VARIATIONAL CALCULATIONS FOR THREE-BODY S-STATES WITH COULOMB INTERACTIONS

By L. M. Delves* and T. Kalotas*
[Manuscript received February 26, 1968]

Abstract

Summary A general purpose programme designed to deal economically with the S-states of arbitrary systems interacting only via the static Coulomb interactions is described. Its aim is to simplify the calculation of the matrices of arbitrary operators with respect to the basis chosen; these matrices are then available for use in a variety of variational calculations. A number of illustrative calculations are presented which yield both upper and lower bounds for the energy of some typical systems and expectation values for a number of operators.

I. Introduction

There have been a number of previous attempts (Kolos, Roothaan, and Sack 1960; Frost, Inokuti, and Lowe 1964) to produce a general purpose programme for treating the S-states of three-body systems interacting through Coulomb forces. These programmes have been based on the use of the Rayleigh-Ritz variation principle for the energy and, for a given choice of basis, have provided a convenient means of calculating the Hamiltonian and normalization matrices with respect to this basis set which are needed for an energy calculation.

The present programme has a similar aim. However, it differs in emphasis in two ways. Firstly, we are not primarily interested in calculations of the binding energy but in using the matrices produced by the programme to test a number of new variation principles and approximation schemes for bound and scattering states, and especially for investigating methods of calculating the expected values of operators in atomic systems. This aim requires that we produce the matrices of a large number of different operators W, including the Hamiltonian H, H^{2}, and compound (though not necessarily Hermitian) operators such as $W_{1} W_{2}$ and $H W$. We have made it especially easy to add new operators to the system; provided that these fall within the class of operators considered, the user has only to specify them in a formal way and is not concerned with the integrations involved.

The second difference in emphasis follows from the first. The major time in any variational calculation of the types considered is spent in performing the integrals needed to set up the Hamiltonian and other relevant matrices. We therefore gain considerable economy by computing and storing these matrices once and for all. Since we wish to vary the wave-function scale and the system parameters (the particle masses and charges), the operators H, H^{2}, and $H W$ are split into parts each of which has a simple behaviour under a scale change, and which are independent of the masses and charges.

[^0]
II. Basis Used

We use the following unsymmetrized set of basis functions

$$
\begin{equation*}
\psi_{l m n}(123)=\exp \left[-S^{-1}\left\{Z^{*}\left(l r_{1}+m r_{2}\right)+n r_{12}\right\}\right] \tag{1}
\end{equation*}
$$

and store all matrices with respect to the symmetrized set

$$
\begin{equation*}
\psi_{l m n}^{ \pm}(123)=\psi_{l m n}(123) \pm \psi_{l m n}(213) \tag{2}
\end{equation*}
$$

Here r_{1}, r_{2}, and r_{12} are the three interparticle distances (with particle 3 at the origin of the centre of mass frame). S is an overall scale factor that is set equal to 1 when the matrices of all operators are produced and stored. Matrices of interest to us for which the scale is not 1 are simply related to these by some power of S. Thus if $\langle T\rangle_{S},\langle V\rangle_{S}$, and $\langle\mathbf{l}\rangle_{S}$ are the matrices for the kinetic energy, potential energy, and normalization for arbitary scale S then

$$
\langle T\rangle_{S}=S^{4}\langle T\rangle_{S=1}, \quad\langle V\rangle_{S}=S^{5}\langle V\rangle_{S=1}, \quad\langle\mathbf{l}\rangle_{S}=S^{6}\langle 1\rangle_{S=1}
$$

Table 1
NUMBER OF COMPONENTS OF $\psi_{l m n}^{ \pm}$AS GIVEN by (3) FOR $N_{\min }=-1$

$Q_{\max }$	1	2	3	4	5	6	7	8	9	10	11	12
$Z^{*}>1$	1	3	7	13	22	34	50	70	95	125	161	203
ψ^{+}	0	1	3	7	13	22	34	50	70	95	125	161
ψ^{-}												
$Z^{*}=1$	0	1	4	9	17	28	43	62	86	115	150	191
ψ^{+}	0	0	1	4	9	17	28	43	62	86	115	150
ψ^{-}												

This makes it obvious how the scale can be varied during a calculation.
Z^{*} is a nonlinear parameter that is fixed within a given set of calculations. It is included to make some direct discrimination between the pair of particles $(1,2)$ and the third particle 3.

