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[Manuscript received May 20, 1968] 

Summary 

The results of a survey with the 1 mile Molonglo cross-type radio telescope of 
nonthermal galactic sources are discussed in terms of supernova remnant theories. 
The contour maps obtained indicate that most sources are consistent with a portion 
of a shell of emission. The results suggest that a remnant's spectral index is indepen
dent of its age. A supernova remnant evolutionary path is also derived, and com
pared with the path predicted by the various theories. 

1. INTRODUCTION 

Surveys of the galactic plane at radio frequencies reveal sources of two types, 
the basis for classification being the spectral index. On various grounds, the sources 
with a nonthermal index are generally thought to be remnants of supernova outbursts. 
For example, sources have been found at the sites of three observed supernovae: 
Taurus A, Tycho's nova, and Kepler's nova. Further, gas filaments consistent with 
a supernova outburst have been found at the positions of some radio sources: 
Cassiopeia A, Cygnus Loop, Ie 443 (Minkowski 1959), and RCW 86 (Westerlund 
and Mathewson 1966). Several theories have been proposed rela.ting a radio source 
to the gaseous remnant (Shklovskii 1960a; Van der Laan 1962). There have been 
few opportunities, however, for testing these theories: the most direct tests require 
that the distance to the source be known. This is so for a small number of sources 
only. Statistical tests have been of little use as each of the low resolution surveys 
available contained too few sources, and the ensemble of surveys failed to form a 
statistically homogeneous sample. It was hoped that the catalogue described in a 
previous paper (Kesteven 1968) would permit a fresh approach to the problem. 
Four questions are tackled in the present paper. The first relates to the type of 
supernova; it will be shown that the distribution of the sources is similar to the 
distribution of popUlation I objects, suggesting that the sources are remnants of type 
II supernovae. Secondly, the morphology of the sources is examined; it will be shown 
that few sources have the circularly symmetric structure characteristic of the complete 
shell of emission assumed by the theories. The majority of the sources are consistent, 
however, with a fraction of a shell. Thirdly, the evolution of the radiation spectral 
index is examined. Analyses of the loss mechanisms that affect the radiation spectrum 
indicate that the spectral index should be independent of the age of the source. The 
present results confirm this, in contrast to the findings of Harris (1962) and Pskovskii 
(1963). Finally, the evolution of the radiated power is examined. This could be a 
sensitive test of the various theories, but the errors associated with the present set of 
observations are too large for the conclusions to be of great significance. 

* Cornell-Sydney University Astronomy Centre, School of Physics, University of Sydney, 
N.S.W. 2006. 
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II. GALACTIC DISTRIBUTION OF THE SOURCES 

The galactic distribution of the sources of the catalogue indicates that they are 
associated with population I objects; both the thermal and nonthermal sources lie 
close to the galactic plane. The mean absolute latitude of 0°.8 is consistent with the 
value noted by other observers: Large, Mathewson, and Haslam (1961), for example, 
found I bIll = 0°.3. The distribution in longitude is equally consistent with a 
population I distribution, as the sources show a "bunching" suggesting a spiral arm 
structure. The number of sources is too small to determine the location of the arms 
with precision, but the peaks in the source distribution agree with the "tangential 
points" noted by other observers (Mills 1959; Elsasser and Haug 1960; Kerr 1962; 
Mathewson, Healey, and Rome 1962). The source distribution is shown in Figure 1 
along with the tangential points of Mills. 

It appears then that the nonthermal sources are remnants of type II supernovae 
(if indeed they are supernova remnants). 

Nonthermal sources 

Ta?gential I 
pomts 

260 280 300 

I I I 

320 340 

/11 (degrees) 

20 40 

Fig. I.-Distribution in 
galactic longitude III of the 
sources of the catalogue. 

III. SOURCE CONTOUR DIAGRAMS 

Both theories of the supernova remnant assume the radio source to be associated 
with an expanding shell of plasma ejected by the outburst. In Shklovskii's theory 
the source is embedded in the shell; in Van der Laan's theory the source is situated 
in the region between the shell and the associated shock front. In addition, both 
theories assume the shell to be complete. Nineteen of the nonthermal sources are 
large enough to be resolved by the pencil beam of the cross-type telescope of the 
Molonglo Observatory. It could be hoped that an examination of the contours might 
decide between these two theories. Further, it should be possible to determine from 
the contours the nature of the shell, in the manner described by Hill (1967). 

