) +ig20IZ{I-P2(p.)})} + constant. 

(/> so obtained must satisfy equation (9) identically, and this gives 

It follows that Bi = 0 for allj. Hence 

(/> = D[@+i,82g20n{I-P2(p.)}]+constant. (24) 
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Furthermore, the potential arising from the mass must be continuous with the 
potential in the free space outside on the boundary. The density, being of higher 
order than the first, in the space between g = 6, the first zero of Emden's function 
with index n, and the new boundary g = go, is negligible here. Thus on g = 6, 
f/J and its normal derivative should be continuous to the first order with those of 
f/Jext, which may be expressed as 

Bearing in mind the requirement n > 1, arising from the fact that p and V X B 
vanish at the boundary, we find that the above conditions imply that 

(i) AJ = 0, j =F 2, and 

(ii) gl !f;(6) +3!f2(6) = o. (25) 

Hence the solution is given as 

where !f2 and !fo are the solutions of equations (16) and (17) respectively. This 
specifies the structure of a polytrope in equilibrium with a toroidal magnetic field. 

IV. NUMERICAL INTEGRATION 

It is not possible to solve equations (16) and (17) exactly. Assuming the 
expansions 

!fo = -ig2+ ... , 

!f2 = "'2g2+ ... , 

and 8 = I-M2+ .. . 

at the centre, these equations were integrated numerically using a Runge-Kutta 
method together with Emden's equation (11) for the cases n = 1· 5(0·5)3· 5. A 
suitable value for "'2 was determined so that the boundary condition (25) is satisfied. 
Values of!fo and!f2 obtained for polytropes of different indices are given in Table 1. 
The value of "'2 in each case is also given there. 

V. NEW BOUNDARY 

On the surface e(go) = 0 and this gives the expression 

for the new boundary. The second term gives the mean expansion of the polytrope, 



TABLE 1 
PERTURBATIONS IN DENSITY FOR n = 1·5(0·5)3·5 

Parameter Perturbations 
"'2 n = 1·5 

~/6 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0 } 
rn 
8 10",0 -0·852 -2·984 -5·339 -6·732 -6·382 -4·182 -0·654 3·323 6·812 8·824 1·149 ~ 10"'2 1·489 5·384 10·230 14·321 16·379 15·942 13·380 9·609 5·751 3·087 
~ n = 2·0 

~ ~/6 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0 } 10",0 -1·163 -3·627 -5·311 -4·884 -2·495 0·792 3·891 6·161 7·417 7·746 1·153 0 
I,;l 10",2 2·049 6·797 11·290 13·325 12·553 9·962 6·841 4·125 2·266 1·376 

~ n = 2·5 

~ ml 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0 } 10",0 -1·637 -4·113 -4·108 -1·589 1·618 4·179 5·728 6·429 6·582 6·458 1·157 :j 10"'2 2·944 8·390 11·246 10·450 7·796 5·034 2·944 1·633 0·937 0·635 0 

'"d 
0 n = 3·0 
t-< 
~ ml 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0 } 8 10",0 -2·335 -3·764 -1·216 2·118 4·301 5·303 5·585 5·521 5·526 5·114 1·160 ~ 
0 10",2 4·374 9·433 9·078 6·232 3·653 1·991 1·066 0·596 0·374 0·268 '"d 
t.:zj 

n = 3·5 
ml 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0 } 10",0 -3·106 -1·382 2·434 4·301 4·790 4·719 4·476 4·212 3·975 3·778 1·162 10"'2 6·461 8·287 5·036 2·516 1·216 0·606 0·327 0·200 0·141 0·109 

t¢ 
00 

'" 
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whereas the third term gives rise to an ellipticity. Since the value of P2(J.k) is +1 
at the poles and -t at the equator, the oblateness of the configuration is given by 

8 _~ ~2(gl) ~2 
- 2 6(dO/dg)~~~, ' 

and depends upon the strength of the magnetic field. The values of the relevant 
quantities are given in Table 2, for different values of n. 

n 

1·5 
2·0 
2·5 
3·0 
3·5 

TABLE 2 

VALUES OF PARAMETERS DEFINING NEW CONFIGURATION 

6 - .po(gl)/IJ'(6) - .p2(gl)/IJ'(6) S/j32 - .pO(6)/IJ'(gl) 

3·65375 4·340 1·389 0·570 
4·35287 6·087 1·081 0·373 
5·35528 8·464 0·832 0·233 
6·89685 12·045 0·631 0·137 
9·53581 18·166 0·526 0·083 

VI. MAss OF NEW CONFIGURATION 

To the first order in ~2, the mass of the polytrope may be given by 

M = 41T f r2p dr . 

-0·181 
0·142 
0·434 
0·681 
0·899 

The ellipticity term does not contribute anything on the average. The mass is, 
therefore, 

M = 41T( ~;~ K ,\i(3-n)n-' f/2 (' (On +~2nOn-l~o)g2 dg 

= _41T(n+1 K ,\H3-n)n-' )3/2 g~(dO) {1+~2(d~o -:-- dO) }, 
47TG dg ~, dg dg ~, 

obtained on using equations (11) and (17) and remembering that n > l. 

If M u is the mass of the polytrope with the same central density when there 
is no magnetic field, we get 

M = Mu{1+~2(~O -:--1:tJ, 
which shows that a magnetic polytrope with a toroidal field has a greater mass only 
if d~o/dg < 0 at the boundary. Values of ("'~/O')~ are given in Table 2. 

1 

VII. DISCUSSION 

It is found that ~o is negative from the centre up to a fraction € of the radius, 
when it becomes positive and remains so to the surface, which shows that the inner 
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core of the perturbed polytrope is less dense and the outer layers are more dense than 
the unperturbed one. The value of E decreases with increasing value of n. 

The structure of the polytrope depends largely upon the strength of the mag­
netic field, but the polytropic index n has also a remarkable influence on it. The 
relative mean: expansion, -ljJo(6)/{68'(6)}, of .the polytrope increases and its ellip­
ticity decreases with increasing values of n. Thus perturbed polytropes with larger n 
are relatively larger in size and less elliptical in shape. 

The mass M has been shown to be greater than, equal to, or less than M u 

according as 

( dljJO) :s 0 
df ~~~1:; . 

It is found that (ljJ~)~l is positive for small values and negative for large values of n. 
Equation (17) was integrated with n as an eigenvalue and the above critical value 
was found to correspond to n = 1·80. It follows that a magnetic polytrope with the 
toroidal field (8) has a greater or smaller mass according as its polytropic index is 
greater than or less than 1·80, and further, that this ratio increases with n. 

VIII. ACKNOWLEDGMENTS 

The author wishes to thank Dr. E. D. Fackerell and Professor R. Van der Borght 
for their helpful comments and interest in this work. 

IX. REFERENCES 

CHANDRASEKHAR, s. (1933).-Mon. Not. R. astr. Soc. 93, 390. 
ROXBURGH, I. W. (1966).-Mon. Not. R. astr. Soc. 132, 347. 
ROXBURGH, 1. W. (1967).-Mon. Not. R. astr. Soc. 135, 329. 
VAN DER BORGHT, R. (1967).-Aust. J. Phys. 20, 643. 