The triplets l, m, n are allowed to run through the integers subject to the restrictions

$$
\left.\begin{array}{c}
n \geqslant N_{\min }, \quad l \geqslant m, \quad l+m+n=Q \tag{3}\\
Q=N_{\min }+1, N_{\min }+2, \ldots, Q_{\max } .
\end{array}\right\}
$$

$N_{\min }$ in (3) is not restricted to be positive, but is considered as a nonlinear parameter. The parameter Q is conveniently used to order the triplets, all triplets of given Q being run through together. The total number of terms in the trial wave function that includes all components up to a given $Q_{\max }$ is listed in Table 1 for the choice $N_{\text {min }}=-1$.

The basis (1), (3) was chosen firstly to give a good representation of the wave functions of the helium sequence while minimizing the time required to construct the Hamiltonian and other matrices with the integration scheme used (see Section IV). For the ground state of the helium sequence the dominant term is expected to be $(l, m, n)=(1,1,0)$. However, the terms $(j, j, o), j>1$, also appear in the sequence
as defined by condition (3), and these terms dominate for appropriate choice of the scale S. The result is that for the ground state of the helium-like ions, although not necessarily for other systems, the energy shows a marked structure as a function of the scale S, with peaks at these preferred scales. For large numbers of terms, these peaks are not well resolved and the energy is almost independent of the scale factor over a wide region. This property of the basis is illustrated in Figure 1, which plots the energy versus scale for the system $\mathrm{He}\left(\mathrm{l}^{1} \mathrm{~S}\right)$.

Fig. 1.-Helium ground state ($\mathrm{He}\left(1^{1} \mathrm{~S}\right)$) energies calculated with the wave function (1) for various numbers of terms N. Note the structure in the dependence on the scale parameter S.

For systems other than helium and the helium-like ions we do not expect any one term to give a good approximation. The extent to which the basis (1) proves suitable for other systems is discussed in Section VI.

III. Hamiltonian and Other Operators

The S-state Coulomb Hamiltonian for three particles of mass $m_{1}, \dot{m_{2}}$, and m_{3} has the form (in atomic units)

$$
H=-\frac{1}{2}\left(\mu_{1}^{-1}+\mu_{2}^{-1}\right) T_{0}+m_{3}^{-1} T_{1}+\frac{1}{4}\left(\mu_{1}^{-1}-\mu_{2}^{-1}\right) T_{2}-Z V_{0}+V_{1},
$$

where the reduced masses μ_{1} and μ_{2} are given by

$$
\mu_{1}=m_{1} m_{3} /\left(m_{1}+m_{3}\right), \quad \mu_{2}=m_{2} m_{3} /\left(m_{2}+m_{3}\right) .
$$