Figs. 2(a)-2(r).-The 408 MHz isophotes of the 19 largest nonthermal sources of the catalogue. 
In each figure the contour interval (c.i.) is shown and the solid circle is an estimate of the outer 

radius of the supernova shell. 
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The contours are shown in Figures 2(a)-2(r). It is clear that few sources can be 
described as shells of emission. Two classes of sources can be distinguished: 

(a) The sources of this group (Figs. 2(a)-2(k)) are consistent with a shell of emission, 
or at least a fraction of a shell. 

(b) The sources of this group (Figs. 2(l)-2(r)) are amorphous masses, about which 
little can be said. 

Glass (a) Sources 

Since the majority of the sources of this group show only a fraction of a shell, 
it is pertinent to enquire whether this is an evolutionary effect. Although there is no 
way, at present, of measuring the age of a source, it appears (on the basis of the two 
theories) that the brightness is a reasonable measure. 

41T 

31T 

• 40 

20 67 19 • •• 
, , ! "I 

10' 

I (f.u./sterad) 

,p, 

Fig. 3.-Plot of the class (a) 

sources of the catalogue, show· 
ing source brightness I versus 
the solid angle [} subtended (at 
the site of the outburst) by the 
region of emission. 

An estimate was made of the degree to which the shell is filled. A circle was 
drawn approximately concentric with the ridge of emission. The centre of the circle 
was taken as the site of the outburst. The solid angle subtended by the shell at the 
centre was then calculated, on the assumption that the shell was symmetrically 
disposed about a line, perpendicular to the line of sight, joining the centre of the circle 
to the centroid of the emission. In Figure 3 the solid angle for each source has been 
plotted as a function of its brightness. It is clear that no evolutionary trend is present, 
which suggests that the degree of completeness of the shell is determined by the 
outburst and not by the subsequent interaction with the interstellar medium. 

This conclusion is supported by the observation that, of the previously reported 
complete shell sources, one, Cassiopeia A, exceeds in brightness all the sources of the 
catalogue, whilst three others, HB 21, PKS 1439-62, and PKS 0902-38, are weaker 
in brightness. 

Four sources were analysed with the aid of the table prepared by Hill (1967) 
to determine the shell parameters; the aerial response measured along a radius was 
compared with the predicted response of the aerial to a shell of emission. The sources 
analysed are numbers 40, 33, 13, and 17 of the catalogue (Figs. 2(a)-2(d)). The 
results are shown in Figure 4. In each case there is reasonable agreement between 
the predicted and the observed responses. The analysis indicates that for source 
number 13 the emission occurs in two shells; but since the observed response is in 
fact an average taken around the source, the particular values for the emissivity 
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should be treated with caution. This source could have been analysed as an ellipsoid, 
in the manner described by Crowther (1966), but it is doubtful whether a significantly 
better fit to the obserVations would have been achieved. 

No. 40 No. 13 

10 

4 

(b) 

o 0 

RCW 103 No. 33 

16 No. 17 

14 

J 
12 

10 

O! .s:: 

< 8 

6 

4 
Emissivity 

(c) (d) 

0 2 o 
Distance from source centre 

Figs. 4(a)-4(d).-Calculated radial response of the aerial to a shell of emission compared with the 
observed response. The unit of distance is half the half· power beamwidth. The radial dependence 

of the volume emissivity is also shown. 

It will be noted that in the case of number 40, the central response is substantially 
less than the predicted value. (The analysis was in terms of shells of emission whose 
thicknesses were half the half-power beamwidth; analysis with shells of smaller 
thickness will not significantly alter this result.) Since this 'source has a fair degree of 
circular symmetry, it is pertinent to enquire whether an explanation for the low 
central value can be found which is independent of the line of sight. Absorption in 
the interior of the source would give a low central value, but this is unlikely to be the 
explanation for No. 40; the temperature of the gas ejected by the outburst would 
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have to be less than 103 oK, the brightness temperature of the radiation. A low 
central value would result if the radiation were emitted preferentially tangentially 
to the surface of the shell. On the assumption that the radiation is due to the synchro
tron mechanism, this would indicate a radial magnetic field, which implies a magnetic 
monopole. In this context, however, it is of interest to note that Mayer and Hollinger 
(1967) found polarization in Cassiopeia A that is consistent with a radial field. 
However, the magnitude of the polarization is small (,...., 4· 5 %) and would be inadequate 
to explain the observations of number 40. High resolution polarization observations 
would clearly be of great value in elucidating this source. It appears, however, that 
the symmetry requirements will have to be relaxed. 