The S-state operators $T_{0}, T_{1}, T_{2}, V_{0}$, and V_{1} are given by
$T_{0} \equiv-\frac{1}{2}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)_{\mathrm{S}}=-\frac{1}{2}\left(1+P_{12}\right)\left\{\frac{1}{r_{1}^{2}} \frac{\partial}{\partial r_{1}}\left(r_{1}^{2} \frac{\partial}{\partial r_{1}}\right)+\frac{1}{r_{12}^{2}} \frac{\partial}{\partial r_{2}}\left(r_{12}^{2} \frac{\partial}{\partial r_{12}}\right)+2 \cos \theta_{1} \frac{\partial^{2}}{\partial r_{1} \partial r_{12}}\right\}$,
$T_{1} \equiv-\left(\nabla_{1} . \nabla_{2}\right)_{\mathrm{S}}=-\left(1+P_{12}\right)\left\{\frac{1}{2} \cos \theta_{12} \frac{\partial^{2}}{\partial r_{1} \partial r_{2}}-\cos \theta_{1} \frac{\partial^{2}}{\partial r_{1} \partial r_{12}}-\frac{1}{2 r_{12}^{2}} \frac{\partial}{\partial r_{12}}\left(r_{12}^{2} \frac{\partial}{\partial r_{12}}\right)\right\}$,
$T_{2} \equiv-\left(\nabla_{1}^{2}-\nabla_{2}^{2}\right)_{\mathrm{S}}=-\left(1-P_{12}\right)\left\{\frac{1}{r_{1}^{2}} \frac{\partial}{\partial r_{1}}\left(r_{1}^{2} \frac{\partial}{\partial r_{1}}\right)+2 \cos \theta_{1} \frac{\partial^{2}}{\partial r_{1} \partial r_{12}}\right\}$,
$V_{0} \equiv r_{1}^{-1}+r_{2}^{-1}, \quad V_{1} \equiv r_{12}^{-1}$.
Here

$$
\cos \theta_{1}=\left(r_{1}^{2}+r_{12}^{2}-r_{2}^{2}\right) / 2 r_{1} r_{12}, \quad \cos \theta_{12}=\left(r_{1}^{2}+r_{2}^{2}-r_{12}^{2}\right) / 2 r_{1} r_{2}
$$

The above operators are separately Hermitian and are independent of the masses and charges of the system considered. Their matrices are stored separately in the computer programme. The operator H^{2} is also split into separately Hermitian parts such as T_{0}^{2}, ($T_{1} V_{0}+V_{0} T_{1}$), etc., which again do not depend on physical parameters such as mass and charge.

The operators W that we shall consider have the following effect when operating on the unsymmetrized basis (1)

$$
\begin{equation*}
W \psi_{l m n}=\left(\sum_{i} a_{i} r_{1}^{\alpha_{i}} r_{2}^{\beta_{i}} r_{12}^{\gamma_{i}}\right) \psi_{l m n} \tag{4}
\end{equation*}
$$

The parameters $a_{i}, \alpha_{i}, \beta_{i}$, and γ_{i} are used in the programme to define any one operator. Product operators such as $W_{1} W_{2}$ are generated within the programme from their separate expansions,

$$
\begin{equation*}
\left(\psi_{l^{\prime} m^{\prime} n^{\prime}}, W_{1} W_{2} \psi_{l m n}\right)=\left(W_{1}^{+} \psi_{l^{\prime} m^{\prime} n^{\prime}}, W_{2} \psi_{l m n}\right) \tag{5}
\end{equation*}
$$

This approach makes it straightforward to include extra operators in the code, provided that they have expansions of type (4), and at present some 60 operators have been included. In addition the delta function operators $\delta\left(r_{12}\right), \delta\left(r_{1}\right)$, and $\delta\left(r_{2}\right)$ have been coded.

IV. Integrations

In general, it is required to evaluate integrals of the form

$$
\left(\psi_{l^{\prime} m^{\prime} n^{\prime}}, W_{1} W_{2} \psi_{l m n}\right)
$$

For the simpler integrals one or both of the operators W_{1}, W_{2} may be the unit operator 1. For the other cases we use the result (5) and the defining expansions (4) for W_{1}, W_{2} in order to arrive at a typical integral

$$
\begin{equation*}
(\alpha \beta \gamma)=\int \psi_{l^{\prime} m^{\prime} n^{\prime}} r_{1}^{\alpha} r_{2}^{\beta} r_{12}^{\gamma} \psi_{l m n} \mathrm{~d} \tau \tag{6}
\end{equation*}
$$

Those integrals with $\alpha, \beta, \gamma \geqslant-1$ can be expanded in terms of perimetric coordinates (see Pekeris 1962) into a sum of analytic integrals. Working with single precision (48 bit word) the accuracy attained in evaluating such integrals is better than 1 part in 10^{10} on the machine used.

For some operators, for instance in parts of H^{2}, one or at the most two of the exponents α, β, γ can take the values -2. Integrals with one such exponent can also be evaluated term by term in perimetric coordinates. Those with two exponents with value -2 are reduced by a change of variables to a one-dimensional numerical integration for which the computed accuracy achieved is better than 1 part in 10^{6}.

V. Applications

Some of the calculations carried out using matrices provided by the programme have already been published (Delves 1967, 1968; Delves and Kalotas 1968). We give here some examples of their use in standard variational calculations, which demonstrate the application of the basis used to a variety of different systems.

Táble 2 gives upper and lower bounds for the energy of the lowest triplet and singlet states of helium, and for the heavy mu-mesonic molecule $d-\mu-d$, the hydrogen molecule ion H_{2}^{+}, and the positronium ion $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{-}$. These bounds explicitly include contributions coming from the finite-accuracy arithmetic used (see Delves 1968). The table also gives the expected values of a number of operators for these systems, calculated from the variational wave functions giving the upper bounds. In this table, the following parameters in (1) and (3) were used

$$
\begin{aligned}
N_{\min } & =-1 \\
Z^{*} & =\begin{array}{ll}
2 & \text { lower bounds, } \\
1 & \text { upper bounds and expected values. }
\end{array}
\end{aligned}
$$

VI. Discussion

The results of Table 2 show firstly that the basis (1) does provide a good representation of the lowest singlet and triplet states of helium. In addition, it provides at least a reasonably good representation of other Coulombic three-body S-states for a wide range of the relative particle masses. Indeed, the upper bound for the positronium ion $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{-}$appears to be the lowest yet published. The basis is least successful in describing systems, such as H_{2}^{+}, containing two heavy and one light particle; this is a defect it shares with other general purpose bases that have been proposed (Kolos, Roothaan, and Sack 1960; Frost, Inokuti, and Lowe 1964), which also fail to reflect adequately the extremely sharp peaking of the H_{2}^{+}wave function around the equilibrium position of the protons.

The lower bounds shown are interesting in that they demonstrate the flexibility of the programme. Lower-bound calculations have not been popular in the past, firstly because the bounds obtained are in general much worse than the upper bounds, and secondly because of the labour involved in deriving the necessary integrals. At least this second factor is alleviated by the method used here, the specification of the integrals of H^{2} being a trivial exercise. We hope to use the programme to test a number of other variation principles that also involve the matrices of H^{2}. For this purpose the lower bounds given here are very encouraging; the upper and lower bounds for helium have merged to five significant figures.

Also of interest is the technique used to deal with round-off errors in Table 2. It is well known that the errors due to the finite-accuracy arithmetic used can build up disastrously in a variational calculation. These errors can, however, be bounded and the bound added to the raw upper or lower bounds generated to give a rigorous bound including the round-off error (Delves 1968). This has been done in Table 2. The round-off contribution to the bounds are significant only for the lower bounds, since our matrices of H^{2} are less accurate than those of H. Figure 2 illustrates the size of the round-off errors for the lower bound to the state $\mathrm{He}\left(2^{3} \mathrm{~S}\right)$. In this figure both the uncorrected and the corrected lower bounds are plotted against the scale parameter S, together with the corrected upper bound. We see that the round-off errors may be large for some values of S, but are satisfactorily small near the optimum

Table 2
ENERGIES AND EXPECTATION VALUES FOR SOME ATOMIC SYSTEMS
Values are expressed in electron atomic units a_{0}, but for the $d-\mu$-d system muon atomic units a_{μ} are used except for the energy, which is given in eV. For the upper and lower bounds the number of terms used in the expansion is shown in parentheses, and the scale factor S in equation (1) is given.