A partial shell symmetrically disposed about the line of sight would give a low 
central value. In view of the relatively large number of partial shells observed, this 
seems the most likely explanation. 

W44 is clearly consistent with a shell emission, but no analysis was attempted 
in view of the large east-west asymmetry. For similar reasons of asymmetry, no 
analysis was made on the remaining sources of group (a). However, by analogy with 
the analysis presented, an estimate was made of the outer radius of the shell. This 
radius is indicated in Figures 2(a)-2(k). 

Glass (b) Sources 

These sources show little evidence of a shell structure; the general appearance 
is one of a peak embedded in a broad region of low brightness. The question arises 
as to whether perhaps some of these sources are extragalactic. An extrapolation of 
source counts from high latitude surveys indicates that 3 extragalactic sources should 
be found by chance in the present set of 19 sources. Three sources are particularly 
noteworthy: number 19 (MSH 13-62) and numbers 47 and 48 (MSH 17-63). 

Number 19 (Fig. 2(r)).-In appearance this source is strongly suggestive of an 
extragalactic source. In addition, neutral hydrogen-line absorption measurements 
suggest that this source lies beyond the solar distance from the galactic centre 
(Radhakrishnan, personal communication). 

Numbers 47 and 48 (Fig. 2(q)).-Individually, each source could be a supernova 
remnant, but the close proximity of the two brightest sources of the catalogue must 
suggest that the sources are in some way associated, and that they also are components 
of an extragalactic source. 

Search for Optical Features 

A search was made of the optical fields of the 19 sources. Only in 1 case were 
optical features found. As indicated by Beard (1966) number 33 is in good agreement 
with the object RCW 103. The field, from an enlargement of an Uppsala Schmidt 
plate provided by Dr. G. Lynga, is shown in Figure 5. It will be noted that the 
filaments are in good agreement with the projection of the shell determined from the 
isophotes. 

In addition to a search for gas filaments, a particular effort was made in the case 
of the sources 19, 47, and 48. A search along the major axis failed to reveal, in either 
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case, any object of note. In particular, there was no evidence of a galaxy in the field. 
This was not unexpected, however, in view of the obscuration in the plane of the 
galactic disk. 

Fig. 5.-Field of the source RCW 103 (number 33 of the catalogue). The radio isophotes are also 
shown. 

IV. EVOLUTION OF SPECTRAL INDEX 

Analyses by Kardashev (1963) and by de la Beaujardiere (1966) of the loss 
mechanisms likely to be present in a supernova remnant indicate that the spectral 
index of the radiation is unlikely to evolve. Under some extreme conditions, however, 
the spectral index could steepen, in the sense of becoming more nonthermal. This 
result is in direct contrast to the findings of Harris (1962) and Pskovskii (1963), 
which indicate that the index flattens as the source ages. If this latter result were 
confirmed, it would indicate that either the conditions in the remnant differ substan
tially from the current estimates, or that the sources are not supernova remnants. 
In view of these consequences, the question was re-examined. 

Estimates of the spectral index are available for 30 nonthermal sources of the 
catalogue. In addition, data have been published on a further 28'. In Figure 6 the 
indices have been plotted as a function of the source brightness. There is little 
indication of an evolutionary trend. The mean of the low brightness sources is 
-0·44±0·04, and that of the high brightness sources is -0·52±0·05. The means lie 
just within their standard deviations, suggesting that the evolutionary trend, if 
present, is very slight. The spectral indices are centred on a value of -0·5 with an 
r.m.s. scatter of about 0·3. 
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V. EVOLUTION OF RADIATED POWER 

The two theories that have received most attention in the literature are due to 
Shklovskii (1960a) and Van der Laan (1962). According to Shklovskii's hypothesis, 
both the field and the particles are generated by the outburst and are situated within 
the expanding plasma shell. The assumption is then made that the expansion of the 
shell is adiabatic; a relation can then be determined between the source radius and 
the radiated flux. This can be expressed in the form 

P oc R-2y, (1) 

where P is the power per unit bandwidth radiated over all directions at the observing 

-j·O 

j -0·5 

] 
j 

0·0 

• Fan beam survey 
• Other catalogues 

• 
• 
• . I. 