Previous upper and lower bound calculations are shown for comparison

Energy or Operator	$\mathrm{He}\left(1^{1} \mathrm{~S}\right)$	$\mathrm{He}\left(2^{3} \mathrm{~S}\right)$	System $d-\mu-d$	H_{2}^{+}	$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{-}$
m_{1}	1	1	17.7511244	1836.08	1
m_{2}	1	1	17.7511244	$1836 \cdot 08$	1
m_{3}	∞	∞	1	1	1
Z	2	2	1	1	1
E (upper bound)	-2.903724313 (100)	$-2 \cdot 1752267$ (71)	$-2988 \cdot 5373$ eV (100)	-0.592947 (100)	$-0 \cdot 2620035$ (100)
S (upper bound)	$1 \cdot 4$	$3 \cdot 4$	$2 \cdot 9$	$3 \cdot 0$	$9 \cdot 0$
E (lower bound)	$-2 \cdot 9037945$ (50)	$-2 \cdot 1753306$ (34)	-	-	-0.2662 (50)
S (lower bound)	$2 \cdot 0$	$4 \cdot 25$	-	-	$10 \cdot 5$
Upper bound from previous calculations*	$-2.903724375(1078)^{\text {b }}$	$-2 \cdot 175229378237(715)^{\text {b }}$	-2981 eV (32) ${ }^{\text {a }}$	$-0 \cdot 58305(32)^{\text {a }}$	$-0 \cdot 2620011(50)^{\text {c }}$
Lower bound from				- $58305(32)$	-0.2620011 (50)
previous calculations*	$-2 \cdot 903726615(1078){ }^{\text {b }}$	$-2 \cdot 175229379(715)^{\text {b }}$	-	$-0 \cdot 60263 \dagger$	-
$\left\langle T_{\mathbf{0}}\right\rangle$	2-903724313	2-1752267	$0 \cdot 75397$	-	$0 \cdot 1332387$
$\left\langle T_{1}\right\rangle$	$0 \cdot 1590695$	$0 \cdot 0074447$	-0.2665	-	-0.004472412
$\left\langle r_{1}^{-1}+r_{2}^{-1}\right\rangle$	3-376634	$2 \cdot 3093$	$1 \cdot 4551$	-	-0.6796438
$\left\langle r_{12}^{-1}\right\rangle$	0.9458191	0.26822	$0 \cdot 39403$	-	$0 \cdot 155634$
$\left\langle r_{1}+r_{2}\right\rangle$	1-858940	5-1002	4-2478	-	$10 \cdot 979$
$\left\langle r_{1}^{2}+r_{2}^{2}\right\rangle$	$2 \cdot 386941$	$22 \cdot 921$	11.9428	-	96.89
$\left\langle r_{12}\right\rangle$	$1 \cdot 422066$	$4 \cdot 4468$	$2 \cdot 8416$	-	8.549
$\left\langle\delta\left(r_{1}\right)+\delta\left(r_{2}\right)\right\rangle$	3-620719	$2 \cdot 6406$	$0 \cdot 3169$	-	$0 \cdot 041458$
$\left\langle\delta\left(r_{12}\right)\right\rangle$	0-1063434	$0 \cdot 0$	$5 \cdot 5 \times 10^{-6}$	-	1.71045
$\left\langle\cos \theta_{1}+\cos \theta_{2}\right\rangle$	1-296036	1.1256	1.0685	-	1-183968

[^1]\dagger Fixed nuclei approximation (Bates, Ledsham, and Stewart 1953).
value of S. The round-off corrections depend on the computed eigenvector, and this dependence accounts for the structure observed in curve \mathbf{C}.

Fig. 2.-Upper and lower bounds on the energy of the $\mathrm{He}\left(2^{3} \mathrm{~S}\right)$ state:

A, upper bound (71-term wave function).
B , uncorrected lower bound (34-term wave function).
C, lower bound corrected for the contribution from round-off errors in the computed matrix elements. The corrections depend on the computed eigenvector and hence are not necessarily smoothly varying with the scale factor S.