• • 
• • •• 

• • • 
• •• ••••••• • . ...... . .-.....• - . 

•• • ••• 
•• • 

• 

• 

105 106 107 108 109 lOlO 

(f.u./ sterad) 

Fig. 6.-Plot of the distribu
tion of the source spectral 
index as a function of its 
brightness 1. 

frequency, R the shell radius, and y the exponent of the relativistic electron energy 
spectrum: 

N(E) dE = KE-ydE. 

Here y is related to the radiation spectral index IX by the expression 

IX = -t(y-1). 

Equation (1) was derived on the assumption that the source was a spherical 
mass rather than a shell. The same expression is obtained if the source is a shell 
whose thickness is a constant fraction of the radius. 

The rate at which the shell thickness increases is determined by the gas and the 
magnetic pressures. (Essentially, the problem is that of expansion into a vacuum.) 
Thus, if the magnetic field is weak, the ratio of the shell thickness to the shell radius 
may decrease during the initial stages of the remnant's evolution. The limiting case 
is where the shell thickness is constant, and the evolution equation becomes 

P oc R-!(3y-l) . (2) 

Van der Laan's theory assumes the relativistic particles to be generated by the 
outburst, and to be trapped in the region between the expanding shell and the shock 
generated by the expansion. The magnetic field is due to a compression of the galactic 
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medium. The evolution in this model, once the mass of the interstellar gas swept 
up by the shell exceeds the mass of the shell, is given approximately by the form 

P ex: R-3y. (3) 

There are few ways in which these theories can be tested. There is no clear 
evidence to indicate whether the radio source lies within the expanding plasma shell 
or in the shocked region. This is because of the small number of cases where optical 
filaments have been found at the site of a radio source, the difficulty in defining the 
position of the plasma shell, and the insufficient resolution of the radio observations. 
The lack of evolution in the spectral index indicates that the current estimates of the 
conditions within the shell are plausible, without deciding between the two theories. 
However, the differences between the models in the predicted evolution of the 
radiated power are substantial and should provide a reasonable basis for testing. 

The secular decrease in the flux density can be calculated if the expansion rate 
of the shell is known. This is the basis of the prediction made in 1960 by Shklovskii 
(1960b) for Cassiopeia A. The observed value of ~ 2% is consistent with equations 
(1) and (2). The value from equation (3) seems rather higher than can be accounted 
for with the observational errors. 

An evolutionary path can be reconstructed if the distances are known to a 
number of sources which are assumed to have similar evolutionary paths. There are 
five sources at known distances: Cassiopeia A and the Cygnus Loop in the Milky Way 
(Minkowski 1959) and N49, N63A, and N132:P in the Large Magellanic Cloud 
(Westerlund and Mathewson 1966). The possible evolutionary paths are shown in 
Figure 7, along with the points corresponding to the five sources. It is clear from 
equations (1), (2), and (3) that an allowance ought to be made for the different spectral 
indices. Such correction is not warranted (at present) in view of the uncertainties 
in the observed parameters. The models are based on a spectral index of -0 '5, the 
mean of all the nonthermal sources. 

Each model is of the form 

P=AR-g. 

The constant A was determined from the curve of index -g which best fits the data. 

Equation (2) seems the best fit, although the observations cannot exclude the 
other two models. 

Since the distance is not known for the sources of the catalogue, a statistical 
method was tried. Let the frequency of occurrence of the supernova outbursts be I, 
and assume (for the moment) that all supernova remnants of given brightness are 
detected. The number of remnants brighter than a given value I is 

N(~ I) = 10t(I) , (4) 

where t(I) is the age of a remnant whose brightness is I and 10 is the frequency of 
supernovae outbursts in the longitude range 180° < III < 40°. On the assumption 
that the outbursts all occur within 10 kpc of the galactic centre, 10 can be related to 
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the frequency f for the whole galaxy by 

Equations (1), (2), and (3) can be reformulated in terms of brightness I, 

where S is the integrated flux density and Q the solid angle subtended by the source 
(derived from the observed half-power dimensions). 
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Fig. 7.-Evolutionary relation 
between the radius of a 
remnant and its radiated power, 
calculated on the basis of 
the three models of a 
supernova remnant: 
8(1), 8hklovskii (equation (1)); 
8(2), 8hklovskii (equation (2)); 
V(3), Van der Laan (equation (3)). 
Points corresponding to the five 
sources are also plotted. 