Also given in Tables 2 and 3 are the expected values of some representative operators, calculated from the 100 -term wave function yielding the best energy upper bound. The accuracy of these values has been estimated by comparison with

Table 3
EXPECTATION VALUES OF POWERS OF THE INTERPARTICLE DISTANCES
Results are for operators of the form $(l, m, n)=r_{1}^{l} r_{2}^{m} r_{12}^{n}\left(2-\delta_{l m}\right)$. All values are expressed in electron atomic units a_{0} except for the $d-\mu-d$ system, where muon units a_{μ} are used

l	m	n	$H e\left(1^{1} \mathrm{~S}\right)$	$\mathrm{He}\left(2^{3} \mathrm{~S}\right)$	$\mathrm{d}-\mu-\mathrm{d}$	$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{-}$	l	m	n	$\mathrm{He}\left(1^{1} \mathrm{~S}\right)$	$\mathrm{He}\left(2^{3} \mathrm{~S}\right)$	$\mathrm{d}-\mu-\mathrm{d}$	$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{-}$
-1	-1	-1	$4 \cdot 167157$	$0 \cdot 18661$	$0 \cdot 20821$	$0 \cdot 0220342$	-1	-1	1	$2 \cdot 631789$	$2 \cdot 0644$	$1 \cdot 0985$	$0 \cdot 5476255$
-1	0	-1	$3 \cdot 841888$	$0 \cdot 64545$	$0 \cdot 60864$	$0 \cdot 121397$	-1	0	1	$4 \cdot 136490$	$9 \cdot 9298$	$3 \cdot 9288$	$5 \cdot 2768$
-1	1	-1	$2 \cdot 849227$	$2 \cdot 0932$	$1 \cdot 2735$	$0 \cdot 585452$	-1	1	1	$4 \cdot 980830$	$45 \cdot 698$	$10 \cdot 113$	$46 \cdot 23$
-1	2	-1	$2 \cdot 993350$	$8 \cdot 8639$	$3 \cdot 3443$	$4 \cdot 293$	-1	2	1	$8 \cdot 009495$	$261 \cdot 74$	$32 \cdot 206$	$587 \cdot 8$
-1	3	-1	$4 \cdot 133502$	$44 \cdot 646$	$10 \cdot 363$	$43 \cdot 82$	-1	3	1	$16 \cdot 01758$	$1722 \cdot 3$	$118 \cdot 96$	9760
0	1	-1	$1 \cdot 448933$	$1 \cdot 18539$	$1 \cdot 5526$	$1 \cdot 384483$	0	1	1	$3 \cdot 104986$	$25 \cdot 829$	$12 \cdot 937$	$113 \cdot 97$
0	2	-1	$1 \cdot 540627$	$4 \cdot 5322$	$4 \cdot 0329$	$9 \cdot 5265$	0	2	1	$4 \cdot 668667$	$134 \cdot 15$	$39 \cdot 209$	1275
0	3	-1	$2 \cdot 129992$	$22 \cdot 362$	$12 \cdot 779$	$93 \cdot 48$	1	1	1	$1 \cdot 548576$	$16 \cdot 893$	$13 \cdot 304$	$269 \cdot 78$
1	1	-1	$0 \cdot 5653453$	$0 \cdot 72318$	$1 \cdot 4719$	$2 \cdot 77406$	-1	-1	2	$3 \cdot 406223$	$9 \cdot 0513$	$3 \cdot 0316$	$4 \cdot 4497$
1	2	-1	$1 \cdot 210745$	$3 \cdot 9037$	$7 \cdot 5777$	$34 \cdot 536$	-1	0	2	$6 \cdot 466397$	$50 \cdot 070$	$11 \cdot 808$	$53 \cdot 88$
1	3	-1	$1 \cdot 672415$	$17 \cdot 286$	$24 \cdot 427$	$314 \cdot 8$	-1	1	2	$9 \cdot 333429$	$266 \cdot 86$	$33 \cdot 336$	$613 \cdot 2$
2	2	-1	$0 \cdot 648927$	$3 \cdot 1342$	$9 \cdot 7665$	$95 \cdot 045$	-1	2	2	$17 \cdot 66658$	$1737 \cdot 0$	$115 \cdot 85$	9860
-1	-1	0	$2 \cdot 708656$	$0 \cdot 56078$	$0 \cdot 44712$	$0 \cdot 090935$	0	0	2	$2 \cdot 516414$	$23 \cdot 038$	$8 \cdot 9262$	$93 \cdot 23$
-1	1	0	$3 \cdot 277818$	$9 \cdot 0196$	$3 \cdot 3926$	$4 \cdot 4893$	0	1	2	$6 \cdot 310569$	$150 \cdot 749$	$43 \cdot 368$	1496
-1	2	0	$4 \cdot 354313$	$44 \cdot 825$	$9 \cdot 8463$	$44 \cdot 04$	-1	-1	3	$5 \cdot 514115$	$46 \cdot 289$	$9 \cdot 2794$	$46 \cdot 93$
-1	3	0	$7 \cdot 364284$	$259 \cdot 91$	$33 \cdot 409$	$581 \cdot 7$	-1	0	3	$12 \cdot 28134$	$290 \cdot 728$	$39 \cdot 103$	$702 \cdot 77$
0	3	0	$3 \cdot 935817$	$130 \cdot 40$	$40 \cdot 872$	1218	-1	1	3	$20 \cdot 74915$	$1769 \cdot 8$	$120 \cdot 46$	10200
1	1	0	$0 \cdot 8271069$	$3 \cdot 2301$	$4 \cdot 2030$	$24 \cdot 174$	0	0	3	$5 \cdot 307917$	$136 \cdot 71$	$30 \cdot 713$	1269
1	2	0	$2 \cdot 043074$	$19 \cdot 704$	$22 \cdot 842$	$356 \cdot 2$							

the accurate results of Pekeris (1962), where available, and by observing the convergence with increasing numbers of terms (Delves and Kalotas 1968). For the expectation values the last digit quoted may be in error.

We see that except for the system H_{2}^{+}we obtain an accuracy of from five to seven significant digits in these expected values, a very satisfactory result. For the hydrogen molecule ion the expected values we obtained behave extremely erratically and they have not been quoted here.

VII. Acknowledgments

This work was carried out during the tenure of a Commonwealth Scholarship (T.K.) and an S.R.C. research grant (L.M.D.), and was supported by a grant from the Shell Petroleum Company. The calculations were carried out on the Atlas computer of the Science Research Council, Chilton, and partly on the ICT 1905 computer of the University of Sussex. The authors are grateful to the staffs of both these computing centres for their facilities and help.

VIII. References

Bates, D. R., Ledsham, K., and Stewart, A. L. (1953).-Phil. Trans. R. Soc. A 246, 215. Delves, L. M. (1967).-Proc. phys. Soc. 92, 55.
Delves, L. M. (1968).—J. computl Phys. 3, 444.
Delves, L. M., and Kalotas, T. (1968).-Aust. J. Phys. 21, 1.
Frost, A. A., Inokuti, M., and Lowe, J. P. (1964).—J. chem. Phys. 41, 482.
Kolos, W., Roothaan, C. C. J., and Sack, R. A. (1960).-Rev. mod. Phys. 32, 178.
Pekeris, C. L. (1962).-Phys. Rev. 126, 1470.

[^0]: * School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, Sussex, England.

[^1]: * References are: a, Kolos, Roothaan, and Sack (1960); b, Pekeris (1962); c, Frost, Inokuti, and Lowe (1964).