Fig. S.-Differential number 
brightness distribution n(l) 
calculated for the three models, 
n(l) = N(;;. 0·561) -N(;;. I). 

An analysis of the expansion of the plasma shell yields a relation between the 
shell radius and its age: 

(5) 

where p is the density ofthe interstellar medium ( ....... 0·5 hydrogen atom/em), Mo the 
mass of the shell ( ....... 10 M 0 ), and Vo the initial velocity of the shell ( ....... 7000 kIn/sec). 
This expression is derived on the assumption that there is no energy input after the 
initial explosion, and no interaction between different parts of the shell. The constant 
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a: (,...., 1) accounts for the difference between the radius of the shell and the radius of 
the shock front. The precise value is of little importance, in view of the uncertainty 
in p and Mo. Thus 

_ (~)1/(g+2) 1 { 7rp(i(~)3/(g+2)} 
t(f)- 2 -V 1+ 3M 2 • 

47rf 0 o47rf 
(6) 

In Figure 8 the function n(f) = N(?;; 0·56f)-N(?;; f) has been plotted. This 
function, rather than N(?;; f), was chosen in order to minimize the contaminating 
effect of the class II sources included by chance in the catalogue. The 32 sources in 

TABLE 1 
FREQUENCY OF SUPERNOVA OUTBURSTS 

Teclmique 

Supernova remnants 

Search for supernovae 
in external galaxies 

Cosmic ray density* 

T = Iff (yr) 

50±30% 
90 
40 
30-60 
50 

450 

60 

100 
102±o·5 

50 

Reference 

Present paper (equation (1)) 
Present paper (equation (2)) 
Aizu and Tabara (1967) 
Shklovskii (1955) 
Minkowski (1964) 

Zwicky (1965) 

Bertaud (1961) 

Kaplon and Skadron (1966) 
Rosen and Milford (1966) 
Ginzburg and Syrovatskii (1964) 

* In this method the supernova outbursts are assumed to be the sites of 
cosmic ray production. Subject then to the assumed efficiency of the generation 
process, an estimate can be made of the frequency of the outbursts from the 
cosmic ray density. 

this figure are drawn from the catalogue and refer to the longitude range 
180° < III < 40°. A number of these sources are small relative to the aerial beam
width and no contours have been produced. No estimate of the spectral index is 
available for some of the sources; they are therefore not included in Figure 2. 
Also shown in Figure 8 are the functions n(f) calculated from equations (1), (2), and 
(3). The scale factor of the calculated functions is the frequency of occurrence f. Since 
this is not known, the curves have been drawn in the position of best fit. The frequency 
corresponding to these curves is given in Table 1. The values are in good agreement 
with estimates made by other observers. 

Because of the nature of the instrument used in the primary survey, the limiting 
condition governing the inclusion of a source in the catalogue is a complex function 
of the integrated flux density and the angular size. The function n(f) is therefore 
affected in the low brightness region. No attempt has been made to calculate n(f) 
in this region, as the function depends critically on the distribution of supernovae in 
the Galaxy. The brightness corresponding to the maximum of n(f) has been estimated, 
on the assumption that the distribution is uniform out to 10 kpc. The maximum occurs 
in the interval 107 < f < 1· 8 X 107, which is reasonably consistent with Figure 8. 
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These various tests suggest that Van der Laan's theory is a poor fit to the data, 
and that either variant of Shklovskii's theory is plausible. The present statistical 
method indicates that the remnants do have a common evolutionary path but, due 
to the uncertainties of the technique, this path is not yet well defined. It is likely that 
the evolutionary path could be recovered if the distance were known to a number of 
sources. The neutral hydrogen absorption measurements may be of particular value 
in this context, even though the errors in their results may be large. 
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